%!
%%BoundingBox: (atend)
%%Pages: (atend)
%%DocumentFonts: (atend)
%%EndComments
%
% FrameMaker PostScript Prolog 3.0, for use with FrameMaker 3.0
% Copyright (c) 1986,87,89,90,91 by Frame Technology Corporation.
% All rights reserved.
%
% Known Problems:
% Due to bugs in Transcript, the 'PS-Adobe-' is omitted from line 1
/FMversion (3.0) def
% Set up Color vs. Black-and-White
/FMPrintInColor systemdict /colorimage known
systemdict /currentcolortransfer known or def
% Uncomment this line to force b&w on color printer
% /FMPrintInColor false def
/FrameDict 295 dict def
systemdict /errordict known not {/errordict 10 dict def
errordict /rangecheck {stop} put} if
% The readline in 23.0 doesn't recognize cr's as nl's on AppleTalk
FrameDict /tmprangecheck errordict /rangecheck get put
errordict /rangecheck {FrameDict /bug true put} put
FrameDict /bug false put
mark
% Some PS machines read past the CR, so keep the following 3 lines together!
currentfile 5 string readline
00
0000000000
cleartomark
errordict /rangecheck FrameDict /tmprangecheck get put
FrameDict /bug get {
/readline {
/gstring exch def
/gfile exch def
/gindex 0 def
{
gfile read pop
dup 10 eq {exit} if
dup 13 eq {exit} if
gstring exch gindex exch put
/gindex gindex 1 add def
} loop
pop
gstring 0 gindex getinterval true
} def
} if
/FMVERSION {
FMversion ne {
/Times-Roman findfont 18 scalefont setfont
100 100 moveto
(FrameMaker version does not match postscript_prolog!)
dup =
show showpage
} if
} def
/FMLOCAL {
FrameDict begin
0 def
end
} def
/gstring FMLOCAL
/gfile FMLOCAL
/gindex FMLOCAL
/orgxfer FMLOCAL
/orgproc FMLOCAL
/organgle FMLOCAL
/orgfreq FMLOCAL
/yscale FMLOCAL
/xscale FMLOCAL
/manualfeed FMLOCAL
/paperheight FMLOCAL
/paperwidth FMLOCAL
/FMDOCUMENT {
array /FMfonts exch def
/#copies exch def
FrameDict begin
0 ne dup {setmanualfeed} if
/manualfeed exch def
/paperheight exch def
/paperwidth exch def
/yscale exch def
/xscale exch def
currenttransfer cvlit /orgxfer exch def
currentscreen cvlit /orgproc exch def
/organgle exch def /orgfreq exch def
setpapername
manualfeed {true} {papersize} ifelse
{manualpapersize} {false} ifelse
{desperatepapersize} if
end
} def
/pagesave FMLOCAL
/orgmatrix FMLOCAL
/landscape FMLOCAL
/FMBEGINPAGE {
FrameDict begin
/pagesave save def
3.86 setmiterlimit
/landscape exch 0 ne def
landscape {
90 rotate 0 exch neg translate pop
}
{pop pop}
ifelse
xscale yscale scale
/orgmatrix matrix def
gsave
} def
/FMENDPAGE {
grestore
pagesave restore
end
showpage
} def
/FMFONTDEFINE {
FrameDict begin
findfont
ReEncode
1 index exch
definefont
FMfonts 3 1 roll
put
end
} def
/FMFILLS {
FrameDict begin
array /fillvals exch def
end
} def
/FMFILL {
FrameDict begin
fillvals 3 1 roll put
end
} def
/FMNORMALIZEGRAPHICS {
newpath
0.0 0.0 moveto
1 setlinewidth
0 setlinecap
0 0 0 sethsbcolor
0 setgray
} bind def
/fx FMLOCAL
/fy FMLOCAL
/fh FMLOCAL
/fw FMLOCAL
/llx FMLOCAL
/lly FMLOCAL
/urx FMLOCAL
/ury FMLOCAL
/FMBEGINEPSF {
end
/FMEPSF save def
/showpage {} def
FMNORMALIZEGRAPHICS
[/fy /fx /fh /fw /ury /urx /lly /llx] {exch def} forall
fx fy translate
rotate
fw urx llx sub div fh ury lly sub div scale
llx neg lly neg translate
} bind def
/FMENDEPSF {
FMEPSF restore
FrameDict begin
} bind def
FrameDict begin
/setmanualfeed {
%%BeginFeature *ManualFeed True
statusdict /manualfeed true put
%%EndFeature
} def
/max {2 copy lt {exch} if pop} bind def
/min {2 copy gt {exch} if pop} bind def
/inch {72 mul} def
/pagedimen {
paperheight sub abs 16 lt exch
paperwidth sub abs 16 lt and
{/papername exch def} {pop} ifelse
} def
/papersizedict FMLOCAL
/setpapername {
/papersizedict 14 dict def
papersizedict begin
/papername /unknown def
/Letter 8.5 inch 11.0 inch pagedimen
/LetterSmall 7.68 inch 10.16 inch pagedimen
/Tabloid 11.0 inch 17.0 inch pagedimen
/Ledger 17.0 inch 11.0 inch pagedimen
/Legal 8.5 inch 14.0 inch pagedimen
/Statement 5.5 inch 8.5 inch pagedimen
/Executive 7.5 inch 10.0 inch pagedimen
/A3 11.69 inch 16.5 inch pagedimen
/A4 8.26 inch 11.69 inch pagedimen
/A4Small 7.47 inch 10.85 inch pagedimen
/B4 10.125 inch 14.33 inch pagedimen
/B5 7.16 inch 10.125 inch pagedimen
end
} def
/papersize {
papersizedict begin
/Letter {lettertray letter} def
/LetterSmall {lettertray lettersmall} def
/Tabloid {11x17tray 11x17} def
/Ledger {ledgertray ledger} def
/Legal {legaltray legal} def
/Statement {statementtray statement} def
/Executive {executivetray executive} def
/A3 {a3tray a3} def
/A4 {a4tray a4} def
/A4Small {a4tray a4small} def
/B4 {b4tray b4} def
