%!PS-Adobe-3.0
%%BoundingBox: (atend)
%%Pages: (atend)
%%PageOrder: (atend)
%%DocumentFonts: (atend)
%%Creator: Frame 5.0
%%DocumentData: Clean7Bit
%%EndComments
%%BeginProlog
%
% Frame ps_prolog 5.0, for use with Frame 5.0 products
% This ps_prolog file is Copyright (c) 1986-1995 Frame Technology
% Corporation. All rights reserved. This ps_prolog file may be
% freely copied and distributed in conjunction with documents created
% using FrameMaker, FrameMaker/SGML and FrameViewer as long as this
% copyright notice is preserved.
%
% FrameMaker users specify the proper paper size for each print job in the
% "Print" dialog's "Printer Paper Size" "Width" and "Height~ fields. If the
% printer that the PS file is sent to does not support the requested paper
% size, or if there is no paper tray of the proper size currently installed,
% then the job will not be printed. The following flag, if set to true, will
% cause the job to print on the default paper in such cases.
/FMAllowPaperSizeMismatch false def
%
% Frame products normally print colors as their true color on a color printer
% or as shades of gray, based on luminance, on a black-and white printer. The
% following flag, if set to true, forces all non-white colors to print as pure
% black. This has no effect on bitmap images.
/FMPrintAllColorsAsBlack false def
%
% Frame products can either set their own line screens or use a printer's
% default settings. Three flags below control this separately for no
% separations, spot separations and process separations. If a flag
% is true, then the default printer settings will not be changed. If it is
% false, Frame products will use their own settings from a table based on
% the printer's resolution.
/FMUseDefaultNoSeparationScreen true def
/FMUseDefaultSpotSeparationScreen true def
/FMUseDefaultProcessSeparationScreen false def
%
% For any given PostScript printer resolution, Frame products have two sets of
% screen angles and frequencies for printing process separations, which are
% recomended by Adobe. The following variable chooses the higher frequencies
% when set to true or the lower frequencies when set to false. This is only
% effective if the appropriate FMUseDefault...SeparationScreen flag is false.
/FMUseHighFrequencyScreens true def
%
% The following is a set of predefined optimal frequencies and angles for various
% common dpi settings. This is taken from "Advances in Color Separation Using
% PostScript Software Technology," from Adobe Systems (3/13/89 P.N. LPS 0043)
% and corrolated with information which is in various PPD (4.0) files.
%
% The "dpiranges" figure is the minimum dots per inch device resolution which
% can support this setting. The "low" and "high" values are controlled by the
% setting of the FMUseHighFrequencyScreens flag above. The "TDot" flags control
% the use of the "Yellow Triple Dot" feature whereby the frequency id divided by
% three, but the dot function is "trippled" giving a block of 3x3 dots per cell.
%
% PatFreq is a compromise pattern frequency for ps Level 2 printers which is close
% to the ideal WYSIWYG pattern frequency of 9 repetitions/inch but does not beat
% (too badly) against the screen frequencies of any separations for that DPI.
/dpiranges [ 2540 2400 1693 1270 1200 635 600 0 ] def
/CMLowFreqs [ 100.402 94.8683 89.2289 100.402 94.8683 66.9349 63.2456 47.4342 ] def
/YLowFreqs [ 95.25 90.0 84.65 95.25 90.0 70.5556 66.6667 50.0 ] def
/KLowFreqs [ 89.8026 84.8528 79.8088 89.8026 84.8528 74.8355 70.7107 53.033 ] def
/CLowAngles [ 71.5651 71.5651 71.5651 71.5651 71.5651 71.5651 71.5651 71.5651 ] def
/MLowAngles [ 18.4349 18.4349 18.4349 18.4349 18.4349 18.4349 18.4349 18.4349 ] def
/YLowTDot [ true true false true true false false false ] def
/CMHighFreqs [ 133.87 126.491 133.843 108.503 102.523 100.402 94.8683 63.2456 ] def
/YHighFreqs [ 127.0 120.0 126.975 115.455 109.091 95.25 90.0 60.0 ] def
/KHighFreqs [ 119.737 113.137 119.713 128.289 121.218 89.8026 84.8528 63.6395 ] def
/CHighAngles [ 71.5651 71.5651 71.5651 70.0169 70.0169 71.5651 71.5651 71.5651 ] def
/MHighAngles [ 18.4349 18.4349 18.4349 19.9831 19.9831 18.4349 18.4349 18.4349 ] def
/YHighTDot [ false false true false false true true false ] def
/PatFreq [ 10.5833 10.0 9.4055 10.5833 10.0 10.5833 10.0 9.375 ] def
%
% PostScript Level 2 printers contain an "Accurate Screens" feature which can
% improve process separation rendering at the expense of compute time. This
% flag is ignored by PostScript Level 1 printers.
/FMUseAcccurateScreens true def
%
% The following PostScript procedure defines the spot function that Frame
% products will use for process separations. You may un-comment-out one of
% the alternative functions below, or use your own.
