netdev
[Top] [All Lists]

RFR: new SiS gige driver

To: netdev@xxxxxxxxxxx
Subject: RFR: new SiS gige driver
From: Jeff Garzik <jgarzik@xxxxxxxxx>
Date: Fri, 8 Aug 2003 13:39:33 -0400
Sender: netdev-bounce@xxxxxxxxxxx
User-agent: Mutt/1.3.28i
Every so often, new vendor drivers are submitted to me for inclusion in
the Linux kernel.  In an attempt to obtain greater pre-merge peer
review, I'm going to start posting some of them here on netdev.

This driver is actually a lot more clean than many that crop up.  So far
most of my nits are minor:
* it needs copyright/license blurb at the top
* should not wait for autoneg to complete in ->open, 
* worst-case delay in smdio_write is very long... try moving most
  phy interaction to process context, or examining if delays exist
  only to paper over PCI posting (for example) bugs
* should use netif_carrier_xxx (required for bonding and linkwatch,
  these days)
* remove #if 0'd code, commented-out code ("// ..."), and other dead code
* since it's gige, it should definitely be using NAPI


/*
=========================================================================
 SiS190.c: A SiS190 Gigabit Ethernet driver for Linux kernel 2.6.x.
 --------------------------------------------------------------------

 History:
 Aug   7 2003   - created initially by K.M. Liu <kmliu@xxxxxxxxxx>.
=========================================================================
VERSION 1.0     <2003/8/7> Initial by K.M. Liu, test 100bps Full in 2.6.0 O.K.
        1.1     <2003/8/8> Add mode detection.

        The bit4:0 of MII register 4 is called "selector field", and have to be
        00001b to indicate support of IEEE std 802.3 during NWay process of
        exchanging Link Code Word (FLP). 
*/

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/crc32.h>
#include <linux/init.h>

#include <asm/io.h>

#define SiS190_VERSION "1.1"
#define MODULENAME "SiS190"
#define SiS190_DRIVER_NAME   MODULENAME " Gigabit Ethernet driver " 
SiS190_VERSION
#define PFX MODULENAME ": "

#ifdef SiS190_DEBUG
#define assert(expr) \
        if(!(expr)) {                                   \
                printk( "Assertion failed! %s,%s,%s,line=%d\n", \
                #expr,__FILE__,__FUNCTION__,__LINE__);          \
        }
#else
#define assert(expr) do {} while (0)
#endif

/* media options */
#define MAX_UNITS 8

/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
static int max_interrupt_work = 20;

/* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
   The chips use a 64 element hash table based on the Ethernet CRC.  */
static int multicast_filter_limit = 32;

/* MAC address length*/
#define MAC_ADDR_LEN    6

/* max supported gigabit ethernet frame size -- must be at least 
(dev->mtu+14+4).*/
#define MAX_ETH_FRAME_SIZE      1536

#define TX_FIFO_THRESH 256      /* In bytes */

#define RX_FIFO_THRESH  7       /* 7 means NO threshold, Rx buffer level before 
first PCI xfer.  */
#define RX_DMA_BURST    6       /* Maximum PCI burst, '6' is 1024 */
#define TX_DMA_BURST    6       /* Maximum PCI burst, '6' is 1024 */
#define EarlyTxThld     0x3F    /* 0x3F means NO early transmit */
#define RxPacketMaxSize 0x0800  /* Maximum size supported is 16K-1 */
#define InterFrameGap   0x03    /* 3 means InterFrameGap = the shortest one */

#define NUM_TX_DESC     64      /* Number of Tx descriptor registers */
#define NUM_RX_DESC     64      /* Number of Rx descriptor registers */
#define RX_BUF_SIZE     1536    /* Rx Buffer size */

#define SiS190_MIN_IO_SIZE 0x80
#define TX_TIMEOUT  (6*HZ)

/* enhanced PHY access register bit definitions */
#define EhnMIIread      0x0000
#define EhnMIIwrite     0x0020
#define EhnMIIdataShift 16
#define EhnMIIpmdShift  6      /* 7016 only */
#define EhnMIIregShift  11
#define EhnMIIreq       0x0010
#define EhnMIInotDone   0x0010

//-------------------------------------------------------------------------
// Bit Mask definitions
//-------------------------------------------------------------------------
#define BIT_0       0x0001
#define BIT_1       0x0002
#define BIT_2       0x0004
#define BIT_3       0x0008
#define BIT_4       0x0010
#define BIT_5       0x0020
#define BIT_6       0x0040
#define BIT_7       0x0080
#define BIT_8       0x0100
#define BIT_9       0x0200
#define BIT_10      0x0400
#define BIT_11      0x0800
#define BIT_12      0x1000
#define BIT_13      0x2000
#define BIT_14      0x4000
#define BIT_15      0x8000
#define BIT_16       0x10000
#define BIT_17       0x20000
#define BIT_18       0x40000
#define BIT_19       0x80000
#define BIT_20      0x100000
#define BIT_21       0x200000
#define BIT_22       0x400000
#define BIT_23       0x800000
#define BIT_24       0x1000000
#define BIT_25       0x2000000
#define BIT_26      0x04000000
#define BIT_27      0x08000000
#define BIT_28      0x10000000
#define BIT_29      0x20000000
#define BIT_30      0x40000000
#define BIT_31      0x80000000