/B5 {b5tray b5} def
/unknown {unknown} def
papersizedict dup papername known {papername} {/unknown} ifelse get
end
/FMdicttop countdictstack 1 add def
statusdict begin stopped end
countdictstack -1 FMdicttop {pop end} for
} def
/manualpapersize {
papersizedict begin
/Letter {letter} def
/LetterSmall {lettersmall} def
/Tabloid {11x17} def
/Ledger {ledger} def
/Legal {legal} def
/Statement {statement} def
/Executive {executive} def
/A3 {a3} def
/A4 {a4} def
/A4Small {a4small} def
/B4 {b4} def
/B5 {b5} def
/unknown {unknown} def
papersizedict dup papername known {papername} {/unknown} ifelse get
end
stopped
} def
/desperatepapersize {
statusdict /setpageparams known
{
paperwidth paperheight 0 1
statusdict begin
{setpageparams} stopped pop
end
} if
} def
/savematrix {
orgmatrix currentmatrix pop
} bind def
/restorematrix {
orgmatrix setmatrix
} bind def
/dmatrix matrix def
/dpi 72 0 dmatrix defaultmatrix dtransform
dup mul exch dup mul add sqrt def
/freq dpi 18.75 div 8 div round dup 0 eq {pop 1} if 8 mul dpi exch div def
/sangle 1 0 dmatrix defaultmatrix dtransform exch atan def
/DiacriticEncoding [
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
/.notdef /.notdef /.notdef /.notdef /space /exclam /quotedbl
/numbersign /dollar /percent /ampersand /quotesingle /parenleft
/parenright /asterisk /plus /comma /hyphen /period /slash /zero /one
/two /three /four /five /six /seven /eight /nine /colon /semicolon
/less /equal /greater /question /at /A /B /C /D /E /F /G /H /I /J /K
/L /M /N /O /P /Q /R /S /T /U /V /W /X /Y /Z /bracketleft /backslash
/bracketright /asciicircum /underscore /grave /a /b /c /d /e /f /g /h
/i /j /k /l /m /n /o /p /q /r /s /t /u /v /w /x /y /z /braceleft /bar
/braceright /asciitilde /.notdef /Adieresis /Aring /Ccedilla /Eacute
/Ntilde /Odieresis /Udieresis /aacute /agrave /acircumflex /adieresis
/atilde /aring /ccedilla /eacute /egrave /ecircumflex /edieresis
/iacute /igrave /icircumflex /idieresis /ntilde /oacute /ograve
/ocircumflex /odieresis /otilde /uacute /ugrave /ucircumflex
/udieresis /dagger /.notdef /cent /sterling /section /bullet
/paragraph /germandbls /registered /copyright /trademark /acute
/dieresis /.notdef /AE /Oslash /.notdef /.notdef /.notdef /.notdef
/yen /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
/ordfeminine /ordmasculine /.notdef /ae /oslash /questiondown
/exclamdown /logicalnot /.notdef /florin /.notdef /.notdef
/guillemotleft /guillemotright /ellipsis /.notdef /Agrave /Atilde
/Otilde /OE /oe /endash /emdash /quotedblleft /quotedblright
/quoteleft /quoteright /.notdef /.notdef /ydieresis /Ydieresis
/fraction /currency /guilsinglleft /guilsinglright /fi /fl /daggerdbl
/periodcentered /quotesinglbase /quotedblbase /perthousand
/Acircumflex /Ecircumflex /Aacute /Edieresis /Egrave /Iacute
/Icircumflex /Idieresis /Igrave /Oacute /Ocircumflex /.notdef /Ograve
/Uacute /Ucircumflex /Ugrave /dotlessi /circumflex /tilde /macron
/breve /dotaccent /ring /cedilla /hungarumlaut /ogonek /caron
] def
/ReEncode {
dup
length
dict begin
{
1 index /FID ne
{def}
{pop pop} ifelse
} forall
0 eq {/Encoding DiacriticEncoding def} if
currentdict
end
} bind def
/graymode true def
/bwidth FMLOCAL
/bpside FMLOCAL
/bstring FMLOCAL
/onbits FMLOCAL
/offbits FMLOCAL
/xindex FMLOCAL
/yindex FMLOCAL
/x FMLOCAL
/y FMLOCAL
/setpattern {
/bwidth exch def
/bpside exch def
/bstring exch def
/onbits 0 def /offbits 0 def
freq sangle landscape {90 add} if
{/y exch def
/x exch def
/xindex x 1 add 2 div bpside mul cvi def
/yindex y 1 add 2 div bpside mul cvi def
bstring yindex bwidth mul xindex 8 idiv add get
1 7 xindex 8 mod sub bitshift and 0 ne
{/onbits onbits 1 add def 1}
{/offbits offbits 1 add def 0}
ifelse
}
setscreen
{} settransfer
offbits offbits onbits add div FMsetgray
/graymode false def
} bind def
/grayness {
FMsetgray
graymode not {
/graymode true def
orgxfer cvx settransfer
orgfreq organgle orgproc cvx setscreen
} if
} bind def
/HUE FMLOCAL
/SAT FMLOCAL
/BRIGHT FMLOCAL
/Colors FMLOCAL
FMPrintInColor
{
/HUE 0 def
/SAT 0 def
/BRIGHT 0 def
% array of arrays Hue and Sat values for the separations [HUE BRIGHT]
/Colors
[[0 0 ] % black
[0 0 ] % white
[0.00 1.0] % red
[0.37 1.0] % green
[0.60 1.0] % blue
[0.50 1.0] % cyan
[0.83 1.0] % magenta
[0.16 1.0] % comment / yellow
] def
/BEGINBITMAPCOLOR {
BITMAPCOLOR} def
/BEGINBITMAPCOLORc {
BITMAPCOLORc} def
/BEGINBITMAPTRUECOLOR {
BITMAPTRUECOLOR } def
/BEGINBITMAPTRUECOLORc {
BITMAPTRUECOLORc } def
/K {
Colors exch get dup
0 get /HUE exch store
1 get /BRIGHT exch store
