netdev
[Top] [All Lists]

[RFR] new e100 driver

To: netdev@xxxxxxxxxxx
Subject: [RFR] new e100 driver
From: Jeff Garzik <jgarzik@xxxxxxxxx>
Date: Fri, 5 Dec 2003 01:38:43 -0500
Sender: netdev-bounce@xxxxxxxxxxx
User-agent: Mutt/1.3.28i
e100 3.0.9_dev just got checked into net-drivers-2.5-exp queue.  As I do
occasionally (especially for smaller drivers), I post them for review
and comment.

Patches welcome in addition to comments.

One thing I am tempted to request is use of the new module_param()...

        Jeff





/*******************************************************************************

  
  Copyright(c) 1999 - 2003 Intel Corporation. All rights reserved.
  
  This program is free software; you can redistribute it and/or modify it 
  under the terms of the GNU General Public License as published by the Free 
  Software Foundation; either version 2 of the License, or (at your option) 
  any later version.
  
  This program is distributed in the hope that it will be useful, but WITHOUT 
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
  more details.
  
  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc., 59 
  Temple Place - Suite 330, Boston, MA  02111-1307, USA.
  
  The full GNU General Public License is included in this distribution in the
  file called LICENSE.
  
  Contact Information:
  Linux NICS <linux.nics@xxxxxxxxx>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

/*
 *      e100.c: Intel(R) PRO/100 ethernet driver 
 *
 *      (Re)written 2003 by scott.feldman@xxxxxxxxxx  Based loosely on
 *      original e100 driver, but better described as a munging of
 *      e100, e1000, eepro100, tg3, 8139cp, and other drivers.
 *
 *      References:
 *              Intel 8255x 10/100 Mbps Ethernet Controller Family,
 *              Open Source Software Developers Manual,
 *              http://sourceforge.net/projects/e1000
 *
 *
 *                            Theory of Operation
 *
 *      I.   General
 *
 *      The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
 *      controller family, which includes the 82557, 82558, 82559, 82550,
 *      82551, and 82562 devices.  82558 and greater controllers
 *      integrate the Intel 82555 PHY.  The controllers are used in
 *      server and client network interface cards, as well as in
 *      LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
 *      configurations.  8255x supports a 32-bit linear addressing
 *      mode and operates at 33Mhz PCI clock rate.
 *
 *      II.  Driver Operation
 *
 *      Memory-mapped mode is used exclusively to access the device's
 *      shared-memory structure, the Control/Status Registers (CSR). All
 *      setup, configuration, and control of the device, including queuing
 *      of Tx, Rx, and configuration commands is through the CSR.
 *      cmd_lock serializes accesses to the CSR command register.  cb_lock
 *      protects the shared Command Block List (CBL).
 *
 *      8255x is highly MII-compliant and all access to the PHY go
 *      through the Management Data Interface (MDI).  Consequently, the
 *      driver leverages the mii.c library shared with other MII-compliant
 *      devices.
 *      
 *      Big- and Little-Endian byte order as well as 32- and 64-bit 
 *      archs are supported.  Weak-ordered memory and non-cache-coherent
 *      archs are supported.
 *      
 *      III. Transmit
 *
 *      A Tx skb is mapped and hangs off of a TCB.  TCBs are linked
 *      together in a fixed-size ring (CBL) thus forming the flexible mode
 *      memory structure.  A TCB marked with the suspend-bit indicates
 *      the end of the ring.  The last TCB processed suspends the
 *      controller, and the controller can be restarted by issue a CU
 *      resume command to continue from the suspend point, or a CU start
 *      command to start at a given position in the ring.
 *
 *      Non-Tx commands (config, multicast setup, etc) are linked
 *      into the CBL ring along with Tx commands.  The common structure
 *      used for both Tx and non-Tx commands is the Command Block (CB).
 *      
 *      cb_to_use is the next CB to use for queuing a command; cb_to_clean
 *      is the next CB to check for completion; cb_to_send is the first
 *      CB to start on in case of a previous failure to resume.  CB clean
 *      up happens in interrupt context in response to a CU interrupt, or
 *      in dev->poll in the case where NAPI is enabled.  cbs_avail keeps
 *      track of number of free CB resources available.
 *
 *      Hardware padding of short packets to minimum packet size is
 *      enabled.  82557 pads with 7Eh, while the later controllers pad
 *      with 00h.
 *
 *      IV.  Recieve
 *
 *      The Receive Frame Area (RFA) comprises a ring of Receive Frame
 *      Descriptors (RFD) + data buffer, thus forming the simplified mode
 *      memory structure.  Rx skbs are allocated to contain both the RFD
 *      and the data buffer, but the RFD is pulled off before the skb is
 *      indicated.  The data buffer is aligned such that encapsulated 
 *      protocol headers are u32-aligned.  Since the RFD is part of the
 *      mapped shared memory, and completion status is contained within
 *      the RFD, the RFD must be dma_sync'ed to maintain a consistent
 *      view from software and hardware.
 *
 *      Under typical operation, the  receive unit (RU) is start once,
 *      and the controller happily fills RFDs as frames arrive.  If 
 *      replacement RFDs cannot be allocated, or the RU goes non-active,
 *      the RU must be restarted.  Frame arrival generates an interrupt,
 *      and Rx indication and re-allocation happen in the same context,
 *      therefore no locking is required.  If NAPI is enabled, this work
 *      happens in dev->poll.  A software-generated interrupt is gen-
 *      erated from the watchdog to recover from a failed allocation
 *      senario where all Rx resources have been indicated and none re-
 *      placed.
 *
 *      V.   Miscellaneous
 *
 *      VLAN offload support of tagging, stripping and filtering is not
 *      supported, but driver will accommodate the extra 4-byte VLAN tag
 *      for processing by upper layers.  Tx/Rx Checksum offloading is not
 *      supported.  Tx Scatter/Gather is not supported.  Jumbo Frames is
 *      not supported.
 *
 *      NAPI support is enabled with CONFIG_E100_NAPI.
 *
 *      MagicPacket(tm) WoL support is enabled/disabled via ethtool.
 *
 *      Thanks to JC (jchapman@xxxxxxxxxxx) for helping with 
 *      testing/troubleshooting the development driver.
 */

#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/list.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/mii.h>
#include <linux/if_vlan.h>
#include <linux/skbuff.h>
#include <linux/ethtool.h>
#include <asm/unaligned.h>


#define DRV_NAME                "e100"
#define DRV_VERSION             "3.0.9_dev"
#define DRV_DESCRIPTION         "Intel(R) PRO/100 Network Driver"
#define DRV_COPYRIGHT           "Copyright(c) 1999-2003 Intel Corporation"
#define PFX                     DRV_NAME ": "

#define E100_WATCHDOG_PERIOD    2 * HZ
#define E100_NAPI_WEIGHT        16

MODULE_DESCRIPTION(DRV_DESCRIPTION);
MODULE_AUTHOR(DRV_COPYRIGHT);
MODULE_LICENSE("GPL");

static int debug = 3;
MODULE_PARM(debug, "i");
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
#define DPRINTK(nlevel, klevel, fmt, args...) \
        (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \
        printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \
                __FUNCTION__ , ## args))

#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
        PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
        PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
static struct pci_device_id e100_id_table[] = {
        INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
        INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
        INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
        INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
        INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
        INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
        INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
        INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
        INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
        INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
        INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
        INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
        INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
        INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
        INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
        INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
        INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
        INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
        INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
        INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
        INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
        INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
        INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
        INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
        INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
        { 0, }
};
MODULE_DEVICE_TABLE(pci, e100_id_table);

enum mac {
        mac_82557_D100_A  = 0,
        mac_82557_D100_B  = 1,
        mac_82557_D100_C  = 2,
        mac_82558_D101_A4 = 4,
        mac_82558_D101_B0 = 5,
        mac_82559_D101M   = 8,
        mac_82559_D101S   = 9,
        mac_82550_D102    = 12,
        mac_82550_D102_C  = 13,
        mac_82550_D102_E  = 15,
        mac_unknown       = 0xFF,
};

enum phy {
        phy_100a     = 0x000003E0,
        phy_100c     = 0x035002A8, 
        phy_82555_tx = 0x015002A8,
        phy_nsc_tx   = 0x5C002000, 
        phy_82562_et = 0x033002A8,
        phy_82562_em = 0x032002A8,
        phy_82562_eh = 0x017002A8,
        phy_unknown  = 0xFFFFFFFF,
};