/* write/read MMIO register */
#define SiS_W8(reg, val8)       writeb ((val8), ioaddr + (reg))
#define SiS_W16(reg, val16)     writew ((val16), ioaddr + (reg))
#define SiS_W32(reg, val32)     writel ((val32), ioaddr + (reg))
#define SiS_R8(reg)             readb (ioaddr + (reg))
#define SiS_R16(reg)            readw (ioaddr + (reg))
#define SiS_R32(reg)            ((unsigned long) readl (ioaddr + (reg)))

static struct {
        const char *name;
} board_info[] __devinitdata = {
        {
"SiS190 Gigabit Ethernet"},};

static struct pci_device_id sis190_pci_tbl[] __devinitdata = {
        {0x1039, 0x0190, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
        {0,},
};

MODULE_DEVICE_TABLE(pci, sis190_pci_tbl);

enum SiS190_registers {
        
        TxControl=0x0,
        TxDescStartAddr =0x4,
        TxNextDescAddr =0x0c,
        RxControl=0x10,
        RxDescStartAddr =0x14,
        RxNextDescAddr =0x1c,
       IntrStatus = 0x20,
       IntrMask = 0x24,
       IntrControl = 0x28,
       IntrTimer = 0x2c,
        PMControl = 0x30,
       ROMControl=0x38,
       ROMInterface=0x3c,
       StationControl=0x40,
       GMIIControl=0x44,
       TxMacControl=0x50,
       RxMacControl=0x60,
       RxMacAddr=0x62,
       RxHashTable=0x68,
       RxWakeOnLan=0x70,
       RxMPSControl=0x78,       
};

enum sis190_register_content {
        /*InterruptStatusBits */
        
        SoftInt=0x40000000,
        Timeup=0x20000000,
        PauseFrame = 0x80000,
        MagicPacket=0x40000,
        WakeupFrame = 0x20000,
        LinkChange = 0x10000,
        RxQEmpty = 0x80,
        RxQInt = 0x40,
        TxQ1Empty = 0x20,
        TxQ1Int = 0x10,
        TxQ0Empty = 0x08,
        TxQ0Int = 0x04,
        RxHalt = 0x02,
        TxHalt=0x01,    

        /*RxStatusDesc */
        RxRES = 0x00200000,
        RxCRC = 0x00080000,
        RxRUNT = 0x00100000,
        RxRWT = 0x00400000,

        /*ChipCmdBits */
        CmdReset = 0x10,
        CmdRxEnb = 0x08,
        CmdTxEnb = 0x01,
        RxBufEmpty = 0x01,

        /*Cfg9346Bits */
        Cfg9346_Lock = 0x00,
        Cfg9346_Unlock = 0xC0,

        /*rx_mode_bits */
        AcceptErr = 0x20,
        AcceptRunt = 0x10,
        AcceptBroadcast = 0x0800,
        AcceptMulticast = 0x0400,
        AcceptMyPhys = 0x0200,
        AcceptAllPhys = 0x0100,

        /*RxConfigBits */
        RxCfgFIFOShift = 13,
        RxCfgDMAShift = 8,

        /*TxConfigBits */
        TxInterFrameGapShift = 24,
        TxDMAShift = 8,         /* DMA burst value (0-7) is shift this many 
bits */

        /*_PHYstatus */
        TBI_Enable = 0x80,
        TxFlowCtrl = 0x40,
        RxFlowCtrl = 0x20,

        _1000bpsF = 0x1c,
        _1000bpsH = 0x0c,   
        _100bpsF = 0x18,
        _100bpsH = 0x08, 
        _10bpsF = 0x14,
        _10bpsH = 0x04,
        
        LinkStatus = 0x02,
        FullDup = 0x01,

        /*GIGABIT_PHY_registers */
        PHY_CTRL_REG = 0,
        PHY_STAT_REG = 1,
        PHY_AUTO_NEGO_REG = 4,
        PHY_1000_CTRL_REG = 9,

        /*GIGABIT_PHY_REG_BIT */
        PHY_Restart_Auto_Nego = 0x0200,
        PHY_Enable_Auto_Nego = 0x1000,

        //PHY_STAT_REG = 1;
        PHY_Auto_Neco_Comp = 0x0020,

        //PHY_AUTO_NEGO_REG = 4;
        PHY_Cap_10_Half = 0x0020,
        PHY_Cap_10_Full = 0x0040,
        PHY_Cap_100_Half = 0x0080,
        PHY_Cap_100_Full = 0x0100,

        //PHY_1000_CTRL_REG = 9;
        PHY_Cap_1000_Full = 0x0200,

        PHY_Cap_Null = 0x0,

        /*_MediaType*/
        _10_Half = 0x01,
        _10_Full = 0x02,
        _100_Half = 0x04,
        _100_Full = 0x08,
        _1000_Full = 0x10,