HUE 0 eq BRIGHT 0 eq and
{1.0 SAT sub setgray}
{HUE SAT BRIGHT sethsbcolor}
ifelse
} def
/FMsetgray {
/SAT exch 1.0 exch sub store
HUE 0 eq BRIGHT 0 eq and
{1.0 SAT sub setgray}
{HUE SAT BRIGHT sethsbcolor}
ifelse
} bind def
}
{
/BEGINBITMAPCOLOR {
BITMAPGRAY} def
/BEGINBITMAPCOLORc {
BITMAPGRAYc} def
/BEGINBITMAPTRUECOLOR {
BITMAPTRUEGRAY } def
/BEGINBITMAPTRUECOLORc {
BITMAPTRUEGRAYc } def
/FMsetgray {setgray} bind def
/K {
pop
} def
}
ifelse
/normalize {
transform round exch round exch itransform
} bind def
/dnormalize {
dtransform round exch round exch idtransform
} bind def
/lnormalize {
0 dtransform exch cvi 2 idiv 2 mul 1 add exch idtransform pop
} bind def
/H {
lnormalize setlinewidth
} bind def
/Z {
setlinecap
} bind def
/fillvals FMLOCAL
/X {
fillvals exch get
dup type /stringtype eq
{8 1 setpattern}
{grayness}
ifelse
} bind def
/V {
gsave eofill grestore
} bind def
/N {
stroke
} bind def
/M {newpath moveto} bind def
/E {lineto} bind def
/D {curveto} bind def
/O {closepath} bind def
/n FMLOCAL
/L {
/n exch def
newpath
normalize
moveto
2 1 n {pop normalize lineto} for
} bind def
/Y {
L
closepath
} bind def
/x1 FMLOCAL
/x2 FMLOCAL
/y1 FMLOCAL
/y2 FMLOCAL
/rad FMLOCAL
/R {
/y2 exch def
/x2 exch def
/y1 exch def
/x1 exch def
x1 y1
x2 y1
x2 y2
x1 y2
4 Y
} bind def
% The following commented out code did not work for tangent lines of zero
% length. The code following it was provided by Frame to patch this error.
%
%/RR {
% /rad exch def
% normalize
% /y2 exch def
% /x2 exch def
% normalize
% /y1 exch def
% /x1 exch def
% newpath
% x1 y1 rad add moveto
% x1 y2 x2 y2 rad arcto
% x2 y2 x2 y1 rad arcto
% x2 y1 x1 y1 rad arcto
% x1 y1 x1 y2 rad arcto
% closepath
% 16 {pop} repeat
% } bind def
/rarc
{rad
{arcto} stopped
} bind def
/RR {
/rad exch def
normalize
/y2 exch def
/x2 exch def
normalize
/y1 exch def
/x1 exch def
mark
newpath
x1 y1 rad add moveto
x1 y2 x2 y2 rarc
x2 y2 x2 y1 rarc
x2 y1 x1 y1 rarc
% x2 y1 x1 y1 rarc
x1 y1 x1 y2 rarc
closepath
cleartomark
} bind def
/C {
grestore
gsave
R
clip
} bind def
/FMpointsize FMLOCAL
/F {
FMfonts exch get
FMpointsize scalefont
setfont
} bind def
/Q {
/FMpointsize exch def
F
} bind def
/T {
moveto show
} bind def
/RF {
rotate
0 ne {-1 1 scale} if
} bind def
/TF {
gsave
moveto
RF
show
grestore
} bind def
/P {
moveto
0 32 3 2 roll widthshow
} bind def
/PF {
gsave
moveto
RF
0 32 3 2 roll widthshow
grestore
} bind def
/S {
moveto
0 exch ashow
} bind def
/SF {
gsave
moveto
RF
0 exch ashow
grestore
} bind def
/B {
moveto
0 32 4 2 roll 0 exch awidthshow
} bind def
/BF {
gsave
moveto
RF
0 32 4 2 roll 0 exch awidthshow
grestore
} bind def
/G {
gsave
newpath
normalize translate 0.0 0.0 moveto
dnormalize scale
0.0 0.0 1.0 5 3 roll arc
closepath fill
grestore
} bind def
/A {
gsave
savematrix
newpath
2 index 2 div add exch 3 index 2 div sub exch
normalize 2 index 2 div sub exch 3 index 2 div add exch
translate
scale
0.0 0.0 1.0 5 3 roll arc
restorematrix
stroke
grestore
} bind def
/x FMLOCAL
/y FMLOCAL
/w FMLOCAL
/h FMLOCAL
/xx FMLOCAL
/yy FMLOCAL
/ww FMLOCAL
/hh FMLOCAL
/FMsaveobject FMLOCAL
/FMoptop FMLOCAL
/FMdicttop FMLOCAL
/BEGINPRINTCODE {
/FMdicttop countdictstack 1 add def
/FMoptop count 4 sub def
/FMsaveobject save def
userdict begin
/showpage {} def
FMNORMALIZEGRAPHICS
3 index neg 3 index neg translate
} bind def
/ENDPRINTCODE {
count -1 FMoptop {pop pop} for
countdictstack -1 FMdicttop {pop end} for
FMsaveobject restore
} bind def
/gn {
0
{ 46 mul
cf read pop
32 sub
dup 46 lt {exit} if
46 sub add
} loop
add
} bind def
/str FMLOCAL
/cfs {
/str sl string def
0 1 sl 1 sub {str exch val put} for
str def
} bind def
/ic [
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0223
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0223
0
{0 hx} {1 hx} {2 hx} {3 hx} {4 hx} {5 hx} {6 hx} {7 hx} {8 hx} {9 hx}
{10 hx} {11 hx} {12 hx} {13 hx} {14 hx} {15 hx} {16 hx} {17 hx} {18 hx}
{19 hx} {gn hx} {0} {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12}
{13} {14} {15} {16} {17} {18} {19} {gn} {0 wh} {1 wh} {2 wh} {3 wh}
{4 wh} {5 wh} {6 wh} {7 wh} {8 wh} {9 wh} {10 wh} {11 wh} {12 wh}
{13 wh} {14 wh} {gn wh} {0 bl} {1 bl} {2 bl} {3 bl} {4 bl} {5 bl} {6 bl}
{7 bl} {8 bl} {9 bl} {10 bl} {11 bl} {12 bl} {13 bl} {14 bl} {gn bl}
{0 fl} {1 fl} {2 fl} {3 fl} {4 fl} {5 fl} {6 fl} {7 fl} {8 fl} {9 fl}
{10 fl} {11 fl} {12 fl} {13 fl} {14 fl} {gn fl}
] def
/sl FMLOCAL
/val FMLOCAL
/ws FMLOCAL
/im FMLOCAL
/bs FMLOCAL
/cs FMLOCAL
/len FMLOCAL
/pos FMLOCAL
/ms {
/sl exch def
/val 255 def