/* CSR (Control/Status Registers) */
struct csr {
        struct {
                u8 status;
                u8 stat_ack;
                u8 cmd_lo;
                u8 cmd_hi;
                u32 gen_ptr;
        } scb;
        u32 port;
        u16 flash_ctrl;
        u8 eeprom_ctrl_lo;
        u8 eeprom_ctrl_hi;
        u32 mdi_ctrl;
        u32 rx_dma_count;
};

enum scb_status {
        rus_idle         = 0x00,
        rus_suspended    = 0x04,
        rus_no_resources = 0x08,
        rus_ready        = 0x10,
        rus_mask         = 0x3C,
        cus_idle         = 0x00,
        cus_suspended    = 0x40,
        cus_active       = 0x80,
        cus_mask         = 0xC0,
};

enum scb_stat_ack {
        stat_ack_sw_gen      = 0x04,
        stat_ack_rnr         = 0x10,
        stat_ack_cu_idle     = 0x20,
        stat_ack_frame_rx    = 0x40,
        stat_ack_cu_cmd_done = 0x80,
        stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
        stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
};

enum scb_cmd_hi {
        irq_mask_none = 0x00,
        irq_mask_all  = 0x01,
        irq_sw_gen    = 0x02,
};

enum scb_cmd_lo {
        ruc_start      = 0x01,
        ruc_load_base  = 0x06,
        cuc_start      = 0x10,
        cuc_resume     = 0x20,
        cuc_dump_addr  = 0x40,
        cuc_dump_stats = 0x50,
        cuc_load_base  = 0x60,
        cuc_dump_reset = 0x70,
};

enum port {
        software_reset  = 0x0000,
        selftest        = 0x0001,
        selective_reset = 0x0002,
};

enum eeprom_ctrl_lo {
        eesk = 0x01,
        eecs = 0x02,
        eedi = 0x04,
        eedo = 0x08,
};

enum mdi_ctrl {
        mdi_write = 0x04000000,
        mdi_read  = 0x08000000,
        mdi_ready = 0x10000000,
};

enum eeprom_op {
        op_write = 0x05,
        op_read  = 0x06,
        op_ewds  = 0x10,
        op_ewen  = 0x13,
};

enum eeprom_offsets {
        eeprom_id         = 0x0A,
        eeprom_config_asf = 0x0D,
        eeprom_smbus_addr = 0x90,
};

enum eeprom_id {
        eeprom_id_wol = 0x0020,
};

enum eeprom_config_asf {
        eeprom_asf = 0x8000,
        eeprom_gcl = 0x4000,
};

enum cb_status {
        cb_complete = 0x8000,
        cb_ok       = 0x2000,
};

enum cb_command {
        cb_iaaddr = 0x0001,
        cb_config = 0x0002,
        cb_multi  = 0x0003,
        cb_tx     = 0x0004,
        cb_dump   = 0x0006,
        cb_tx_sf  = 0x0008,
        cb_cid    = 0x1f00,
        cb_i      = 0x2000,
        cb_s      = 0x4000,
        cb_el     = 0x8000,
};

struct rfd {
        u16 status;
        u16 command;
        u32 link;
        u32 rbd;
        u16 actual_size;
        u16 size;
};

struct rx_list {
        struct list_head list;
        struct sk_buff *skb;
        dma_addr_t dma_addr;
        unsigned int length;
};

#if defined(__BIG_ENDIAN_BITFIELD)
#define X(a,b)  b,a
#else
#define X(a,b)  a,b
#endif
struct config {
/*0*/   u8 X(byte_count:6, pad0:2);
/*1*/   u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
/*2*/   u8 adaptive_ifs;
/*3*/   u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
           term_write_cache_line:1), pad3:4);
/*4*/   u8 X(rx_dma_max_count:7, pad4:1);
/*5*/   u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
/*6*/   u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
           tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
           rx_discard_overruns:1), rx_save_bad_frames:1);
/*7*/   u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
           pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
           tx_dynamic_tbd:1);
/*8*/   u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
/*9*/   u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
           link_status_wake:1), arp_wake:1), mcmatch_wake:1);
/*10*/  u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
           loopback:2);
/*11*/  u8 X(linear_priority:3, pad11:5);
/*12*/  u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
/*13*/  u8 ip_addr_lo;
/*14*/  u8 ip_addr_hi;
/*15*/  u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
           wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
           pad15_2:1), crs_or_cdt:1);
/*16*/  u8 fc_delay_lo;
/*17*/  u8 fc_delay_hi;
/*18*/  u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
           rx_long_ok:1), fc_priority_threshold:3), pad18:1);
/*19*/  u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
           fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
           full_duplex_force:1), full_duplex_pin:1);
/*20*/  u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
/*21*/  u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
/*22*/  u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
        u8 pad_d102[9];
};

#define E100_MAX_MULTICAST_ADDRS        64
struct multi {
        u16 count;
        u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
};

/* Important: keep total struct u32-aligned */
struct cb {
        u16 status;
        u16 command;
        u32 link;
        union {
                u8 iaaddr[ETH_ALEN];
                struct config config;
                struct multi multi;
                struct {
                        u32 tbd_array;
                        u16 tcb_byte_count;
                        u8 threshold;
                        u8 tbd_count;
                        struct {
                                u32 buf_addr;
                                u16 size;
                                u16 eol;
                        } tbd;
                } tcb;
                u32 dump_buffer_addr;
        } u;
        struct cb *next, *prev;
        dma_addr_t dma_addr;
        struct sk_buff *skb;
};

enum loopback {
        lb_none = 0, lb_mac = 1, lb_phy = 3,
};

struct stats {
        u32 tx_good_frames, tx_max_collisions, tx_late_collisions,
                tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
                tx_multiple_collisions, tx_total_collisions;
        u32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
                rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
                rx_short_frame_errors;
        u32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
        u16 xmt_tco_frames, rcv_tco_frames;
        u32 complete;
};

struct mem {
        struct {
                u32 signature;
                u32 result;
        } selftest;
        struct stats stats;
        u8 dump_buf[596];
};

struct param_range {
        u32 min;
        u32 max;
        u32 count;
};

struct params {
        struct param_range rfds;
        struct param_range cbs;
};

struct nic {
        /* Begin: frequently used values: keep adjacent for cache effect */
        u32 msg_enable                          ____cacheline_aligned;
        struct net_device *netdev;
        struct pci_dev *pdev;
        
        struct list_head rx_list_head           ____cacheline_aligned;
        struct rx_list *rx_list;
        struct rfd blank_rfd;
        
        spinlock_t cb_lock                      ____cacheline_aligned;
        spinlock_t cmd_lock;
        struct csr *csr;
        enum scb_cmd_lo cuc_cmd;
        unsigned int cbs_avail;
        struct cb *cbs;
        struct cb *cb_to_use;
        struct cb *cb_to_send;
        struct cb *cb_to_clean;
        u16 tx_command;
        /* End: frequently used values: keep adjacent for cache effect */

        enum {
                ich           = (1 << 0),
                promiscuous   = (1 << 1),
                multicast_all = (1 << 2),
                wol_magic     = (1 << 3),
        } flags                                 ____cacheline_aligned;
        
        enum mac mac;
        enum phy phy;
        struct params params;
        struct net_device_stats net_stats;
        struct timer_list watchdog;
        struct timer_list blink_timer;
        struct mii_if_info mii;
        enum loopback loopback;

        struct mem *mem;
        dma_addr_t dma_addr;

        dma_addr_t cbs_dma_addr;
        u8 adaptive_ifs;
        u8 tx_threshold;
        u32 tx_frames;
        u32 tx_collisions;
        u32 tx_deferred;
        u32 tx_single_collisions;
        u32 tx_multiple_collisions;
        u32 tx_fc_pause;
        u32 tx_tco_frames;

        u32 rx_fc_pause;
        u32 rx_fc_unsupported;
        u32 rx_tco_frames;
        
        u8 rev_id;
        u16 leds;
        u16 eeprom_wc;
        u16 eeprom[256];
        u32 pm_state[16];
};

static void e100_get_defaults(struct nic *nic)
{
        struct param_range rfds = { .min = 64, .max = 256, .count = 64 };
        struct param_range cbs  = { .min = 64, .max = 256, .count = 64 };

        pci_read_config_byte(nic->pdev, PCI_REVISION_ID, &nic->rev_id);
        /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
        nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->rev_id;
        if(nic->mac == mac_unknown)
                nic->mac = mac_82557_D100_A;

        nic->params.rfds = rfds; 
        nic->params.cbs = cbs; 
        
        /* Quadwords to DMA into FIFO before starting frame transmit */
        nic->tx_threshold = 0xE0;

        nic->tx_command = cpu_to_le16(cb_tx | cb_i | cb_tx_sf |
                ((nic->mac >= mac_82558_D101_A4) ? cb_cid : 0));

        /* Template for a freshly allocated RFD */
        nic->blank_rfd.status = 0;
        nic->blank_rfd.command = cpu_to_le16(cb_el);
        nic->blank_rfd.link = 0;
        nic->blank_rfd.rbd = 0xFFFFFFFF;
        nic->blank_rfd.actual_size = 0;
        nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
}

static inline void e100_write_flush(struct nic *nic)
{
        /* Flush previous PCI writes through intermediate bridges
         * by doing a benign read */
        (void)readb(&nic->csr->scb.status);
}

static inline void e100_enable_irq(struct nic *nic)
{
        writeb(irq_mask_none, &nic->csr->scb.cmd_hi);
        e100_write_flush(nic);
}

static inline void e100_disable_irq(struct nic *nic)
{
        writeb(irq_mask_all, &nic->csr->scb.cmd_hi);
        e100_write_flush(nic);
}

static void e100_hw_reset(struct nic *nic)
{
        /* Put CU and RU into idle with a selective reset to get
         * device off of PCI bus */
        writel(selective_reset, &nic->csr->port);
        e100_write_flush(nic); udelay(20);
        