        /*_TBICSRBit*/
        TBILinkOK = 0x02000000,
};

const static struct {
        const char *name;
        u8 version;             /* depend on docs */
        u32 RxConfigMask;       /* should clear the bits supported by this chip 
*/
} sis_chip_info[] = {
        {
"SiS-0190", 0x00, 0xff7e1880,},};

enum _DescStatusBit {
        OWNbit = 0x80000000,
        INTbit = 0x40000000,
        DEFbit = 0x200000,
        CRCbit = 0x20000,
        PADbit=0x10000,
        ENDbit=0x80000000,
};

struct TxDesc {
        u32 PSize;
        u32 status;
        u32 buf_addr;
        u32 buf_Len;
};

struct RxDesc {
        u32 PSize;
        u32 status;
        u32 buf_addr;
        u32 buf_Len;
};

struct sis190_private {
        void *mmio_addr;        /* memory map physical address */
        struct pci_dev *pci_dev;        /* Index of PCI device  */
        struct net_device_stats stats;  /* statistics of net device */
        spinlock_t lock;        /* spin lock flag */
        int chipset;
        unsigned long cur_rx;   /* Index into the Rx descriptor buffer of next 
Rx pkt. */
        unsigned long cur_tx;   /* Index into the Tx descriptor buffer of next 
Rx pkt. */
        unsigned long dirty_tx;
        unsigned char *TxDescArrays;    /* Index of Tx Descriptor buffer */
        unsigned char *RxDescArrays;    /* Index of Rx Descriptor buffer */
        struct TxDesc *TxDescArray;     /* Index of 256-alignment Tx Descriptor 
buffer */
        struct RxDesc *RxDescArray;     /* Index of 256-alignment Rx Descriptor 
buffer */
        unsigned char *RxBufferRings;   /* Index of Rx Buffer  */
        unsigned char *RxBufferRing[NUM_RX_DESC];       /* Index of Rx Buffer 
array */
        struct sk_buff *Tx_skbuff[NUM_TX_DESC]; /* Index of Transmit data 
buffer */
};

MODULE_AUTHOR("K.M. Liu<kmliu@xxxxxxx");
MODULE_DESCRIPTION("SiS SiS190 Gigabit Ethernet driver");
MODULE_LICENSE("GPL");
MODULE_PARM(media, "1-" __MODULE_STRING(MAX_UNITS) "i");

static int SiS190_open(struct net_device *dev);
static int SiS190_start_xmit(struct sk_buff *skb, struct net_device *dev);
static irqreturn_t SiS190_interrupt(int irq, void *dev_instance,
                              struct pt_regs *regs);
static void SiS190_init_ring(struct net_device *dev);
static void SiS190_hw_start(struct net_device *dev);
static int SiS190_close(struct net_device *dev);
static void SiS190_set_rx_mode(struct net_device *dev);
static void SiS190_tx_timeout(struct net_device *dev);
static struct net_device_stats *SiS190_get_stats(struct net_device *netdev);

static const u32 sis190_intr_mask =
     RxQEmpty | RxQInt |TxQ1Empty |     TxQ1Int | TxQ0Empty |   TxQ0Int |RxHalt 
| TxHalt;
   
//static const unsigned int sis190_rx_config =
//    (RX_FIFO_THRESH << RxCfgFIFOShift) | (RX_DMA_BURST << RxCfgDMAShift);

void
smdio_write(void *ioaddr, int RegAddr, int value)
{

    u32      l;
    u16      i;
    u32      pmd;

    pmd=1;
    
    l=0;
    l = EhnMIIwrite |(((u32)RegAddr)<<EhnMIIregShift) |EhnMIIreq | 
(((u32)value)<<EhnMIIdataShift)|(((u32)pmd)<<EhnMIIpmdShift);

    SiS_W32(GMIIControl, l );

    udelay(1000);   
      
    for ( i=0; i<1000; i++) {
        if ( SiS_R32( GMIIControl ) & EhnMIInotDone ) {
           udelay(100);
        } else {
            break;
        }
    }

    if(i>999) printk(KERN_ERR PFX "Phy write Error!!!\n");

}

int
smdio_read(void *ioaddr, int RegAddr)
{

    u32      l;
    u16      i;
    u32      pmd;
    
    pmd=1;
    l=0;
    l = EhnMIIread |EhnMIIreq  | (((u32)RegAddr)<<EhnMIIregShift) 
|(((u32)pmd)<<EhnMIIpmdShift);
    
    SiS_W32(GMIIControl, l );
      
//    printk("ReadPHY: l=%x \n",l);
//    printk("(((u32)RegAddr)<<EhnMIIregShift) =%x 
\n",(((u32)RegAddr)<<EhnMIIregShift));
//    printk(" (((u32)pmd)<<EhnMIIpmdShift)=%x 
\n",(((u32)pmd)<<EhnMIIpmdShift));
    udelay(1000);
    
    for ( i=0; i<1000; i++) {
        if ((l == SiS_R32(GMIIControl)) & EhnMIInotDone) {
            udelay(100);
        } else {
            break;
        }

        if(i>999) printk(KERN_ERR PFX "Phy Read Error!!!\n");
    }
    l=SiS_R32(GMIIControl);    
    
    return( (u16) ( l>>EhnMIIdataShift ) );
        
}

int
ReadEEprom(void *ioaddr, u32 RegAddr)
{
    u16         data;
    u32         i;
    u32         ulValue;
    
    if(!(SiS_R32(ROMControl)&BIT_1))
    {
        return 0;
    }

    ulValue = (BIT_7 | (0x2 << 8) | (RegAddr << 10));