/ws cfs
/im cfs
/val 0 def
/bs cfs
/cs cfs
} bind def
400 ms
/cip {
is
0
cf cs readline pop
{ ic exch get exec
add
} forall
pop
/tot w 1 sub def
0 1 tot {
/indx exch def
/indxa is indx get def
/placer nredt indxa get def
/placeg ngreent indxa get def
/placeb nbluet indxa get def
cris indx placer 255 mul cvi put
cgis indx placeg 255 mul cvi put
cbis indx placeb 255 mul cvi put
} for pop cris
} bind def
/ip {
is
0
cf cs readline pop
{ ic exch get exec
add
} forall
pop
} bind def
/wh {
/len exch def
/pos exch def
ws 0 len getinterval im pos len getinterval copy pop
pos len
} bind def
/bl {
/len exch def
/pos exch def
bs 0 len getinterval im pos len getinterval copy pop
pos len
} bind def
/s1 1 string def
/fl {
/len exch def
/pos exch def
/val cf s1 readhexstring pop 0 get def
pos 1 pos len add 1 sub {im exch val put} for
pos len
} bind def
/hx {
3 copy getinterval
cf exch readhexstring pop pop
} bind def
/h FMLOCAL
/w FMLOCAL
/d FMLOCAL
/lb FMLOCAL
/bitmapsave FMLOCAL
/is FMLOCAL
/cf FMLOCAL
/wbytes {
dup
8 eq {pop} {1 eq {7 add 8 idiv} {3 add 4 idiv} ifelse} ifelse
} bind def
/BEGINBITMAPBWc {
1 {} COMMONBITMAPc
} bind def
/BEGINBITMAPGRAYc {
8 {} COMMONBITMAPc
} bind def
/BEGINBITMAP2BITc {
2 {} COMMONBITMAPc
} bind def
/COMMONBITMAPc {
/r exch def
/d exch def
gsave
translate rotate scale /h exch def /w exch def
/lb w d wbytes def
sl lb lt {lb ms} if
/bitmapsave save def
r
/is im 0 lb getinterval def
ws 0 lb getinterval is copy pop
/cf currentfile def
w h d [w 0 0 h neg 0 h]
{ip} image
bitmapsave restore
grestore
} bind def
/BEGINBITMAPBW {
1 {} COMMONBITMAP
} bind def
/BEGINBITMAPGRAY {
8 {} COMMONBITMAP
} bind def
/BEGINBITMAP2BIT {
2 {} COMMONBITMAP
} bind def
/COMMONBITMAP {
/r exch def
/d exch def
gsave
translate rotate scale /h exch def /w exch def
/bitmapsave save def
r
/is w d wbytes string def
/cf currentfile def
w h d [w 0 0 h neg 0 h]
{cf is readhexstring pop} image
bitmapsave restore
grestore
} bind def
/proc1 FMLOCAL
/proc2 FMLOCAL
/newproc FMLOCAL
/Fmcc {
/proc2 exch cvlit def
/proc1 exch cvlit def
/newproc proc1 length proc2 length add array def
newproc 0 proc1 putinterval
newproc proc1 length proc2 putinterval
newproc cvx
} bind def
/ngrayt 256 array def
/nredt 256 array def
/nbluet 256 array def
/ngreent 256 array def
/gryt FMLOCAL
/blut FMLOCAL
/grnt FMLOCAL
/redt FMLOCAL
/indx FMLOCAL
/cynu FMLOCAL
/magu FMLOCAL
/yelu FMLOCAL
/k FMLOCAL
/u FMLOCAL
/colorsetup {
currentcolortransfer
/gryt exch def
/blut exch def
/grnt exch def
/redt exch def
0 1 255 {
/indx exch def
/cynu 1 red indx get 255 div sub def
/magu 1 green indx get 255 div sub def
/yelu 1 blue indx get 255 div sub def
/k cynu magu min yelu min def
nredt indx 1 0 cynu max sub redt exec put
ngreent indx 1 0 magu max sub grnt exec put
nbluet indx 1 0 yelu max sub blut exec put
ngrayt indx 1 k sub gryt exec put
} for
} bind def
/tran FMLOCAL
/fakecolorsetup {
/tran 256 string def
0 1 255 {/indx exch def
tran indx
red indx get 77 mul
green indx get 151 mul
blue indx get 28 mul
add add 256 idiv put} for
currenttransfer
{255 mul cvi tran exch get 255.0 div}
exch Fmcc settransfer
} bind def
/BITMAPCOLOR {
/d 8 def
gsave
translate rotate scale /h exch def /w exch def
/bitmapsave save def
colorsetup
/is w d wbytes string def
/ris w d wbytes string def
/gis w d wbytes string def
/bis w d wbytes string def
/cf currentfile def
w h d [w 0 0 h neg 0 h]
{cf is readhexstring pop
/tot w 1 sub def
0 1 tot {
/indx exch def
/indxa is indx get def
/placer nredt indxa get def
/placeg ngreent indxa get def
/placeb nbluet indxa get def
ris indx placer 255 mul cvi put
gis indx placeg 255 mul cvi put
bis indx placeb 255 mul cvi put
} for pop ris}
{gis} {bis} true 3 colorimage
bitmapsave restore
grestore
} bind def
/BITMAPCOLORc {
/d 8 def
gsave
translate rotate scale /h exch def /w exch def
/lb w d wbytes def
sl lb lt {lb ms} if
/bitmapsave save def
colorsetup
/is im 0 lb getinterval def
/cris lb string def
/cgis lb string def
/cbis lb string def
ws 0 lb getinterval is copy pop
/cf currentfile def
w h d [w 0 0 h neg 0 h]
{cip} {cgis} {cbis} true 3 colorimage
bitmapsave restore
grestore
} bind def
/BITMAPTRUECOLORc {
gsave
translate rotate scale /h exch def /w exch def
/bitmapsave save def
/is w string def
ws 0 w getinterval is copy pop
/cf currentfile def
w h 8 [w 0 0 h neg 0 h]
{ip} {gip} {bip} true 3 colorimage
bitmapsave restore
grestore
} bind def
/BITMAPTRUECOLOR {
gsave
translate rotate scale /h exch def /w exch def
/bitmapsave save def
/is w string def