        /* Now fully reset device */
        writel(software_reset, &nic->csr->port);
        e100_write_flush(nic); udelay(20);
        
        /* TCO workaround - 82559 and greater */
        if(nic->mac >= mac_82559_D101M) {
                /* Issue a redundant CU load base without setting 
                 * general pointer, and without waiting for scb to
                 * clear.  This gets us into post-driver.  Finally,
                 * wait 20 msec for reset to take effect. */
                writeb(cuc_load_base, &nic->csr->scb.cmd_lo);
                mdelay(20);
        }

        /* Mask off our interrupt line - it's unmasked after reset */
        e100_disable_irq(nic);
}

static int e100_self_test(struct nic *nic)
{
        u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);

        /* Passing the self-test is a pretty good indication
         * that the device can DMA to/from host memory */

        nic->mem->selftest.signature = 0;
        nic->mem->selftest.result = 0xFFFFFFFF;

        writel(selftest | dma_addr, &nic->csr->port);
        e100_write_flush(nic);
        /* Wait 10 msec for self-test to complete */
        set_current_state(TASK_UNINTERRUPTIBLE);
        schedule_timeout(HZ / 100 + 1);

        /* Interrupts are enabled after self-test */
        e100_disable_irq(nic);

        /* Check results of self-test */
        if(nic->mem->selftest.result != 0) {
                DPRINTK(HW, ERR, "Self-test failed: result=0x%08X\n",
                        nic->mem->selftest.result);
                return -ETIMEDOUT;
        }
        if(nic->mem->selftest.signature == 0) {
                DPRINTK(HW, ERR, "Self-test failed: timed out\n");
                return -ETIMEDOUT;
        }

        return 0;
}

static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, u16 data)
{
        u32 cmd_addr_data[3];
        u8 ctrl;
        int i, j;

        /* Three cmds: write/erase enable, write data, write/erase disable */
        cmd_addr_data[0] = op_ewen << (addr_len - 2);
        cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) | data;
        cmd_addr_data[2] = op_ewds << (addr_len - 2);

        /* Bit-bang cmds to write word to eeprom */
        for(j = 0; j < 3; j++) {

                /* Chip select */
                writeb(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
                e100_write_flush(nic); udelay(4);

                for(i = 31; i >= 0; i--) {
                        ctrl = (cmd_addr_data[j] & (1 << i)) ?
                                eecs | eedi : eecs;
                        writeb(ctrl, &nic->csr->eeprom_ctrl_lo);
                        e100_write_flush(nic); udelay(4);
                        writeb(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
                        e100_write_flush(nic); udelay(4);
                }
                /* Wait 10 msec for cmd to complete */
                set_current_state(TASK_UNINTERRUPTIBLE);
                schedule_timeout(HZ / 100 + 1);

                /* Chip deselect */
                writeb(0, &nic->csr->eeprom_ctrl_lo);
                e100_write_flush(nic); udelay(4);
        }

};

/* General technique stolen from the eepro100 driver - very clever */
static u16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
{
        u32 cmd_addr_data;
        u16 data = 0;
        u8 ctrl;
        int i;

        cmd_addr_data = ((op_read << *addr_len) | addr) << 16;

        /* Chip select */
        writeb(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
        e100_write_flush(nic); udelay(4);

        /* Bit-bang to read word from eeprom */
        for(i = 31; i >= 0; i--) {
                ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
                writeb(ctrl, &nic->csr->eeprom_ctrl_lo);
                e100_write_flush(nic); udelay(4);
                writeb(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
                e100_write_flush(nic); udelay(4);
                /* Eeprom drives a dummy zero to EEDO after receiving
                 * complete address.  Use this to adjust addr_len. */
                ctrl = readb(&nic->csr->eeprom_ctrl_lo);
                if(!(ctrl & eedo) && i > 16) {
                        *addr_len -= (i - 16);
                        i = 17;
                }
                data = (data << 1) | (ctrl & eedo ? 1 : 0);
        }

        /* Chip deselect */
        writeb(0, &nic->csr->eeprom_ctrl_lo);
        e100_write_flush(nic); udelay(4);

        return data;
};

/* Load entire EEPROM image into driver cache and validate checksum */
static int e100_eeprom_load(struct nic *nic)
{
        u16 addr, addr_len = 8, checksum = 0;

        /* Try reading with an 8-bit addr len to discover actual addr len */
        e100_eeprom_read(nic, &addr_len, 0);
        nic->eeprom_wc = 1 << addr_len;
        
        for(addr = 0; addr < nic->eeprom_wc; addr++) {
                nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
                if(addr < nic->eeprom_wc - 1)
                        checksum += nic->eeprom[addr];
        }

        /* The checksum, stored in the last word, is calculated such that
         * the sum of words should be 0xBABA */
        checksum = 0xBABA - checksum;
        if(checksum != nic->eeprom[nic->eeprom_wc - 1]) {
                DPRINTK(PROBE, ERR, "EEPROM corrupted\n");
                return -EAGAIN;
        }
        
        return 0;
}

/* Save (portion of) driver EEPROM cache to device and update checksum */
static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
{
        u16 addr, addr_len = 8, checksum = 0;

        /* Try reading with an 8-bit addr len to discover actual addr len */
        e100_eeprom_read(nic, &addr_len, 0);
        nic->eeprom_wc = 1 << addr_len;
        
        if(start + count >= nic->eeprom_wc)
                return -EINVAL;
        
        for(addr = start; addr < start + count; addr++)
                e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);

        /* The checksum, stored in the last word, is calculated such that
         * the sum of words should be 0xBABA */
        for(addr = 0; addr < nic->eeprom_wc - 1; addr++)
                checksum += nic->eeprom[addr];
        nic->eeprom[nic->eeprom_wc - 1] = 0xBABA - checksum;
        e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1, 0xBABA - checksum);

        return 0;
}

#define E100_WAIT_SCB_TIMEOUT 40
static inline int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
{
        unsigned long flags;
        unsigned int i;
        int err = 0;

        spin_lock_irqsave(&nic->cmd_lock, flags);

        /* Previous command is accepted when SCB clears */
        for(i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
                if(likely(!readb(&nic->csr->scb.cmd_lo)))
                        break;
                cpu_relax();
                if(unlikely(i > (E100_WAIT_SCB_TIMEOUT >> 1)))
                        udelay(5);
        }
        if(unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
                err = -EAGAIN;
                goto err_unlock;
        }

        if(unlikely(cmd != cuc_resume))
                writel(dma_addr, &nic->csr->scb.gen_ptr);
        writeb(cmd, &nic->csr->scb.cmd_lo);

err_unlock:
        spin_unlock_irqrestore(&nic->cmd_lock, flags);

        return err;
}

static inline int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
        void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
{
        struct cb *cb;
        unsigned long flags;
        int err = 0;

        spin_lock_irqsave(&nic->cb_lock, flags);

        if(unlikely(!nic->cbs_avail)) {
                err = -ENOMEM;
                goto err_unlock;
        }

        cb = nic->cb_to_use;
        nic->cb_to_use = cb->next;
        nic->cbs_avail--;
        cb->skb = skb;

        if(unlikely(!nic->cbs_avail))
                err = -ENOSPC;

        cb_prepare(nic, cb, skb);
        
        /* Order is important otherwise we'll be in a race with h/w:
         * set S-bit in current first, then clear S-bit in previous. */
        cb->command |= cpu_to_le16(cb_s);
        cb->prev->command &= cpu_to_le16(~cb_s);

        while(nic->cb_to_send != nic->cb_to_use) {
                if(unlikely((err = e100_exec_cmd(nic, nic->cuc_cmd,
                        nic->cb_to_send->dma_addr)))) {
                        /* Ok, here's where things get sticky.  It's
                         * possible that we can't schedule the command
                         * because the controller is too busy, so
                         * let's just queue the command and try again
                         * when another command is scheduled. */
                        break;
                } else {
                        nic->cuc_cmd = cuc_resume;
                        nic->cb_to_send = nic->cb_to_send->next;
                }
        }

err_unlock:
        spin_unlock_irqrestore(&nic->cb_lock, flags);

        return err;
}

static u16 mdio_ctrl(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
{
        u32 data_out = 0;
        unsigned int i;

        writel((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);

        for(i = 0; i < 100; i++) {
                udelay(20);
                if((data_out = readl(&nic->csr->mdi_ctrl)) & mdi_ready)
                        break;
        }
        