    SiS_W32(ROMInterface, ulValue);

    for(i=0 ; i < 200; i++)
    {
        
        if(!(SiS_R32(ROMInterface)& BIT_7))
            break;

        udelay(1000);
    }
  
    data = (u16)((SiS_R32(ROMInterface) & 0xffff0000) >> 16);
    
    return data;
}

static int __devinit
SiS190_init_board(struct pci_dev *pdev, struct net_device **dev_out,
                   void **ioaddr_out)
{
        void *ioaddr = NULL;
        struct net_device *dev;
        struct sis190_private *tp;
        u16 rc;
        unsigned long mmio_start, mmio_end, mmio_flags, mmio_len;
//      u32 tmp;

        assert(pdev != NULL);
        assert(ioaddr_out != NULL);

        *ioaddr_out = NULL;
        *dev_out = NULL;

        // dev zeroed in init_etherdev 

//        printk("SiS190_init_board\n");
        
        dev = alloc_etherdev(sizeof (*tp));
//      dev = init_etherdev(NULL, sizeof (*tp));
        if (dev == NULL) {
                printk(KERN_ERR PFX "unable to alloc new ethernet\n");
                return -ENOMEM;
        }

        SET_MODULE_OWNER(dev);
        SET_NETDEV_DEV(dev, &pdev->dev);
        tp = dev->priv;

//      SET_MODULE_OWNER(dev);
//      tp = dev->priv;

        // enable device (incl. PCI PM wakeup and hotplug setup)
        rc = pci_enable_device(pdev);
        if (rc)
                goto err_out;

        mmio_start = pci_resource_start(pdev, 0);
        mmio_end = pci_resource_end(pdev, 0);
        mmio_flags = pci_resource_flags(pdev, 0);
        mmio_len = pci_resource_len(pdev, 0);

        // make sure PCI base addr 0 is MMIO
        if (!(mmio_flags & IORESOURCE_MEM)) {
                printk(KERN_ERR PFX
                       "region #0 not an MMIO resource, aborting\n");
                rc = -ENODEV;
                goto err_out;
        }
        // check for weird/broken PCI region reporting
        if (mmio_len < SiS190_MIN_IO_SIZE) {
                printk(KERN_ERR PFX "Invalid PCI region size(s), aborting\n");
                rc = -ENODEV;
                goto err_out;
        }

        rc = pci_request_regions(pdev, dev->name);
        if (rc)
                goto err_out;

        // enable PCI bus-mastering
        pci_set_master(pdev);

        // ioremap MMIO region 
        ioaddr = ioremap(mmio_start, mmio_len);
        if (ioaddr == NULL) {
                printk(KERN_ERR PFX "cannot remap MMIO, aborting\n");
                rc = -EIO;
                goto err_out_free_res;
        }

        // Soft reset the chip. 
        //_W8(ChipCmd, CmdReset);
        SiS_W32(IntrControl,0x8000);
        udelay(1000);
        SiS_W32(IntrControl,0x0);
                
        SiS_W32(TxControl,0x1a00);
        SiS_W32(RxControl,0x1a00);      
        udelay(1000);
        
//match:
        *ioaddr_out = ioaddr;
        *dev_out = dev;
        return 0;

err_out_free_res:
        pci_release_regions(pdev);

err_out:
// err_out_disable:
        pci_disable_device(pdev);
        unregister_netdev(dev);
        kfree(dev);
        return rc;
}

static int __devinit
SiS190_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
        struct net_device *dev = NULL;
        struct sis190_private *tp = NULL;
        void *ioaddr = NULL;
        static int board_idx = -1;
        static int printed_version = 0;
        int i,rc;
        u16 reg31;
//      int option = -1, Cap10_100 = 0, Cap1000 = 0;

        assert(pdev != NULL);
        assert(ent != NULL);

        board_idx++;
            
//        printk("SiS190_init_one! \n");
        
        if (!printed_version) {
                printk(KERN_INFO SiS190_DRIVER_NAME " loaded\n");
                printed_version = 1;
        }

        i = SiS190_init_board(pdev, &dev, &ioaddr);
        if (i < 0) {
                return i;
        }

        tp = dev->priv;
        assert(ioaddr != NULL);
        assert(dev != NULL);
        assert(tp != NULL);

    // Get MAC address //
    // Read node address from the EEPROM

        if(SiS_R32(ROMControl)&0x2){

            for (i=0; i< 6; i += 2){
               SiS_W16(RxMacAddr+i,ReadEEprom(ioaddr, 3 + (i/2)));
            }      
      
        }else{
    
           SiS_W32(RxMacAddr,0x11111100);       //If 9346 does not exist
           SiS_W32(RxMacAddr+2,0x00111111);
        }
      
        for (i = 0; i < MAC_ADDR_LEN; i++) {
                dev->dev_addr[i] = SiS_R8(RxMacAddr+i);
                printk("SiS_R8(RxMacAddr+%x)= %x ",i,SiS_R8(RxMacAddr+i));    
        }

        dev->open = SiS190_open;
        dev->hard_start_xmit = SiS190_start_xmit;
        dev->get_stats = SiS190_get_stats;
        dev->stop = SiS190_close;
        dev->tx_timeout = SiS190_tx_timeout;
        dev->set_multicast_list = SiS190_set_rx_mode;
        dev->watchdog_timeo = TX_TIMEOUT;
        dev->irq = pdev->irq;
        dev->base_addr = (unsigned long) ioaddr;
//      dev->do_ioctl           = mii_ioctl;

        tp = dev->priv;         // private data //
        tp->pci_dev = pdev;
        tp->mmio_addr = ioaddr;