/gis w string def
/bis w string def
/cf currentfile def
w h 8 [w 0 0 h neg 0 h]
{ cf is readhexstring pop }
{ cf gis readhexstring pop }
{ cf bis readhexstring pop }
true 3 colorimage
bitmapsave restore
grestore
} bind def
/BITMAPTRUEGRAYc {
gsave
translate rotate scale /h exch def /w exch def
/bitmapsave save def
/is w string def
ws 0 w getinterval is copy pop
/cf currentfile def
w h 8 [w 0 0 h neg 0 h]
{ip gip bip w gray} image
bitmapsave restore
grestore
} bind def
/ww FMLOCAL
/r FMLOCAL
/g FMLOCAL
/b FMLOCAL
/i FMLOCAL
/gray {
/ww exch def
/b exch def
/g exch def
/r exch def
0 1 ww 1 sub { /i exch def r i get .299 mul g i get .587 mul
b i get .114 mul add add r i 3 -1 roll floor cvi put } for
r
} bind def
/BITMAPTRUEGRAY {
gsave
translate rotate scale /h exch def /w exch def
/bitmapsave save def
/is w string def
/gis w string def
/bis w string def
/cf currentfile def
w h 8 [w 0 0 h neg 0 h]
{ cf is readhexstring pop
cf gis readhexstring pop
cf bis readhexstring pop w gray} image
bitmapsave restore
grestore
} bind def
/BITMAPGRAY {
8 {fakecolorsetup} COMMONBITMAP
} bind def
/BITMAPGRAYc {
8 {fakecolorsetup} COMMONBITMAPc
} bind def
/ENDBITMAP {
} bind def
end
/ALDsave FMLOCAL
/ALDmatrix matrix def ALDmatrix currentmatrix pop
/StartALD {
/ALDsave save def
savematrix
ALDmatrix setmatrix
} bind def
/InALD {
restorematrix
} bind def
/DoneALD {
ALDsave restore
} bind def
%%EndProlog
%%BeginSetup
(3.0) FMVERSION
1 1 612 792 0 1 7 FMDOCUMENT
0 0 /Palatino-Roman FMFONTDEFINE
1 0 /Times-Roman FMFONTDEFINE
2 0 /Times-Bold FMFONTDEFINE
3 0 /Courier-Bold FMFONTDEFINE
32 FMFILLS
0 0 FMFILL
1 0.1 FMFILL
2 0.3 FMFILL
3 0.5 FMFILL
4 0.7 FMFILL
5 0.9 FMFILL
6 0.97 FMFILL
7 1 FMFILL
8 <0f1e3c78f0e1c387> FMFILL
9 <0f87c3e1f0783c1e> FMFILL
10 <cccccccccccccccc> FMFILL
11 <ffff0000ffff0000> FMFILL
12 <8142241818244281> FMFILL
13 <03060c183060c081> FMFILL
14 <8040201008040201> FMFILL
16 1 FMFILL
17 0.9 FMFILL
18 0.7 FMFILL
19 0.5 FMFILL
20 0.3 FMFILL
21 0.1 FMFILL
22 0.03 FMFILL
23 0 FMFILL
24 <f0e1c3870f1e3c78> FMFILL
25 <f0783c1e0f87c3e1> FMFILL
26 <3333333333333333> FMFILL
27 <0000ffff0000ffff> FMFILL
28 <7ebddbe7e7dbbd7e> FMFILL
29 <fcf9f3e7cf9f3f7e> FMFILL
30 <7fbfdfeff7fbfdfe> FMFILL
%%EndSetup
%%Page: "1" 1
%%BeginPaperSize: Letter
%%EndPaperSize
612 792 0 FMBEGINPAGE
0 8 Q
0 X
0 K
(Silicon Graphics Pr) 72 750.67 T
(oprietary) 139.57 750.67 T
72 54 540 54 2 L
0.25 H
2 Z
N
(UUIDs) 72 42.62 T
(October 7, 1993) 260.9 42.62 T
(1) 500 42.62 T
1 24 Q
(UUIDs) 271.36 704 T
2 12 Q
(W) 286.51 664 T
(ei Hu) 297.84 664 T
2 16 Q
(1.0 Intr) 72 621.33 T
(oduction) 127.23 621.33 T
1 12 Q
1.44 (UUIDs \050Univeral Unique Identi\336ers\051 are ubiquitous throughout the \336le system. Almost all the) 72 594 P
0.59 (objects of interest \050volumes, \336les, queues, etc.\051 have UUIDs. This document describes the inter-) 72 580 P
(faces to the UUID module and how UUIDs are generated.) 72 566 T
0.52 (UUIDs should be unique and cheap to generate. UUIDs will be stored on disk as part of our \336le) 72 540 P
0.31 (system metadata. Since we expect to eventually run xFS in a heterogeneous, distributed environ-) 72 526 P
-0.1 (ment, we should expect that UUIDs will be transmitted over the wire and stored in name services.) 72 512 P
(This also means that UUIDs must be extensible to non-SGI environments.) 72 498 T
-0.02 (UUIDs will be opaque. W) 72 472 P
-0.02 (e do not expect to derive, for example, the node that generated a UUID.) 196.53 472 P
0.55 (This design takes the approach that we should adopt the OSF/DCE \050which is the same as the X/) 72 446 P
0.57 (Open\051 UUID mechanism and make changes only where the existing mechanisms do not work. I) 72 432 P
1.47 (will further ar) 72 418 P
1.47 (gue that we can in fact adopt the DCE UUID mechanism as it currently stands.) 141.34 418 P
(However) 72 404 T
(, 2 alternatives are also presented as fallbacks.) 115.48 404 T
2 14 Q
(1.1 Interface) 72 370.67 T
1 12 Q
0.02 (A UUID is a 128 bit quantity whose internal structure is not exposed. The following are the oper-) 72 344 P
(ations that can be performed on UUIDs:) 72 330 T
3 F
(\245) 72 310 T
1 F
(uuid_create - create a new UUID) 85.75 310 T
3 F
(\245) 72 290 T
1 F
0.17 (uuid_create_nil - create a nil UUID. A nil UUID is a distinguished UUID whose bits are all 0.) 85.75 290 P
1.25 (For debugging purposes, we will rede\336ne the nil UUID to be some distinguished value and) 85.75 276 P
(check to make sure that we never get an UUID containing all zeroes.) 85.75 262 T