        DPRINTK(HW, DEBUG,
                "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
                dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out);
        return (u16)data_out;
}

static int mdio_read(struct net_device *netdev, int addr, int reg)
{
        return mdio_ctrl(netdev->priv, addr, mdi_read, reg, 0);
}

static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
{
        mdio_ctrl(netdev->priv, addr, mdi_write, reg, data);
}

static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
{
        struct config *config = &cb->u.config;
        u8 *c = (u8 *)config;

        cb->command = cpu_to_le16(cb_config);
                                
        memset(config, 0, sizeof(struct config));
        
        config->byte_count = 0x16;              /* bytes in this struct */
        config->rx_fifo_limit = 0x8;            /* bytes in FIFO before DMA */
        config->direct_rx_dma = 0x1;            /* reserved */
        config->standard_tcb = 0x1;             /* 1=standard, 0=extended */
        config->standard_stat_counter = 0x1;    /* 1=standard, 0=extended */
        config->rx_discard_short_frames = 0x1;  /* 1=discard, 0=pass */
        config->tx_underrun_retry = 0x3;        /* # of underrun retries */
        config->mii_mode = 0x1;                 /* 1=MII mode, 0=503 mode */
        config->pad10 = 0x6;
        config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
        config->preamble_length = 0x2;          /* 0=1, 1=3, 2=7, 3=15 bytes */
        config->ifs = 0x6;                      /* x16 = inter frame spacing */
        config->ip_addr_hi = 0xF2;              /* ARP IP filter - not used */
        config->pad15_1 = 0x1;
        config->pad15_2 = 0x1;
        config->crs_or_cdt = 0x0;               /* 0=CRS only, 1=CRS or CDT */
        config->fc_delay_hi = 0x40;             /* time delay for fc frame */
        config->tx_padding = 0x1;               /* 1=pad short frames */
        config->fc_priority_threshold = 0x7;    /* 7=priority fc disabled */
        config->pad18 = 0x1;
        config->full_duplex_pin = 0x1;          /* 1=examine FDX# pin */
        config->pad20_1 = 0x1F;
        config->fc_priority_location = 0x1;     /* 1=byte#31, 0=byte#19 */
        config->pad21_1 = 0x5;

        config->adaptive_ifs = nic->adaptive_ifs;
        config->loopback = nic->loopback;

        if(nic->mii.force_media && nic->mii.full_duplex)
                config->full_duplex_force = 0x1;        /* 1=force, 0=auto */
                
        if(nic->flags & promiscuous || nic->loopback) {
                config->rx_save_bad_frames = 0x1;       /* 1=save, 0=discard */
                config->rx_discard_short_frames = 0x0;  /* 1=discard, 0=save */
                config->promiscuous_mode = 0x1;         /* 1=on, 0=off */
        }

        if(nic->flags & multicast_all)
                config->multicast_all = 0x1;            /* 1=accept, 0=no */
        
        if(!(nic->flags & wol_magic))
                config->magic_packet_disable = 0x1;     /* 1=off, 0=on */

        if(nic->mac >= mac_82558_D101_A4) {
                config->fc_disable = 0x1;       /* 1=Tx fc off, 0=Tx fc on */
                config->mwi_enable = 0x1;       /* 1=enable, 0=disable */
                config->standard_tcb = 0x0;     /* 1=standard, 0=extended */
                config->rx_long_ok = 0x1;       /* 1=VLANs ok, 0=standard */
                if(nic->mac >= mac_82559_D101M)
                        config->tno_intr = 0x1;         /* TCO stats enable */
                else
                        config->standard_stat_counter = 0x0;
        }
        
        DPRINTK(HW, DEBUG, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
                c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]);
        DPRINTK(HW, DEBUG, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
                c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]);
        DPRINTK(HW, DEBUG, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
                c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]);
}

static void e100_setup_iaaddr(struct nic *nic, struct cb *cb,
        struct sk_buff *skb)
{
        u8 *dev_addr = nic->netdev->dev_addr;

        DPRINTK(HW, DEBUG, "dev_addr=%02X:%02X:%02X:%02X:%02X:%02X\n", 
                dev_addr[0], dev_addr[1], dev_addr[2],
                dev_addr[3], dev_addr[4], dev_addr[5]);
        
        cb->command = cpu_to_le16(cb_iaaddr);
        memcpy(cb->u.iaaddr, dev_addr, ETH_ALEN);
}

static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
{
        cb->command = cpu_to_le16(cb_dump);
        cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
                offsetof(struct mem, dump_buf));
}

#define NCONFIG_AUTO_SWITCH     0x0080
#define MII_NSC_CONG            MII_RESV1
#define NSC_CONG_ENABLE         0x0100
#define NSC_CONG_TXREADY        0x0400
#define ADVERTISE_FC_SUPPORTED  0x0400
static int e100_phy_init(struct nic *nic)
{
        struct net_device *netdev = nic->netdev;
        u32 addr;
        u16 bmcr, stat, id_lo, id_hi, cong;

        nic->mii.phy_id = 0;
        nic->mii.advertising = 0;
        nic->mii.phy_id_mask = 0x1F;
        nic->mii.reg_num_mask = 0x1F;
        nic->mii.dev = netdev;
        nic->mii.full_duplex = 0;
        nic->mii.force_media = 0;
        nic->mii.mdio_read = mdio_read;
        nic->mii.mdio_write = mdio_write;
        
        /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
        for(addr = 0; addr < 32; addr++) {
                nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
                bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
                stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
                stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
                if(!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
                        break;
        }
        DPRINTK(HW, DEBUG, "phy_addr = %d\n", nic->mii.phy_id);
        if(addr == 32)
                return -EAGAIN;
        
        /* Selected the phy and isolate the rest */
        for(addr = 0; addr < 32; addr++) {
                if(addr != nic->mii.phy_id) {
                        mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
                } else {
                        bmcr = mdio_read(netdev, addr, MII_BMCR);
                        mdio_write(netdev, addr, MII_BMCR,
                                bmcr & ~BMCR_ISOLATE);
                }
        }
        
        /* Get phy ID */
        id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
        id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
        nic->phy = (u32)id_hi << 16 | (u32)id_lo;
        DPRINTK(HW, DEBUG, "phy ID = 0x%08X\n", nic->phy);
                
        /* Handle National tx phy */
        if(nic->phy == phy_nsc_tx) {
                /* Disable congestion control */
                cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
                cong |= NSC_CONG_TXREADY;
                cong &= ~NSC_CONG_ENABLE;
                mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
        }
        
        /* enable MDI/MDI-X auto-switching */
        if(nic->mac >= mac_82550_D102)
                mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
                        NCONFIG_AUTO_SWITCH);

        return 0;
}

static int e100_hw_init(struct nic *nic)
{
        int err;
        
        e100_hw_reset(nic);

        DPRINTK(HW, ERR, "e100_hw_init\n");
        if(!in_interrupt() && (err = e100_self_test(nic)))
                return err;

        if((err = e100_phy_init(nic)))
                return err;
        if((err = e100_exec_cmd(nic, cuc_load_base, 0)))
                return err;
        if((err = e100_exec_cmd(nic, ruc_load_base, 0)))
                return err;
        if((err = e100_exec_cb(nic, NULL, e100_configure)))
                return err;
        if((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
                return err;
        if((err = e100_exec_cmd(nic, cuc_dump_addr, 
                nic->dma_addr + offsetof(struct mem, stats))))
                return err;
        if((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
                return err;

        e100_disable_irq(nic);

        return 0;
}

static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
{
        struct net_device *netdev = nic->netdev;
        struct dev_mc_list *list = netdev->mc_list;
        u16 i, count = min(netdev->mc_count, E100_MAX_MULTICAST_ADDRS);

        cb->command = cpu_to_le16(cb_multi);
        cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
        for(i = 0; list && i < count; i++, list = list->next)
                memcpy(&cb->u.multi.addr[i*ETH_ALEN], &list->dmi_addr,
                        ETH_ALEN);
}

static void e100_set_multicast_list(struct net_device *netdev)
{
        struct nic *nic = netdev->priv;

        DPRINTK(HW, DEBUG, "mc_count=%d, flags=0x%04X\n",
                netdev->mc_count, netdev->flags);

        if(netdev->flags & IFF_PROMISC)
                nic->flags |= promiscuous;
        else
                nic->flags &= ~promiscuous;

        if(netdev->flags & IFF_ALLMULTI ||
                netdev->mc_count > E100_MAX_MULTICAST_ADDRS)
                nic->flags |= multicast_all;
        else
                nic->flags &= ~multicast_all;

        e100_exec_cb(nic, NULL, e100_configure);
        e100_exec_cb(nic, NULL, e100_multi);
}

static void e100_update_stats(struct nic *nic)
{
        struct net_device_stats *ns = &nic->net_stats;
        struct stats *s = &nic->mem->stats;
        u32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
                (nic->mac < mac_82559_D101M) ? (u32 *)&s->xmt_tco_frames :
                &s->complete;