        printk(KERN_DEBUG "%s: Identified chip type is '%s'.\n", dev->name,
               sis_chip_info[tp->chipset].name);

        spin_lock_init(&tp->lock);
        rc = register_netdev(dev);
        if (rc) {
                iounmap(ioaddr);
                pci_release_regions(pdev);
                pci_disable_device(pdev);
                kfree(dev);
                return rc;
        }

        printk(KERN_DEBUG "%s: Identified chip type is '%s'.\n", dev->name,
               sis_chip_info[tp->chipset].name);

        pci_set_drvdata(pdev, dev);

        printk(KERN_INFO "%s: %s at 0x%lx, "
               "%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x, "
               "IRQ %d\n",
               dev->name,
               board_info[ent->driver_data].name,
               dev->base_addr,
               dev->dev_addr[0], dev->dev_addr[1],
               dev->dev_addr[2], dev->dev_addr[3],
               dev->dev_addr[4], dev->dev_addr[5], dev->irq);

               int val = smdio_read(ioaddr, PHY_AUTO_NEGO_REG);

                        printk(KERN_INFO "%s: Auto-negotiation Enabled.\n",
                               dev->name);

                        // enable 10/100 Full/Half Mode, leave 
PHY_AUTO_NEGO_REG bit4:0 unchanged
                        smdio_write(ioaddr, PHY_AUTO_NEGO_REG,
                                   PHY_Cap_10_Half | PHY_Cap_10_Full |
                                   PHY_Cap_100_Half | PHY_Cap_100_Full | (val &
                                                                          
0x1F));

                        // enable 1000 Full Mode
                        smdio_write(ioaddr, PHY_1000_CTRL_REG,
                                   PHY_Cap_1000_Full);

                // Enable auto-negotiation and restart auto-nigotiation
                smdio_write(ioaddr, PHY_CTRL_REG,
                           PHY_Enable_Auto_Nego | PHY_Restart_Auto_Nego);
                udelay(100);

                // wait for auto-negotiation process
                for (i = 10000; i > 0; i--) {
                        //check if auto-negotiation complete
                        if (smdio_read(ioaddr, PHY_STAT_REG) &
                            PHY_Auto_Neco_Comp) {
                                udelay(100);
                                reg31=smdio_read(ioaddr,31);
                                reg31 &= 0x1c;              //bit 4:2
                                switch(reg31){                                
                                   case _1000bpsF:
                                       SiS_W16( 0x40, 0x1c01);
                                       printk("SiS190 Link on 1000 bps Full 
Duplex mode. \n");                                       
                                       break;                                   
    
                                   case _1000bpsH:
                                       SiS_W16( 0x40, 0x0c01);                  
                                               
                                       printk("SiS190 Link on 1000 bps Half 
Duplex mode. \n");                                       
                                       break;                                   
    
                                   case _100bpsF:
                                       SiS_W16( 0x40, 0x1801);      
                                       printk("SiS190 Link on 100 bps Full 
Duplex mode. \n");                                       
                                       break;                                   
    
                                   case _100bpsH:
                                       SiS_W16( 0x40, 0x0801);                  
                           
                                       printk("SiS190 Link on 100 bps Half 
Duplex mode. \n");                                       
                                       break;                                   
    
                                   case _10bpsF:
                                       SiS_W16( 0x40, 0x1401);      
                                       printk("SiS190 Link on 10 bps Full 
Duplex mode. \n");                                       
                                       break;                                   
    
                                   case _10bpsH:                                
                                       SiS_W16( 0x40, 0x0401);                  
                           
                                       printk("SiS190 Link on 10 bps Half 
Duplex mode. \n");                                       
                                       break;                                   
                                           
                                   default:
                                       printk(KERN_ERR PFX "Error! SiS190 Can 
not detect mode !!! \n");
                                       break;   
                                   }
                                  
                                break;
                        } else {
                                udelay(100);
                        }
                }               // end for-loop to wait for auto-negotiation 
process
        return 0;
}

static void __devexit
SiS190_remove_one(struct pci_dev *pdev)
{
        struct net_device *dev = pci_get_drvdata(pdev);
        struct sis190_private *tp = (struct sis190_private *) (dev->priv);

        assert(dev != NULL);
        assert(tp != NULL);

        unregister_netdev(dev);
        iounmap(tp->mmio_addr);
        pci_release_regions(pdev);

        // poison memory before freeing 
        memset(dev, 0xBC,
               sizeof (struct net_device) + sizeof (struct sis190_private));

        kfree(dev);
        pci_set_drvdata(pdev, NULL);
}

static int
SiS190_open(struct net_device *dev)
{
        struct sis190_private *tp = dev->priv;
        int retval;
        u8 diff;
        u32 TxPhyAddr, RxPhyAddr;
        
        retval =
            request_irq(dev->irq, SiS190_interrupt, SA_SHIRQ, dev->name, dev);
        if (retval) {
                return retval;
        }

        tp->TxDescArrays =
            kmalloc(NUM_TX_DESC * sizeof (struct TxDesc) + 256, GFP_KERNEL);
        // Tx Desscriptor needs 256 bytes alignment;
        TxPhyAddr = virt_to_bus(tp->TxDescArrays);
        diff = 256 - (TxPhyAddr - ((TxPhyAddr >> 8) << 8));
        TxPhyAddr += diff;
        tp->TxDescArray = (struct TxDesc *) (tp->TxDescArrays + diff);