3 F
(\245) 72 242 T
1 F
(uuid_to_string - converts a UUID from its internal format into a string format) 85.75 242 T
3 F
(\245) 72 222 T
1 F
(uuid_from_string - converts a UUID in string format into its internal format) 85.75 222 T
3 F
(\245) 72 202 T
1 F
(uuid_equal - compares 2 UUIDs) 85.75 202 T
3 F
(\245) 72 182 T
1 F
(uuid_is_nil - returns true if uuid is nil) 85.75 182 T
3 F
(\245) 72 162 T
1 F
(uuid_compare - lexically compares 2 UUIDs) 85.75 162 T
3 F
(\245) 72 142 T
1 F
(uuid_hash - returns an unsigned32 hashed value for a UUID) 85.75 142 T
1.35 (Note that these are exactly the UUID operations as de\336ned by OSF/DCE. This set of routines) 72 116 P
(appear to be adequate to our needs and we should adopt them as is.) 72 102 T
FMENDPAGE
%%EndPage: "1" 2
%%Page: "2" 2
612 792 0 FMBEGINPAGE
0 8 Q
0 X
0 K
(Silicon Graphics Pr) 72 750.67 T
(oprietary) 139.57 750.67 T
72 54 540 54 2 L
0.25 H
2 Z
N
(UUIDs) 72 42.62 T
(October 7, 1993) 260.9 42.62 T
(2) 500 42.62 T
2 14 Q
(1.2 DCE UUIDs) 72 710.67 T
1 12 Q
-0.11 (UUIDs derive their uniqueness from a space and a time component. The space component is typi-) 72 684 P
1.49 (cally some hardware-based serial number and the time component is derived from the current) 72 670 P
1.12 (time. T) 72 656 P
1.12 (o understand how we will generate SGI UUIDs, we will \336rst review what DCE UUIDs) 106.93 656 P
(look like.) 72 642 T
-0.08 (DCE knows about three variants of UUIDs. V) 72 616 P
-0.08 (ariant 0 was the Apollo NCS UUID, V) 291.29 616 P
-0.08 (ariant 1 is the) 475.28 616 P
-0.11 (DCE UUID, and V) 72 602 P
-0.11 (ariant 2 is de\336ned by Microsoft. The 3 MSB of octet 8 contains the variant. All) 162.26 602 P
-0.26 (of these UUIDs are 128 bits long and have the same record structure, this is signi\336cant as it allows) 72 588 P
0.31 (the integer sub\336elds of these UUIDs to be byteswapped the same way when transmitted over the) 72 574 P
(network.) 72 560 T
(The following is the layout of DCE \050variant 1\051 UUIDs:) 72 534 T
(The node address provides space uniqueness. It is the 48-bit IEEE 802 address.) 72 300 T
(The 60 bit time is the number of 100 nanosecond intervals since 15 October 1582 \050date of Grego-) 72 274 T
3.95 (rian reform to the Christian calendar) 72 260 P
3.95 (.\051. This is split into 3 \336elds \050an unsigned32 and 2) 265.95 260 P
(unsigned16s\051. At 60 bits, the time \336eld will roll-over at approximately 3400 AD.) 72 246 T
0.62 (The \322res\323 \0502 bit\051 \336eld determines the type of the UUID \050NCS, DCE, Microsoft, etc.\051. The clock) 72 220 P
0.4 (sequence is used to augment the clock so that we would still generate unique timestamps even if) 72 206 P
-0.22 (we crashed or if the clock did not advance fast enough. The 4 bit version \336eld captures the version) 72 192 P
1.83 (of DCE UUID; currently there\325) 72 178 P
1.83 (s the DCE version and the DCE Security version that imbeds) 229.21 178 P
(POSIX UIDs.) 72 164 T
2 14 Q
(1.3 Generating a DCE UUID) 72 130.67 T
1 12 Q
-0.2 (The node address and time are obtained from the system by conventional means. Setting the clock) 72 104 P
(sequence number is more involved:) 72 90 T
126 459 522 495 R
7 X
V
0.5 H
0 X
N
261 495 261 459 2 L
N
333 495 333 459 2 L
N
(time \05060 bits\051) 351 477 T
(node address \05048 bits\051) 135 477 T
315 495 315 459 2 L
N
279 495 279 459 2 L
N
288 495 288 459 2 L
N
207 360 396 396 R
N
261 459 207 396 2 L
N
333 459 396 396 2 L
N
360 396 360 360 2 L
N
288 396 288 360 2 L
N
315 396 315 360 2 L
N
(clk seq lo) 216 378 T
(\0508 bits\051) 216 366 T
(clk seq) 324 378 T
(hi \0506\051) 324.69 362.6 T
(version) 369 378 T
(res) 288 378 T
(\0504\051) 369 366 T
(\0502\051) 288 366 T
FMENDPAGE
%%EndPage: "2" 3
%%Page: "3" 3
612 792 0 FMBEGINPAGE
0 8 Q
0 X
0 K
(Silicon Graphics Pr) 72 750.67 T
(oprietary) 139.57 750.67 T
72 54 540 54 2 L
0.25 H
2 Z
N
(UUIDs) 72 42.62 T
(October 7, 1993) 260.9 42.62 T
(3) 500 42.62 T
1 12 Q
1.34 (Whenever the system is rebooted, we can either: 1\051 increment the clock sequence number last) 72 712 P
0.15 (used if it\325) 72 698 P
0.15 (s saved in nonvolatile storage, or 2\051 initialize it to a random number) 117.62 698 P
0.15 (. W) 444.26 698 P
0.15 (e need to do this) 460.77 698 P
0.82 (because we couldn\325) 72 684 P
0.82 (t tell what the last time that was used to generate UUIDs. xFS will save the) 168 684 P
(last sequence number used on disk.) 72 670 T
0.62 (Note that initializing the clock sequence number to a random value has the secondary bene\336t of) 72 644 P