        /* Device's stats reporting may take several microseconds to
         * complete, so where always waiting for results of the 
         * previous command. */

        if(*complete == le32_to_cpu(0x0000A007)) {
                *complete = 0;
                nic->tx_frames = le32_to_cpu(s->tx_good_frames);
                nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
                ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
                ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
                ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
                ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
                ns->collisions += nic->tx_collisions;
                ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
                        le32_to_cpu(s->tx_lost_crs);
                ns->rx_dropped += le32_to_cpu(s->rx_resource_errors);
                ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors);
                ns->rx_over_errors += le32_to_cpu(s->rx_resource_errors);
                ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
                ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
                ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
                ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
                        le32_to_cpu(s->rx_alignment_errors) +
                        le32_to_cpu(s->rx_short_frame_errors) +
                        le32_to_cpu(s->rx_cdt_errors);
                nic->tx_deferred += le32_to_cpu(s->tx_deferred);
                nic->tx_single_collisions +=
                        le32_to_cpu(s->tx_single_collisions);
                nic->tx_multiple_collisions +=
                        le32_to_cpu(s->tx_multiple_collisions);
                if(nic->mac >= mac_82558_D101_A4) {
                        nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
                        nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
                        nic->rx_fc_unsupported +=
                                le32_to_cpu(s->fc_rcv_unsupported);
                        if(nic->mac >= mac_82559_D101M) {
                                nic->tx_tco_frames +=
                                        le16_to_cpu(s->xmt_tco_frames);
                                nic->rx_tco_frames +=
                                        le16_to_cpu(s->rcv_tco_frames);
                        }
                }
        }

        e100_exec_cmd(nic, cuc_dump_reset, 0);
}

static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
{
        /* Adjust inter-frame-spacing (IFS) between two transmits if
         * we're getting collisions on a half-duplex connection. */

        if(duplex == DUPLEX_HALF) {
                u32 prev = nic->adaptive_ifs;
                u32 min_frames = (speed == SPEED_100) ? 1000 : 100;

                if((nic->tx_frames / 32 < nic->tx_collisions) &&
                   (nic->tx_frames > min_frames)) {
                        if(nic->adaptive_ifs < 60)
                                nic->adaptive_ifs += 5;
                } else if (nic->tx_frames < min_frames) {
                        if(nic->adaptive_ifs >= 5)
                                nic->adaptive_ifs -= 5;
                }
                if(nic->adaptive_ifs != prev)
                        e100_exec_cb(nic, NULL, e100_configure);
        }
}

static void e100_watchdog(unsigned long data)
{
        struct nic *nic = (struct nic *)data;
        struct ethtool_cmd cmd;

        DPRINTK(TIMER, DEBUG, "right now = %ld\n", jiffies);

        /* mii library handles link maintenance tasks */

        mii_ethtool_gset(&nic->mii, &cmd);

        if(mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
                DPRINTK(LINK, INFO, "link up, %sMbps, %s-duplex\n",
                        cmd.speed == SPEED_100 ? "100" : "10",
                        cmd.duplex == DUPLEX_FULL ? "full" : "half");
        } else if(!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
                DPRINTK(LINK, INFO, "link down\n");
        }
        
        mii_check_link(&nic->mii);
        
        /* Software generated interrupt to recover from (rare) Rx 
         * allocation failure */
        writeb(irq_sw_gen, &nic->csr->scb.cmd_hi);
        e100_write_flush(nic);

        e100_update_stats(nic);
        e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex);

        if(nic->mac <= mac_82557_D100_C)
                /* Issue a multicast command to workaround a 557 lock up */
                e100_set_multicast_list(nic->netdev);

        mod_timer(&nic->watchdog, jiffies + E100_WATCHDOG_PERIOD);
}

static inline void e100_xmit_prepare(struct nic *nic, struct cb *cb,
        struct sk_buff *skb)
{
        cb->command = nic->tx_command;
        cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
        cb->u.tcb.tcb_byte_count = 0;
        cb->u.tcb.threshold = nic->tx_threshold;
        cb->u.tcb.tbd_count = 1;
        cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev,
                skb->data, skb->len, PCI_DMA_TODEVICE));
        cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
}

static int e100_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
        struct nic *nic = netdev->priv;
        int err = e100_exec_cb(nic, skb, e100_xmit_prepare);

        switch(err) {
        case -ENOSPC:
                /* We queued the skb, but now we're out of space, so
                 * stop the queue before we completely run out. */
                netif_stop_queue(netdev);
                break;
        case -ENOMEM:
                /* This is a hard error - log it. */
                DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb\n");
                netif_stop_queue(netdev);
                return 1;
        }

        netdev->trans_start = jiffies;
        return 0;
}

static inline int e100_tx_clean(struct nic *nic)
{
        struct cb *cb;
        int tx_cleaned = 0;

        spin_lock(&nic->cb_lock);

        DPRINTK(TX_DONE, DEBUG, "cb->status = 0x%04X\n",
                nic->cb_to_clean->status);

        /* Clean CBs marked complete */
        for(cb = nic->cb_to_clean;
            cb->status & cpu_to_le16(cb_complete);
            cb = nic->cb_to_clean = cb->next) {
                if(likely(cb->skb != NULL)) {
                        nic->net_stats.tx_packets++;
                        nic->net_stats.tx_bytes += cb->skb->len;

                        pci_unmap_single(nic->pdev,
                                le32_to_cpu(cb->u.tcb.tbd.buf_addr),
                                le16_to_cpu(cb->u.tcb.tbd.size),
                                PCI_DMA_TODEVICE);
                        dev_kfree_skb_any(cb->skb);
                        tx_cleaned = 1;
                }
                cb->status = 0;
                nic->cbs_avail++;
        }
        
        spin_unlock(&nic->cb_lock);

        /* Recover from running out of Tx resources in xmit_frame */
        if(unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
                netif_wake_queue(nic->netdev);

        return tx_cleaned;
}

static void e100_clean_cbs(struct nic *nic, int free_mem)
{
        if(nic->cbs) {
                while(nic->cb_to_clean != nic->cb_to_use) {
                        struct cb *cb = nic->cb_to_clean;
                        if(cb->skb) {
                                pci_unmap_single(nic->pdev,
                                        le32_to_cpu(cb->u.tcb.tbd.buf_addr),
                                        le16_to_cpu(cb->u.tcb.tbd.size),
                                        PCI_DMA_TODEVICE);
                                dev_kfree_skb(cb->skb);
                        }
                        nic->cb_to_clean = nic->cb_to_clean->next;
                }
                nic->cbs_avail = nic->params.cbs.count;
                if(free_mem) {
                        pci_free_consistent(nic->pdev, 
                                sizeof(struct cb) * nic->params.cbs.count, 
                                nic->cbs, nic->cbs_dma_addr);
                        nic->cbs = NULL;
                        nic->cbs_avail = 0;
                }
        }
        nic->cuc_cmd = cuc_start;
        nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
                nic->cbs;
}

static int e100_alloc_cbs(struct nic *nic)
{
        struct cb *cb;
        unsigned int i, count = nic->params.cbs.count;
        
        nic->cuc_cmd = cuc_start;
        nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
        nic->cbs_avail = 0;
        
        nic->cbs = pci_alloc_consistent(nic->pdev, 
                sizeof(struct cb) * count, &nic->cbs_dma_addr);
        if(!nic->cbs)
                return -ENOMEM;

        for(cb = nic->cbs, i = 0; i < count; cb++, i++) {
                cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
                cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;    
                
                cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
                cb->link = cpu_to_le32(nic->cbs_dma_addr +
                        ((i+1) % count) * sizeof(struct cb));
        }
        
        nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
        nic->cbs_avail = count;

        return 0;
}

static inline void e100_start_receiver(struct nic *nic)
{
        /* (Re)start RU if suspended or idle and RFA is fully allocated */
        struct rx_list *curr =
                list_entry(nic->rx_list_head.next, struct rx_list, list);
        if(curr->skb) {
                u8 status = readb(&nic->csr->scb.status);
                if(unlikely((status & rus_mask) != rus_ready))
                        e100_exec_cmd(nic, ruc_start, curr->dma_addr);
        }
}

static inline int e100_rx_alloc_skb(struct nic *nic, struct rx_list *curr)
{
        unsigned int rx_offset = 2; /* u32 align protocol headers */

        curr->dma_addr = 0;
        curr->length = sizeof(struct rfd) + VLAN_ETH_FRAME_LEN;

        if(!(curr->skb = dev_alloc_skb(curr->length + rx_offset)))
                return -ENOMEM;

        skb_reserve(curr->skb, rx_offset);
        curr->skb->dev = nic->netdev;
        curr->dma_addr = pci_map_single(nic->pdev, curr->skb->data,
                curr->length, PCI_DMA_FROMDEVICE);

        return 0;
}

static inline void e100_rx_rfa_add_tail(struct nic *nic, struct rx_list *curr)
{
        struct rfd *rfd = (struct rfd *)curr->skb->data;
        
        *rfd = nic->blank_rfd;
        pci_dma_sync_single(nic->pdev, curr->dma_addr, 
                sizeof(struct rfd), PCI_DMA_TODEVICE);

        if(likely(curr->list.prev != &nic->rx_list_head)) {
                struct rx_list *prev = (struct rx_list *)curr->list.prev;
                if(likely(prev->skb != NULL)) {
                        struct rfd *prev_rfd = (struct rfd *)prev->skb->data;
                        put_unaligned(cpu_to_le32(curr->dma_addr),
                                (u32 *)&prev_rfd->link);
                        prev_rfd->command = 0;
                        pci_dma_sync_single(nic->pdev, prev->dma_addr, 
                                sizeof(struct rfd), PCI_DMA_TODEVICE);
                }
        }
}

static inline int e100_rx_indicate(struct nic *nic, struct rx_list *curr,
        unsigned int *work_done, unsigned int work_to_do)
{
        struct sk_buff *skb = curr->skb;
        struct rfd *rfd = (struct rfd *)skb->data;
        u16 rfd_status, actual_size;

        if(unlikely(work_done && *work_done >= work_to_do))
                return -EAGAIN;

        /* Need to sync before taking a peek at cb_complete bit */
        pci_dma_sync_single(nic->pdev, curr->dma_addr,
                sizeof(struct rfd), PCI_DMA_FROMDEVICE);
        rfd_status = le16_to_cpu(rfd->status);