        tp->RxDescArrays =
            kmalloc(NUM_RX_DESC * sizeof (struct RxDesc) + 256, GFP_KERNEL);
        // Rx Desscriptor needs 256 bytes alignment;
        RxPhyAddr = virt_to_bus(tp->RxDescArrays);
        diff = 256 - (RxPhyAddr - ((RxPhyAddr >> 8) << 8));
        RxPhyAddr += diff;
        tp->RxDescArray = (struct RxDesc *) (tp->RxDescArrays + diff);

        if (tp->TxDescArrays == NULL || tp->RxDescArrays == NULL) {
                printk(KERN_INFO
                       "Allocate RxDescArray or TxDescArray failed\n");
                free_irq(dev->irq, dev);
                if (tp->TxDescArrays)
                        kfree(tp->TxDescArrays);
                if (tp->RxDescArrays)
                        kfree(tp->RxDescArrays);
                return -ENOMEM;
        }
        tp->RxBufferRings = kmalloc(RX_BUF_SIZE * NUM_RX_DESC, GFP_KERNEL);
        if (tp->RxBufferRings == NULL) {
                printk(KERN_INFO "Allocate RxBufferRing failed\n");
        }

        SiS190_init_ring(dev);
        SiS190_hw_start(dev);

        return 0;

}

static void
SiS190_hw_start(struct net_device *dev)
{
        struct sis190_private *tp = dev->priv;
        void *ioaddr = tp->mmio_addr;

        /* Soft reset the chip. */
        //_W8(ChipCmd, CmdReset);

       SiS_W32(IntrControl,0x8000);
       udelay(1000);
       SiS_W32(IntrControl,0x0);
        
       SiS_W32( 0x0, 0x01a00);
       SiS_W32( 0x4, virt_to_bus(tp->TxDescArray));
       
       SiS_W32( 0x10, 0x1a00);
       SiS_W32( 0x14, virt_to_bus(tp->RxDescArray));

       SiS_W32( 0x20, 0xffffffff);
       SiS_W32( 0x24, 0x0);
       SiS_W16( 0x40, 0x1901);         //default is 100Mbps
       SiS_W32( 0x44, 0x0);
       SiS_W32( 0x50, 0x60);
       SiS_W16( 0x60, 0x02);
       SiS_W32( 0x68, 0x0);
       SiS_W32( 0x6c, 0x0);
       SiS_W32( 0x70, 0x0);
       SiS_W32( 0x74, 0x0);

        // Set Rx Config register

        tp->cur_rx = 0;

        udelay(10);

        SiS190_set_rx_mode(dev);

        /* Enable all known interrupts by setting the interrupt mask. */
        SiS_W32(IntrMask, sis190_intr_mask);
        
        SiS_W32( 0x0, 0x1a01);
        SiS_W32( 0x10, 0x1a1d);
       
        netif_start_queue(dev);
        
}

static void
SiS190_init_ring(struct net_device *dev)
{
        struct sis190_private *tp = dev->priv;
        int i;

        tp->cur_rx = 0;
        tp->cur_tx = 0;
        tp->dirty_tx = 0;
        memset(tp->TxDescArray, 0x0, NUM_TX_DESC * sizeof (struct TxDesc));
        memset(tp->RxDescArray, 0x0, NUM_RX_DESC * sizeof (struct RxDesc));
        
        for (i = 0; i < NUM_TX_DESC; i++) {
                tp->Tx_skbuff[i] = NULL;
        }
        for (i = 0; i < NUM_RX_DESC; i++) {

                tp->RxDescArray[i].PSize = 0x0;
                        
                if (i == (NUM_RX_DESC - 1))
                        tp->RxDescArray[i].buf_Len =
                            BIT_31 + RX_BUF_SIZE;              //bit 31 is End 
bit
                else
                        tp->RxDescArray[i].buf_Len = RX_BUF_SIZE;

                tp->RxBufferRing[i] = &(tp->RxBufferRings[i * RX_BUF_SIZE]);
                tp->RxDescArray[i].buf_addr = virt_to_bus(tp->RxBufferRing[i]);
                tp->RxDescArray[i].status = OWNbit | INTbit;
                        
        }        

}

static void
SiS190_tx_clear(struct sis190_private *tp)
{
        int i;

        tp->cur_tx = 0;
        for (i = 0; i < NUM_TX_DESC; i++) {
                if (tp->Tx_skbuff[i] != NULL) {
                        dev_kfree_skb(tp->Tx_skbuff[i]);
                        tp->Tx_skbuff[i] = NULL;
                        tp->stats.tx_dropped++;
                }
        }
}

static void
SiS190_tx_timeout(struct net_device *dev)
{
        struct sis190_private *tp = dev->priv;
        void *ioaddr = tp->mmio_addr;
        u8 tmp8;

        /* disable Tx, if not already */
        tmp8 = SiS_R8(TxControl);
        if (tmp8 & CmdTxEnb)
                SiS_W8(TxControl, tmp8 & ~CmdTxEnb);

        /* Disable interrupts by clearing the interrupt mask. */
        SiS_W32(IntrMask, 0x0000);

        /* Stop a shared interrupt from scavenging while we are. */
        spin_lock_irq(&tp->lock);
        SiS190_tx_clear(tp);
        spin_unlock_irq(&tp->lock);