(guarding against duplicate node addresses.) 72 630 T
0.81 (In addition, when generating UUIDs, the clock sequence number must be incremented \050modulo) 72 604 P
0.16 (16,384\051 if the UUID generator detects that time has gone backwards T) 72 590 P
0.16 (o do this, the UUID gener-) 410.64 590 P
(ator keeps the last time used to generate UUIDs in core.) 72 576 T
0.03 (T) 72 550 P
0.03 (o allow parallelism when there are multiple CPUs, we will allocate allocate a dif) 78.49 550 P
0.03 (ferent sequence) 465.05 550 P
0.4 (number to each CPU and then allow them to independently generate their own timestamps with-) 72 536 P
(out having to lock a global datastructure.) 72 522 T
1.53 (If UUIDs are created faster than the clock resolution, then the system would just increment a) 72 496 P
-0.05 (counter and add that to the low order bits of the time. This counter would be cleared the next time) 72 482 P
-0.1 (that the clock advances. Since reading the clock is a fairly expensive operation, we will likely just) 72 468 P
(increment the counter until we\325ve consumed about a second\325) 72 454 T
(s worth of bits.) 363.12 454 T
2 14 Q
(1.4 DCE UUIDs ar) 72 394.67 T
(e Suf\336cient) 187.17 394.67 T
1 12 Q
0.92 (I believe that we should just use DCE UUIDs as de\336ned, including the reliance upon the IEEE) 72 368 P
(802 address. This has several advantages:) 72 354 T
3 F
(\245) 72 334 T
1 F
(W) 85.75 334 T
(e don\325) 96.11 334 T
(t reinvent the wheel.) 126.2 334 T
3 F
(\245) 72 314 T
1 F
3.17 (The algorithm has good performance. Based upon prior experience, the only bottleneck) 85.75 314 P
-0.09 (appears to be the gettimeofday\050\051 system call that gets the current time. W) 85.75 300 P
-0.09 (e can reduce it further) 435.13 300 P
-0.22 (by incrementing the low order bits of the time value and only reading the system time when the) 85.75 286 P
(counter is close to over\337owing.) 85.75 272 T
3 F
(\245) 72 252 T
1 F
0.31 (W) 85.75 252 P
0.31 (e are compatible with DCE UUIDs. Thus, programs that display) 96.11 252 P
0.31 (, compare, or transmit DCE) 406.2 252 P
0.46 (UUIDs will be able to transparently handle our UUIDs also. For example, our UUIDs will be) 85.75 238 P
(automatically byteswapped correctly when transmitted via DCE RPC.) 85.75 224 T
0.58 (The primary concern about DCE UUIDs has been that the IEEE 802 addresses are not unique. I) 72 198 P
(have done a bit of investigation on this.) 72 184 T
0.4 (For low end SGI machines, the IEEE 802 numbers are now unique. ASD manufacturing keeps a) 72 158 P
0.43 (database of numbers that have been assigned and rejects duplicates. There are a few ESD option) 72 144 P
(boards which do not go through this process; I\325m in the process of \336nding out what they do.) 72 130 T
0.95 (Note that because of the way sequence numbers are randomly initialized, even the existence of) 72 104 P
(duplicate IEEE 802 addresses is unlikely to cause a problem.) 72 90 T
FMENDPAGE
%%EndPage: "3" 4
%%Page: "4" 4
612 792 0 FMBEGINPAGE
0 8 Q
0 X
0 K
(Silicon Graphics Pr) 72 750.67 T
(oprietary) 139.57 750.67 T
72 54 540 54 2 L
0.25 H
2 Z
N
(UUIDs) 72 42.62 T
(October 7, 1993) 260.9 42.62 T
(4) 500 42.62 T
1 12 Q
0.62 (Note that since we do not map UUIDs back to their IEEE 802 addresses, swapping Ethernet \050or) 72 712 P
(FDDI\051 boards across machines does not cause a problem for UUID generation.) 72 698 T
2 14 Q
(1.5 Alternate Node Addr) 72 664.67 T
(ess) 222.92 664.67 T
1 12 Q
-0.12 (W) 72 638 P
-0.12 (e had considered using the 32 bit sysinfo serial number as a basis for generating a node address.) 82.36 638 P
-0.29 (This does not appear to be a good alternative because on all platforms other than Everests, the sys-) 72 624 P
0.98 (info is derived from the IEEE 802 address. Furthermore, it\325) 72 610 P
0.98 (s not clear that the chassis numbers) 364.92 610 P
0.74 (\050from which Everest sysid numbers are derived\051 are inherently any more unique than IEEE 802) 72 596 P
(addresses. Thus, I think we should just rely on the IEEE 802 address as is.) 72 582 T
0.68 (If we decide not to go with IEEE 802 addresses, then we must make sure that our UUIDs don\325) 72 556 P
0.68 (t) 536.67 556 P
0.55 (collide with DCE UUIDs. Otherwise, we might have an SGI UUID that has the same value as a) 72 542 P
0.29 (DCE UUID and be very confused. \050This might happen, for example, if we exported our volumes) 72 528 P
(into a DCE directory service.\051 There are a couple of ways to do this:) 72 514 T