        DPRINTK(RX_STATUS, DEBUG, "status=0x%04X\n", rfd_status);

        /* If data isn't ready, nothing to indicate */
        if(unlikely(!(rfd_status & cb_complete)))
                return -EAGAIN;

        /* Get actual data size */
        actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
        if(unlikely(actual_size > curr->length - sizeof(struct rfd)))
                actual_size = curr->length - sizeof(struct rfd);

        /* Get data */
        pci_dma_sync_single(nic->pdev, curr->dma_addr,
                sizeof(struct rfd) + actual_size,
                PCI_DMA_FROMDEVICE);
        pci_unmap_single(nic->pdev, curr->dma_addr,
                curr->length, PCI_DMA_FROMDEVICE);

        /* Pull off the RFD and put the actual data (minus eth hdr) */
        skb_reserve(skb, sizeof(struct rfd));
        skb_put(skb, actual_size);
        skb->protocol = eth_type_trans(skb, nic->netdev);

        if(unlikely(!(rfd_status & cb_ok)) ||
           actual_size > nic->netdev->mtu + VLAN_ETH_HLEN) {
                /* Don't indicate if errors */
                dev_kfree_skb_any(skb);
        } else {
                nic->net_stats.rx_packets++;
                nic->net_stats.rx_bytes += actual_size;
                nic->netdev->last_rx = jiffies;
#ifdef CONFIG_E100_NAPI
                netif_receive_skb(skb);
#else
                netif_rx(skb);
#endif
                if(work_done)
                        (*work_done)++;
        }

        curr->length = 0;
        curr->dma_addr = 0;
        curr->skb = NULL;
        
        return 0;
}

static inline void e100_rx_clean(struct nic *nic, unsigned int *work_done,
        unsigned int work_to_do)
{
        struct list_head *list, *tmp;
        struct rx_list *curr;

        /* Indicate newly arrived packets */
        list_for_each(list, &nic->rx_list_head) {
                curr = list_entry(list, struct rx_list, list);
                if(likely(curr->skb != NULL))
                        if(e100_rx_indicate(nic, curr, work_done, work_to_do))
                                break;
        }

        /* Alloc new skbs to refill list */
        list_for_each_safe(list, tmp, &nic->rx_list_head) {
                curr = list_entry(list, struct rx_list, list);
                if(unlikely(curr->skb != NULL))
                        break; /* List is full, done */
                if(unlikely(e100_rx_alloc_skb(nic, curr)))
                        break; /* Better luck next time (see watchdog) */
                list_del(&curr->list);
                list_add_tail(&curr->list, &nic->rx_list_head);
                e100_rx_rfa_add_tail(nic, curr);
        }

        e100_start_receiver(nic);
}

static void e100_rx_clean_list(struct nic *nic)
{
        struct list_head *list;
        
        if(!nic->rx_list)
                return;

        list_for_each(list, &nic->rx_list_head) {
                struct rx_list *curr = list_entry(list, 
                        struct rx_list, list);
                if(curr->skb) {
                        pci_unmap_single(nic->pdev, curr->dma_addr,
                                curr->length, PCI_DMA_FROMDEVICE);
                        dev_kfree_skb(curr->skb);
                }
        }

        kfree(nic->rx_list);
        nic->rx_list = NULL;
}

static int e100_rx_alloc_list(struct nic *nic)
{
        struct rx_list *curr;
        unsigned int i, count = nic->params.rfds.count;
        
        INIT_LIST_HEAD(&nic->rx_list_head);

        if(!(nic->rx_list = kmalloc(sizeof(struct rx_list)*count, GFP_ATOMIC)))
                return -ENOMEM;

        for(curr = nic->rx_list, i = 0; i < count; curr++, i++) {
                if(e100_rx_alloc_skb(nic, curr)) {
                        e100_rx_clean_list(nic);
                        return -ENOMEM;
                }
                list_add_tail(&curr->list, &nic->rx_list_head);
                e100_rx_rfa_add_tail(nic, curr);
        }
        
        return 0;
}

static irqreturn_t e100_intr(int irq, void *dev_id, struct pt_regs *regs)
{
        struct net_device *netdev = dev_id;
        struct nic *nic = netdev->priv;
        u8 stat_ack = readb(&nic->csr->scb.stat_ack);

        DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X\n", stat_ack);

        if(stat_ack == 0x00 ||  /* Not our interurpt */
           stat_ack == 0xFF)    /* Hardware is ejected (cardbus, hotswap)  */
                return IRQ_NONE;

        /* Ack interrupts */
        writeb(stat_ack, &nic->csr->scb.stat_ack);
        e100_write_flush(nic);

#ifdef CONFIG_E100_NAPI
        e100_disable_irq(nic);
        netif_rx_schedule(netdev);
#else
        if(stat_ack & stat_ack_rx)
                e100_rx_clean(nic, NULL, 0);
        if(stat_ack & stat_ack_tx)
                e100_tx_clean(nic);
#endif

        return IRQ_HANDLED;
}

#ifdef CONFIG_E100_NAPI
static int e100_poll(struct net_device *netdev, int *budget)
{
        struct nic *nic = netdev->priv;
        unsigned int work_to_do = min(netdev->quota, *budget);
        unsigned int work_done = 0;
        int tx_cleaned;

        e100_rx_clean(nic, &work_done, work_to_do);
        tx_cleaned = e100_tx_clean(nic);

        /* If no Rx and Tx cleanup work was done, exit polling mode. */
        if((!tx_cleaned && (work_done == 0)) || !netif_running(netdev)) {
                netif_rx_complete(netdev);
                e100_enable_irq(nic);
                return 0;
        }

        *budget -= work_done;
        netdev->quota -= work_done;

        return 1;
}
#endif

static struct net_device_stats *e100_get_stats(struct net_device *netdev)
{
        struct nic *nic = netdev->priv;
        return &nic->net_stats;
}

static int e100_set_mac_address(struct net_device *netdev, void *p)
{
        struct nic *nic = netdev->priv;
        struct sockaddr *addr = p;

        if (!is_valid_ether_addr(addr->sa_data))
                return -EADDRNOTAVAIL;

        memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
        e100_exec_cb(nic, NULL, e100_setup_iaaddr);

        return 0;
}

static int e100_change_mtu(struct net_device *netdev, int new_mtu)
{
        if(new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
                return -EINVAL;
        netdev->mtu = new_mtu;
        return 0;
}

static int e100_asf(struct nic *nic)
{
        /* ASF can be enabled from eeprom */
        return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1055) &&
           (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
           !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
           ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE));
}
        
static int e100_up(struct nic *nic)
{
        int err;

        if((err = e100_rx_alloc_list(nic)))
                return err;
        if((err = e100_alloc_cbs(nic)))
                goto err_rx_clean_list;
        if((err = e100_hw_init(nic)))
                goto err_clean_cbs;
        e100_set_multicast_list(nic->netdev);
        e100_start_receiver(nic);
        netif_start_queue(nic->netdev);
        mod_timer(&nic->watchdog, jiffies);
        if((err = request_irq(nic->pdev->irq, e100_intr, SA_SHIRQ,
                nic->netdev->name, nic->netdev)))
                goto err_no_irq;
        e100_enable_irq(nic);
        return 0;

err_no_irq:
        del_timer_sync(&nic->watchdog);
        netif_stop_queue(nic->netdev);
err_clean_cbs:
        e100_clean_cbs(nic, 1);
err_rx_clean_list:
        e100_rx_clean_list(nic);
        return err;
}

static void e100_down(struct nic *nic)
{
        e100_disable_irq(nic);
        free_irq(nic->pdev->irq, nic->netdev);
        del_timer_sync(&nic->watchdog);
        netif_carrier_off(nic->netdev);
        netif_stop_queue(nic->netdev);
        e100_clean_cbs(nic, 1);
        e100_rx_clean_list(nic);
}

static void e100_tx_timeout(struct net_device *netdev)
{
        struct nic *nic = netdev->priv;

        DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n",
                readb(&nic->csr->scb.status));
        e100_down(netdev->priv);
        e100_up(netdev->priv);
}

static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
{
        int err;
        struct sk_buff *skb;
        struct rx_list *rx;

        /* Use driver resources to perform internal MAC or PHY
         * loopback test.  A single packet is prepared and transmitted
         * in loopback mode, and the test passes if the received
         * packet compares byte-for-byte to the transmitted packet. */

        if((err = e100_rx_alloc_list(nic)))
                return err;
        if((err = e100_alloc_cbs(nic)))
                goto err_clean_rx;

        /* ICH PHY loopback is broken so do MAC loopback instead */
        if(nic->flags & ich && loopback_mode == lb_phy)
                loopback_mode = lb_mac;

        nic->loopback = loopback_mode;
        if((err = e100_hw_init(nic)))
                goto err_loopback_none;

        if(loopback_mode == lb_phy)
                mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
                        BMCR_LOOPBACK);

        e100_start_receiver(nic);
        
        if(!(skb = dev_alloc_skb(ETH_DATA_LEN))) {
                err = -ENOMEM;
                goto err_loopback_none;
        }
        skb_put(skb, ETH_DATA_LEN);
        memset(skb->data, 0xFF, ETH_DATA_LEN);
        e100_xmit_frame(skb, nic->netdev);

        set_current_state(TASK_UNINTERRUPTIBLE);
        schedule_timeout(HZ / 100 + 1);

        rx = list_entry(nic->rx_list_head.next, struct rx_list, list);
        if(memcmp(rx->skb->data + sizeof(struct rfd), skb->data, ETH_DATA_LEN))
                err = -EAGAIN;

err_loopback_none:
        mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
        nic->loopback = lb_none;
        e100_hw_init(nic);
        e100_clean_cbs(nic, 1);
err_clean_rx:
        e100_rx_clean_list(nic);
        return err;
}