        /* ...and finally, reset everything */
        SiS190_hw_start(dev);

        netif_wake_queue(dev);
}

static int
SiS190_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
        struct sis190_private *tp = dev->priv;
        void *ioaddr = tp->mmio_addr;
        int entry = tp->cur_tx % NUM_TX_DESC;

        if (skb->len < ETH_ZLEN) {
                skb = skb_padto(skb, ETH_ZLEN);
                if (skb == NULL)
                        return 0;
        }
        
        spin_lock_irq(&tp->lock);
        
        if ((tp->TxDescArray[entry].status & OWNbit) == 0) {
               tp->Tx_skbuff[entry] = skb;
               tp->TxDescArray[entry].buf_addr = virt_to_bus(skb->data);        
                        
                tp->TxDescArray[entry].PSize = ((skb->len > ETH_ZLEN) ? 
skb->len : ETH_ZLEN);
                
                if (entry != (NUM_TX_DESC - 1)){                        
                        tp->TxDescArray[entry].buf_Len = 
tp->TxDescArray[entry].PSize;                          
                }else{
                        tp->TxDescArray[entry].buf_Len = 
tp->TxDescArray[entry].PSize|ENDbit;                                            
               
                }
                
                tp->TxDescArray[entry].status |= (OWNbit | INTbit | DEFbit 
|CRCbit |PADbit);
                
                //_W8(TxPoll, 0x40);    //set polling bit

                SiS_W32(TxControl,0x1a11);     //Start Send
                
                dev->trans_start = jiffies;

                tp->cur_tx++;
        }
        
        spin_unlock_irq(&tp->lock);

        if ((tp->cur_tx - NUM_TX_DESC) == tp->dirty_tx) {
                netif_stop_queue(dev);
        }

        return 0;
}

static void
SiS190_tx_interrupt(struct net_device *dev, struct sis190_private *tp,
                     void *ioaddr)
{
        unsigned long dirty_tx, tx_left = 0;
        int entry = tp->cur_tx % NUM_TX_DESC;

        assert(dev != NULL);
        assert(tp != NULL);
        assert(ioaddr != NULL);

        dirty_tx = tp->dirty_tx;
        tx_left = tp->cur_tx - dirty_tx;

        while (tx_left > 0) {
                if ((tp->TxDescArray[entry].status & OWNbit) == 0) {
                        dev_kfree_skb_irq(tp->
                                          Tx_skbuff[dirty_tx % NUM_TX_DESC]);
                        tp->Tx_skbuff[dirty_tx % NUM_TX_DESC] = NULL;
                        tp->stats.tx_packets++;
                        dirty_tx++;
                        tx_left--;
                        entry++;
                }
        }

        if (tp->dirty_tx != dirty_tx) {
                tp->dirty_tx = dirty_tx;
                if (netif_queue_stopped(dev))
                        netif_wake_queue(dev);
        }
}

static void
SiS190_rx_interrupt(struct net_device *dev, struct sis190_private *tp,
                     void *ioaddr)
{
        int cur_rx;
        struct sk_buff *skb;
        int pkt_size = 0;

        assert(dev != NULL);
        assert(tp != NULL);
        assert(ioaddr != NULL);

        cur_rx = tp->cur_rx;
        while ((tp->RxDescArray[cur_rx].status & OWNbit) == 0) {

                if (tp->RxDescArray[cur_rx].PSize & 0x0080000) {
                        printk(KERN_INFO "%s: Rx ERROR!!!\n", dev->name);
                        tp->stats.rx_errors++;                  
                        tp->stats.rx_length_errors++;
                }else if(!(tp->RxDescArray[cur_rx].PSize & 0x0010000)){
                printk(KERN_INFO "%s: Rx ERROR!!!\n", dev->name);
                        tp->stats.rx_errors++;                  
                        tp->stats.rx_crc_errors++;
                } else {
                        pkt_size =
                            (int) (tp->RxDescArray[cur_rx].
                                   PSize & 0x0000FFFF) - 4;
                        skb = dev_alloc_skb(pkt_size + 2);
                        if (skb != NULL) {
                                skb->dev = dev;
                                skb_reserve(skb, 2);    // 16 byte align the IP 
fields. //
                                eth_copy_and_sum(skb, tp->RxBufferRing[cur_rx],
                                                 pkt_size, 0);
                                skb_put(skb, pkt_size);
                                skb->protocol = eth_type_trans(skb, dev);
                                netif_rx(skb);

                            tp->RxDescArray[cur_rx].PSize =0x0;
                                
                                if (cur_rx == (NUM_RX_DESC - 1))
                                        tp->RxDescArray[cur_rx].buf_Len = 
ENDbit+RX_BUF_SIZE;
                                else
                                        tp->RxDescArray[cur_rx].buf_Len = 
RX_BUF_SIZE;

                                tp->RxDescArray[cur_rx].buf_addr =
                                    virt_to_bus(tp->RxBufferRing[cur_rx]);
                                dev->last_rx = jiffies;
                                tp->stats.rx_bytes += pkt_size;
                                tp->stats.rx_packets++;