2 F
(1.5.1 Reserve a Block of IEEE Addr) 72 482 T
(esses) 258.68 482 T
1 F
0.43 (I have checked with the IEEE and con\336rmed that, for $1000, we can get our own block of IEEE) 72 456 P
0.39 (802 addresses. They come in 24 bit chunks. IEEE will give us a block of numbers by generating) 72 442 P
-0.1 (random numbers for the upper 24 bits. W) 72 428 P
-0.1 (e are then free to assign the lower 24 bits as we like. Our) 268.86 428 P
0.12 (node address would therefore consist of the 24 bit number that is uniquely assigned to SGI plus a) 72 414 P
1.4 (low order 24 bits that\325) 72 400 P
1.4 (s derived from the machine serial number) 183.53 400 P
1.4 (. This will guarantee that SGI) 391.1 400 P
(UUIDs will not collide with any DCE UUIDs.) 72 386 T
-0.09 (This scheme has the drawback that we can only use 24 bits for our serial number) 72 360 P
-0.09 (. \05024 bits is about) 457.39 360 P
(16 million.\051) 72 346 T
-0.21 (As stated earlier) 72 320 P
-0.21 (, any scheme that relies upon a machine serial number is currently only applicable) 149.03 320 P
(to Everests.) 72 306 T
2 F
(1.5.2 Use Differ) 72 274 T
(ent V) 154.05 274 T
(ersion Number) 180.59 274 T
1 F
1.04 (I do not advocate using this approach. It is captured here if we decide that any of the previous) 72 248 P
(approaches are not workable.) 72 234 T
1.66 (The other way to dif) 72 208 P
1.66 (ferentiate SGI UUIDs from DCE UUIDs is to make SGI UUIDs a DCE) 176.35 208 P
0.08 (UUID \050i.e., variant 1 UUID\051 with a version number of \3241) 72 194 P
0.08 (100\325 \05012 decimal\051. This is not one of the) 345.82 194 P
0.39 (versions currently in use. W) 72 180 P
0.39 (e should also let OSF know that we are picking this value to prevent) 207.5 180 P
(con\337icts. Once we do this, we are free to assign all of the 48 bits in any manner we choose.) 72 166 T
(The 48 bit node address will be assigned as follows:) 72 140 T
3 F
(\245) 72 120 T
1 F
1.03 (6 bits name domain identi\336er) 85.75 120 P
1.03 (. W) 229.8 120 P
1.03 (e woudl split the world up into separate name domains and) 247.19 120 P
0.25 (select one agency to distribute company identi\336ers for its domain. SGI, for example, might be) 85.75 106 P
-0.22 (the agent that distributes company identi\336ers for all the companies in California. Having multi-) 85.75 92 P
(ple domains allows multiple agents to independently distribute identifers without con\337ict.) 85.75 78 T
FMENDPAGE
%%EndPage: "4" 5
%%Page: "5" 5
612 792 0 FMBEGINPAGE
0 8 Q
0 X
0 K
(Silicon Graphics Pr) 72 750.67 T
(oprietary) 139.57 750.67 T
72 54 540 54 2 L
0.25 H
2 Z
N
(UUIDs) 72 42.62 T
(October 7, 1993) 260.9 42.62 T
(5) 500 42.62 T
3 12 Q
(\245) 72 712 T
1 F
-0.23 (12 bits company identi\336er) 85.75 712 P
-0.23 (. This identi\336es the company - e.g., SGI. This gives us 4K companies) 209.99 712 P
2.08 (within each naming authority) 85.75 698 P
2.08 (. Note that locations with a high concentration of companies) 232.13 698 P
(might be divided into multipl name domains.) 85.75 684 T
3 F
(\245) 72 664 T
1 F
0.15 (30 bits vendor) 85.75 664 P
0.15 (-speci\336c identi\336er) 154.43 664 P
0.15 (. How this \336eld is assigned is up to the vendor) 240.87 664 P
0.15 (. SGI might, for) 463.26 664 P
(example, use machine serial number) 85.75 650 T
(.) 259.96 650 T
1.24 (These \336elds are hierarchically assigned so that within each level, unique bits can be generated) 72 624 P
-0.24 (without con\337ict. SGI can, once it has its assigned 6 bit naming authority and 12 bit company iden-) 72 610 P
2.06 (ti\336er) 72 596 P
2.06 (, generate unique 48-bit \324node addresses\325 just by assigning unique 30-bit numbers to its) 94.18 596 P
(machines.) 72 582 T
2 F
(1.5.3 Compatibility) 72 550 T
1 F
-0.04 (Making the SGI UUID a new version of the DCE UUID that uses an alternate means of assigning) 72 524 P
0.03 (the 48 bit node address is the next best thing to using DCE UUIDs directly) 72 510 P
0.03 (. W) 430.13 510 P
0.03 (e don\325) 446.52 510 P
0.03 (t reinvent the) 476.64 510 P
(wheel, and SGI UUIDs can still be transparently handled by utilities that expect DCE UUIDs.) 72 496 T
2 14 Q
(1.6 Issues) 72 462.67 T
1 12 Q
-0.08 (The only outstanding issue is compatibility with Lego UUIDs. Lego currently uses another UUID) 72 436 P
(format and appears to use a sub\336eld for object class information.) 72 422 T
FMENDPAGE
%%EndPage: "5" 6
%%Trailer
%%BoundingBox: 0 0 612 792
%%Pages: 5 1
%%DocumentFonts: Palatino-Roman
%%+ Times-Roman
%%+ Times-Bold
%%+ Courier-Bold