#define MII_LED_CONTROL 0x1B
static void e100_blink_led(unsigned long data)
{
        struct nic *nic = (struct nic *)data;
        enum led_state {
                led_on     = 0x01,
                led_off    = 0x04,
                led_on_559 = 0x05,
                led_on_557 = 0x07,
        };

        nic->leds = (nic->leds & led_on) ? led_off :
                (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
        mdio_write(nic->netdev, nic->mii.phy_id, MII_LED_CONTROL, nic->leds);
        mod_timer(&nic->blink_timer, jiffies + HZ / 4);
}

static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
{
        struct nic *nic = netdev->priv;
        return mii_ethtool_gset(&nic->mii, cmd);
}
  
static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
{
        struct nic *nic = netdev->priv;
        return mii_ethtool_sset(&nic->mii, cmd);
}
  
static void e100_get_drvinfo(struct net_device *netdev,
        struct ethtool_drvinfo *info)
{
        struct nic *nic = netdev->priv;
        strcpy(info->driver, DRV_NAME);
        strcpy(info->version, DRV_VERSION);
        strcpy(info->fw_version, "N/A");
        strcpy(info->bus_info, pci_name(nic->pdev));
}
  
static int e100_get_regs_len(struct net_device *netdev)
{
        struct nic *nic = netdev->priv;
#define E100_PHY_REGS           0x1C
#define E100_REGS_LEN           1 + E100_PHY_REGS + \
        sizeof(nic->mem->dump_buf) / sizeof(u32)
        return E100_REGS_LEN * sizeof(u32);
}

static void e100_get_regs(struct net_device *netdev,
        struct ethtool_regs *regs, void *p)
{
        struct nic *nic = netdev->priv;
        u32 *buff = p;
        int i;

        regs->version = (1 << 24) | nic->rev_id;
        buff[0] = readb(&nic->csr->scb.cmd_hi) << 24 |
                readb(&nic->csr->scb.cmd_lo) << 16 |
                readw(&nic->csr->scb.status);
        for(i = E100_PHY_REGS; i >= 0; i--)
                buff[1 + E100_PHY_REGS - i] =
                        mdio_read(netdev, nic->mii.phy_id, i);
        memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
        e100_exec_cb(nic, NULL, e100_dump);
        set_current_state(TASK_UNINTERRUPTIBLE);
        schedule_timeout(HZ / 100 + 1);
        memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
                sizeof(nic->mem->dump_buf));
}

static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
{
        struct nic *nic = netdev->priv;
        wol->supported = (nic->mac >= mac_82558_D101_A4) ?  WAKE_MAGIC : 0;
        wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
}
  
static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
{
        struct nic *nic = netdev->priv;
  
        if(wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
                return -EOPNOTSUPP;

        if(wol->wolopts)
                nic->flags |= wol_magic;
        else
                nic->flags &= ~wol_magic;

        pci_enable_wake(nic->pdev, 0, nic->flags & (wol_magic | e100_asf(nic)));
        e100_exec_cb(nic, NULL, e100_configure);
  
        return 0;
}
  
static u32 e100_get_msglevel(struct net_device *netdev)
{
        struct nic *nic = netdev->priv;
        return nic->msg_enable;
}
  
static void e100_set_msglevel(struct net_device *netdev, u32 value)
{
        struct nic *nic = netdev->priv;
        nic->msg_enable = value;
}
  
static int e100_nway_reset(struct net_device *netdev)
{
        struct nic *nic = netdev->priv;
        return mii_nway_restart(&nic->mii);
}

static u32 e100_get_link(struct net_device *netdev)
{
        struct nic *nic = netdev->priv;
        return mii_link_ok(&nic->mii);
}
  
static int e100_get_eeprom_len(struct net_device *netdev)
{
        struct nic *nic = netdev->priv;
        return nic->eeprom_wc << 1;
}

#define E100_EEPROM_MAGIC       0x1234
static int e100_get_eeprom(struct net_device *netdev,
        struct ethtool_eeprom *eeprom, u8 *bytes)
{
        struct nic *nic = netdev->priv;
        
        eeprom->magic = E100_EEPROM_MAGIC;
        memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);

        return 0;
}

static int e100_set_eeprom(struct net_device *netdev,
        struct ethtool_eeprom *eeprom, u8 *bytes)
{
        struct nic *nic = netdev->priv;
        
        if(eeprom->magic != E100_EEPROM_MAGIC)
                return -EINVAL;
        memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);

        return e100_eeprom_save(nic, eeprom->offset >> 1,
                (eeprom->len >> 1) + 1);
}

static void e100_get_ringparam(struct net_device *netdev,
        struct ethtool_ringparam *ring)
{
        struct nic *nic = netdev->priv;
        struct param_range *rfds = &nic->params.rfds;
        struct param_range *cbs = &nic->params.cbs;
  
        ring->rx_max_pending = rfds->max;
        ring->tx_max_pending = cbs->max;
        ring->rx_mini_max_pending = 0;
        ring->rx_jumbo_max_pending = 0;
        ring->rx_pending = rfds->count;
        ring->tx_pending = cbs->count;
        ring->rx_mini_pending = 0;
        ring->rx_jumbo_pending = 0;
}
  
static int e100_set_ringparam(struct net_device *netdev,
        struct ethtool_ringparam *ring)
{
        struct nic *nic = netdev->priv;
        struct param_range *rfds = &nic->params.rfds;
        struct param_range *cbs = &nic->params.cbs;
  
        if(netif_running(netdev))
                e100_down(nic);
        rfds->count = max(ring->rx_pending, rfds->min);
        rfds->count = min(rfds->count, rfds->max);
        cbs->count = max(ring->tx_pending, cbs->min);
        cbs->count = min(cbs->count, cbs->max);
        if(netif_running(netdev))
                e100_up(nic);
                
        return 0;
}
  
static char e100_gstrings_test[][ETH_GSTRING_LEN] = {
        "Link test     (on/offline)",
        "Eeprom test   (on/offline)",
        "Self test        (offline)",
        "Mac loopback     (offline)",
        "Phy loopback     (offline)",
};
#define E100_TEST_LEN   sizeof(e100_gstrings_test) / ETH_GSTRING_LEN

static int e100_diag_test_count(struct net_device *netdev)
{
        return E100_TEST_LEN;
}

static void e100_diag_test(struct net_device *netdev,
        struct ethtool_test *test, u64 *data)
{
        struct nic *nic = netdev->priv;
        int i;

        memset(data, 0, E100_TEST_LEN * sizeof(u64));
        data[0] = !mii_link_ok(&nic->mii);
        data[1] = e100_eeprom_load(nic);
        if(test->flags & ETH_TEST_FL_OFFLINE) {
                if(netif_running(netdev))
                        e100_down(nic);
                data[2] = e100_self_test(nic);
                data[3] = e100_loopback_test(nic, lb_mac);
                data[4] = e100_loopback_test(nic, lb_phy);
                if(netif_running(netdev))
                        e100_up(nic);
        }
        for(i = 0; i < E100_TEST_LEN; i++)
                test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
}

static int e100_phys_id(struct net_device *netdev, u32 data)
{
        struct nic *nic = netdev->priv;

        if(!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
                data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
        mod_timer(&nic->blink_timer, jiffies);
        set_current_state(TASK_INTERRUPTIBLE);
        schedule_timeout(data * HZ);
        del_timer_sync(&nic->blink_timer);
        mdio_write(netdev, nic->mii.phy_id, MII_LED_CONTROL, 0);

        return 0;
}

static char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
        "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
        "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
        "rx_length_errors", "rx_over_errors", "rx_crc_errors",
        "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
        "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
        "tx_heartbeat_errors", "tx_window_errors",
        /* device-specific stats */
        "tx_deferred", "tx_single_collisions", "tx_multi_collisions", 
        "tx_flow_control_pause", "rx_flow_control_pause",
        "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
};
#define E100_NET_STATS_LEN      21
#define E100_STATS_LEN  sizeof(e100_gstrings_stats) / ETH_GSTRING_LEN

static int e100_get_stats_count(struct net_device *netdev)
{
        return E100_STATS_LEN;
}

static void e100_get_ethtool_stats(struct net_device *netdev,
        struct ethtool_stats *stats, u64 *data)
{
        struct nic *nic = netdev->priv;
        int i;

        for(i = 0; i < E100_NET_STATS_LEN; i++)
                data[i] = ((unsigned long *)&nic->net_stats)[i];

        data[i++] = nic->tx_deferred;
        data[i++] = nic->tx_single_collisions;
        data[i++] = nic->tx_multiple_collisions;
        data[i++] = nic->tx_fc_pause;
        data[i++] = nic->rx_fc_pause;
        data[i++] = nic->rx_fc_unsupported;
        data[i++] = nic->tx_tco_frames;
        data[i++] = nic->rx_tco_frames;
}