                                tp->RxDescArray[cur_rx].status = OWNbit|INTbit;
                        } else {
                                printk(KERN_WARNING
                                       "%s: Memory squeeze, deferring 
packet.\n",
                                       dev->name);
                                /* We should check that some rx space is free.
                                   If not, free one and mark 
stats->rx_dropped++. */
                                tp->stats.rx_dropped++;
                        }
                }

                cur_rx = (cur_rx + 1) % NUM_RX_DESC;

        }

        tp->cur_rx = cur_rx;
}

/* The interrupt handler does all of the Rx thread work and cleans up after the 
Tx thread. */
static irqreturn_t
SiS190_interrupt(int irq, void *dev_instance, struct pt_regs *regs)
{
        struct net_device *dev = (struct net_device *) dev_instance;
        struct sis190_private *tp = dev->priv;
        int boguscnt = max_interrupt_work;
        void *ioaddr = tp->mmio_addr;
        unsigned long status = 0;
        int handled = 0;

        do {
                status = SiS_R32(IntrStatus);
                  
                /* h/w no longer present (hotplug?) or major error, bail */

                SiS_W32(IntrStatus,status);

                if ((status &
                     (TxQ0Int | RxQInt)) == 0)
                        break;

                // Rx interrupt 
                if (status & (RxQInt)) {
                        SiS190_rx_interrupt(dev, tp, ioaddr);
                }
                // Tx interrupt
                if (status & (TxQ0Int)) {
                        spin_lock(&tp->lock);
                        SiS190_tx_interrupt(dev, tp, ioaddr);
                        spin_unlock(&tp->lock);
                }

                boguscnt--;
        } while (boguscnt > 0);

        if (boguscnt <= 0) {
                printk(KERN_WARNING "%s: Too much work at interrupt!\n",
                       dev->name);
                /* Clear all interrupt sources. */
                SiS_W32(IntrStatus, 0xffffffff);
        }

        return IRQ_RETVAL(handled);
}

static int
SiS190_close(struct net_device *dev)
{
        struct sis190_private *tp = dev->priv;
        void *ioaddr = tp->mmio_addr;
        int i;

        netif_stop_queue(dev);

        spin_lock_irq(&tp->lock);

        /* Stop the chip's Tx and Rx DMA processes. */

        SiS_W32(TxControl,0x1a00);
        SiS_W32(RxControl,0x1a00);

        /* Disable interrupts by clearing the interrupt mask. */
        SiS_W32(IntrMask, 0x0000);

        /* Update the error counts. */
        //tp->stats.rx_missed_errors += _R32(RxMissed);
        //_W32(RxMissed, 0);

        spin_unlock_irq(&tp->lock);

        synchronize_irq();
        free_irq(dev->irq, dev);

        SiS190_tx_clear(tp);
        kfree(tp->TxDescArrays);
        kfree(tp->RxDescArrays);
        tp->TxDescArrays = NULL;
        tp->RxDescArrays = NULL;
        tp->TxDescArray = NULL;
        tp->RxDescArray = NULL;
        kfree(tp->RxBufferRings);
        for (i = 0; i < NUM_RX_DESC; i++) {
                tp->RxBufferRing[i] = NULL;
        }

        return 0;
}

static void
SiS190_set_rx_mode(struct net_device *dev)
{
        struct sis190_private *tp = dev->priv;
        void *ioaddr = tp->mmio_addr;
        unsigned long flags;
        u32 mc_filter[2];       /* Multicast hash filter */
        int i, rx_mode;
        u32 tmp = 0;

        if (dev->flags & IFF_PROMISC) {
                /* Unconditionally log net taps. */
                printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n",
                       dev->name);
                rx_mode =
                    AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
                    AcceptAllPhys;
                mc_filter[1] = mc_filter[0] = 0xffffffff;
        } else if ((dev->mc_count > multicast_filter_limit)
                   || (dev->flags & IFF_ALLMULTI)) {
                /* Too many to filter perfectly -- accept all multicasts. */
                rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
                mc_filter[1] = mc_filter[0] = 0xffffffff;
        } else {
                struct dev_mc_list *mclist;
                rx_mode = AcceptBroadcast | AcceptMyPhys;
                mc_filter[1] = mc_filter[0] = 0;
                for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
                     i++, mclist = mclist->next) {
                        int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 
26;
                        mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
                        rx_mode |= AcceptMulticast;
                }
        }

        spin_lock_irqsave(&tp->lock, flags);

        tmp = rx_mode | 0x2;

        SiS_W16(RxMacControl, tmp);
        SiS_W32(RxHashTable , mc_filter[0]);
        SiS_W32(RxHashTable + 4, mc_filter[1]);

        spin_unlock_irqrestore(&tp->lock, flags);
}

struct net_device_stats *
SiS190_get_stats(struct net_device *dev)
{
        struct sis190_private *tp = dev->priv;
        return &tp->stats;
}

static struct pci_driver sis190_pci_driver = {
        .name           = MODULENAME,
        .id_table       = sis190_pci_tbl,
        .probe          = SiS190_init_one,
        .remove         = SiS190_remove_one,
        .suspend        = NULL,
        .resume         = NULL,
};

static int __init
SiS190_init_module(void)
{
        return pci_module_init(&sis190_pci_driver);
}

static void __exit
SiS190_cleanup_module(void)
{
        pci_unregister_driver(&sis190_pci_driver);
}

module_init(SiS190_init_module);
module_exit(SiS190_cleanup_module);

<Prev in Thread] Current Thread [Next in Thread>