static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
{
        switch(stringset) {
        case ETH_SS_TEST:
                memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
                break;
        case ETH_SS_STATS:
                memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
                break;
        }
}

static struct ethtool_ops e100_ethtool_ops = {
        .get_settings           = e100_get_settings,
        .set_settings           = e100_set_settings,
        .get_drvinfo            = e100_get_drvinfo,
        .get_regs_len           = e100_get_regs_len,
        .get_regs               = e100_get_regs,
        .get_wol                = e100_get_wol,
        .set_wol                = e100_set_wol,
        .get_msglevel           = e100_get_msglevel,
        .set_msglevel           = e100_set_msglevel,
        .nway_reset             = e100_nway_reset,
        .get_link               = e100_get_link,
        .get_eeprom_len         = e100_get_eeprom_len,
        .get_eeprom             = e100_get_eeprom,
        .set_eeprom             = e100_set_eeprom,
        .get_ringparam          = e100_get_ringparam,
        .set_ringparam          = e100_set_ringparam,
        .self_test_count        = e100_diag_test_count,
        .self_test              = e100_diag_test,
        .get_strings            = e100_get_strings,
        .phys_id                = e100_phys_id,
        .get_stats_count        = e100_get_stats_count,
        .get_ethtool_stats      = e100_get_ethtool_stats,
};

static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
        struct nic *nic = netdev->priv;
        struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&ifr->ifr_data;

        return generic_mii_ioctl(&nic->mii, mii, cmd, NULL);
}

static int e100_alloc(struct nic *nic)
{
        nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
                &nic->dma_addr);
        return nic->mem ? 0 : -ENOMEM;
}

static void e100_free(struct nic *nic)
{
        if(nic->mem) {
                pci_free_consistent(nic->pdev, sizeof(struct mem),
                        nic->mem, nic->dma_addr);
                nic->mem = NULL;
        }
}

static int e100_open(struct net_device *netdev)
{
        struct nic *nic = netdev->priv;
        int err = 0;

        netif_carrier_off(netdev);
        if((err = e100_up(nic)))
                DPRINTK(IFUP, ERR, "Cannot open interface, aborting.\n");
        return err;
}

static int e100_close(struct net_device *netdev)
{
        e100_down(netdev->priv);
        return 0;
}

static int __devinit e100_probe(struct pci_dev *pdev, 
        const struct pci_device_id *ent)
{
        struct net_device *netdev;
        struct nic *nic;
        int err;
        
        if(!(netdev = alloc_etherdev(sizeof(struct nic)))) {
                if(((1 << debug) - 1) & NETIF_MSG_PROBE)
                        printk(KERN_ERR PFX "Etherdev alloc failed, abort.\n");
                return -ENOMEM;
        }

        netdev->open = e100_open;
        netdev->stop = e100_close;
        netdev->hard_start_xmit = e100_xmit_frame;
        netdev->get_stats = e100_get_stats;
        netdev->set_multicast_list = e100_set_multicast_list;
        netdev->set_mac_address = e100_set_mac_address;
        netdev->change_mtu = e100_change_mtu;
        netdev->do_ioctl = e100_do_ioctl;
        SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
        netdev->tx_timeout = e100_tx_timeout;
        netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
#ifdef CONFIG_E100_NAPI
        netdev->poll = e100_poll;
        netdev->weight = E100_NAPI_WEIGHT;
#endif

        nic = netdev->priv;
        nic->netdev = netdev;
        nic->pdev = pdev;
        nic->msg_enable = (1 << debug) - 1;
        pci_set_drvdata(pdev, netdev);

        if((err = pci_enable_device(pdev))) {
                DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting.\n");
                goto err_out_free_dev;
        }

        if(!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
                DPRINTK(PROBE, ERR, "Cannot find proper PCI device "
                        "base address, aborting.\n");
                err = -ENODEV;
                goto err_out_disable_pdev;
        }

        if((err = pci_request_regions(pdev, DRV_NAME))) {
                DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting.\n");
                goto err_out_disable_pdev;
        }

        pci_set_master(pdev);

        if((err = pci_set_dma_mask(pdev, 0xFFFFFFFFULL))) {
                DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting.\n");
                goto err_out_free_res;
        }

        SET_MODULE_OWNER(netdev);
        SET_NETDEV_DEV(netdev, &pdev->dev);

        nic->csr = ioremap(pci_resource_start(pdev, 0), sizeof(struct csr));
        if(!nic->csr) {
                DPRINTK(PROBE, ERR, "Cannot map device registers, aborting.\n");
                err = -ENOMEM;
                goto err_out_free_res;
        }

        if(ent->driver_data)
                nic->flags |= ich;
        else
                nic->flags &= ~ich;

        spin_lock_init(&nic->cb_lock);
        spin_lock_init(&nic->cmd_lock);

        init_timer(&nic->watchdog);
        nic->watchdog.function = e100_watchdog;
        nic->watchdog.data = (unsigned long)nic;
        init_timer(&nic->blink_timer);
        nic->blink_timer.function = e100_blink_led;
        nic->blink_timer.data = (unsigned long)nic;

        if((err = e100_alloc(nic))) {
                DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n");
                goto err_out_iounmap;
        }

        e100_get_defaults(nic);
        e100_hw_reset(nic);
        e100_phy_init(nic);

        if((err = e100_eeprom_load(nic)))
                goto err_out_free;
        ((u16 *)nic->netdev->dev_addr)[0] = le16_to_cpu(nic->eeprom[0]);
        ((u16 *)nic->netdev->dev_addr)[1] = le16_to_cpu(nic->eeprom[1]);
        ((u16 *)nic->netdev->dev_addr)[2] = le16_to_cpu(nic->eeprom[2]);
        if(!is_valid_ether_addr(nic->netdev->dev_addr)) {
                DPRINTK(PROBE, ERR, "Invalid MAC address from "
                        "EEPROM, aborting.\n");
                err = -EAGAIN;
                goto err_out_free;
        }

        /* Wol magic packet can be enabled from eeprom */
        if((nic->mac >= mac_82558_D101_A4) &&
           (nic->eeprom[eeprom_id] & eeprom_id_wol))
                nic->flags |= wol_magic;

        pci_enable_wake(pdev, 0, nic->flags & (wol_magic | e100_asf(nic)));

        if((err = register_netdev(netdev))) {
                DPRINTK(PROBE, ERR, "Cannot register net device, aborting.\n");
                goto err_out_free;
        }

        return 0;

err_out_free:
        e100_free(nic);
err_out_iounmap:
        iounmap(nic->csr);
err_out_free_res:
        pci_release_regions(pdev);
err_out_disable_pdev:
        pci_disable_device(pdev);
err_out_free_dev:
        pci_set_drvdata(pdev, NULL);
        free_netdev(netdev);
        return err;
}

static void __devexit e100_remove(struct pci_dev *pdev)
{
        struct net_device *netdev = pci_get_drvdata(pdev);

        if(netdev) {
                struct nic *nic = netdev->priv;
                unregister_netdev(netdev);
                e100_free(nic);
                iounmap(nic->csr);
                free_netdev(netdev);
                pci_release_regions(pdev);
                pci_disable_device(pdev);
                pci_set_drvdata(pdev, NULL);
        }
}

#ifdef CONFIG_PM                        
static int e100_suspend(struct pci_dev *pdev, u32 state)
{
        struct net_device *netdev = pci_get_drvdata(pdev);
        struct nic *nic = netdev->priv;

        if(netif_running(netdev))
                e100_down(nic);
        e100_hw_reset(nic);
        netif_device_detach(netdev);

        pci_save_state(pdev, nic->pm_state);
        pci_enable_wake(pdev, state, nic->flags & (wol_magic | e100_asf(nic)));
        pci_disable_device(pdev);
        pci_set_power_state(pdev, state);

        return 0;
}

static int e100_resume(struct pci_dev *pdev)
{
        struct net_device *netdev = pci_get_drvdata(pdev);
        struct nic *nic = netdev->priv;

        pci_set_power_state(pdev, 0);
        pci_restore_state(pdev, nic->pm_state);
        e100_hw_init(nic);

        netif_device_attach(netdev);
        if(netif_running(netdev))
                e100_up(nic);
        
        return 0;
}
#endif

static struct pci_driver e100_driver = {
        .name =         DRV_NAME,
        .id_table =     e100_id_table,
        .probe =        e100_probe,
        .remove =       __devexit_p(e100_remove),
#ifdef CONFIG_PM                        
        .suspend =      e100_suspend,
        .resume =       e100_resume,
#endif
};

static int __init e100_init_module(void)
{
        if(((1 << debug) - 1) & NETIF_MSG_DRV) {
                printk(KERN_INFO PFX "%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
                printk(KERN_INFO PFX "%s\n", DRV_COPYRIGHT);
        }
        return pci_module_init(&e100_driver);
}

static void __exit e100_cleanup_module(void)
{
        pci_unregister_driver(&e100_driver);
}

module_init(e100_init_module);
module_exit(e100_cleanup_module);

<Prev in Thread] Current Thread [Next in Thread>