%
% Dot function
/FMSpotFunction {abs exch abs 2 copy add 1 gt
{1 sub dup mul exch 1 sub dup mul add 1 sub }
{dup mul exch dup mul add 1 exch sub }ifelse } def
%
% Line function
% /FMSpotFunction { pop } def
%
% Elipse function
% /FMSpotFunction { dup 5 mul 8 div mul exch dup mul exch add
% sqrt 1 exch sub } def
%
%
/FMversion (5.0) def
/fMLevel1 /languagelevel where {pop languagelevel} {1} ifelse 2 lt def
/FMPColor
fMLevel1 {
false
/colorimage where {pop pop true} if
} {
true
} ifelse
def
/FrameDict 400 dict def
systemdict /errordict known not {/errordict 10 dict def
errordict /rangecheck {stop} put} if
% The readline in PS 23.0 doesn't recognize cr's as nl's on AppleTalk
FrameDict /tmprangecheck errordict /rangecheck get put
errordict /rangecheck {FrameDict /bug true put} put
FrameDict /bug false put
mark
% Some PS machines read past the CR, so keep the following 3 lines together!
currentfile 5 string readline
00
0000000000
cleartomark
errordict /rangecheck FrameDict /tmprangecheck get put
FrameDict /bug get {
/readline {
/gstring exch def
/gfile exch def
/gindex 0 def
{
gfile read pop
dup 10 eq {exit} if
dup 13 eq {exit} if
gstring exch gindex exch put
/gindex gindex 1 add def
} loop
pop
gstring 0 gindex getinterval true
} bind def
} if
/FMshowpage /showpage load def
/FMquit /quit load def
/FMFAILURE {
dup = flush
FMshowpage
/Helvetica findfont 12 scalefont setfont
72 200 moveto show
72 220 moveto show
FMshowpage
FMquit
} def
/FMVERSION {
FMversion ne {
(Frame product version does not match ps_prolog! Check installation;)
(also check ~/fminit and ./fminit for old versions) FMFAILURE
} if
} def
/FMBADEPSF {
(Adobe's PostScript Language Reference Manual, 2nd Edition, section H.2.4)
(says your EPS file is not valid, as it calls X )
dup dup (X) search pop exch pop exch pop length
5 -1 roll
putinterval
FMFAILURE
} def
/fmConcatProcs
{
/proc2 exch cvlit def/proc1 exch cvlit def/newproc proc1 length proc2 length add array def
newproc 0 proc1 putinterval newproc proc1 length proc2 putinterval newproc cvx
}def
FrameDict begin [
/ALDsave
/FMdicttop
/FMoptop
/FMpointsize
/FMsaveobject
/b
/bitmapsave
/blut
/bpside
/bs
/bstring
/bwidth
/c
/cf
/cs
/cynu
/depth
/edown
/fh
/fillvals
/fw
/fx
/fy
/g
/gfile
/gindex
/grnt
/gryt
/gstring
/height
/hh
/i
/im
/indx
/is
/k
/kk
/landscape
/lb
/len
/llx
/lly
/m
/magu
/manualfeed
/n
/offbits
/onbits
/organgle
/orgbangle
/orgbfreq
/orgbproc
/orgbxfer
/orgfreq
/orggangle
/orggfreq
/orggproc
/orggxfer
/orgmatrix
/orgproc
/orgrangle
/orgrfreq
/orgrproc
/orgrxfer
/orgxfer
/pagesave
/paperheight
/papersizedict
/paperwidth
/pos
/pwid
/r
/rad
/redt
/sl
/str
/tran
/u
/urx
/ury
/val
/width
/width
/ws
/ww
/x
/x1
/x2
/xindex
/xpoint
/xscale
/xx
/y
/y1
/y2
/yelu
/yindex
/ypoint
/yscale
/yy
] { 0 def } forall
/FmBD {bind def} bind def
systemdict /pdfmark known {
/fMAcrobat true def
/FmPD /pdfmark load def
/FmPT /show load def
currentdistillerparams /CoreDistVersion get 2000 ge {
/FmPD2 /pdfmark load def
/FmPA { mark exch /Dest exch 5 3 roll
/View [ /XYZ null 6 -2 roll FmDC exch pop null] /DEST FmPD
}FmBD
} {
/FmPD2 /cleartomark load def
/FmPA {pop pop pop}FmBD
} ifelse
} {
/fMAcrobat false def
/FmPD /cleartomark load def
/FmPD2 /cleartomark load def
/FmPT /pop load def
/FmPA {pop pop pop}FmBD
} ifelse
/FmDC {
transform fMDefaultMatrix itransform cvi exch cvi exch
}FmBD
/FmBx {
dup 3 index lt {3 1 roll exch} if
1 index 4 index lt {4 -1 roll 3 1 roll exch 4 1 roll} if
}FmBD
/FMnone 0 def
/FMcyan 1 def
/FMmagenta 2 def
/FMyellow 3 def
/FMblack 4 def
/FMcustom 5 def
/fMNegative false def
/FrameSepIs FMnone def
/FrameSepBlack 0 def
/FrameSepYellow 0 def
/FrameSepMagenta 0 def
/FrameSepCyan 0 def
/FrameSepRed 1 def
/FrameSepGreen 1 def
/FrameSepBlue 1 def
/FrameCurGray 1 def
/FrameCurPat null def
/FrameCurColors [ 0 0 0 1 0 0 0 ] def
/FrameColorEpsilon .001 def
/eqepsilon {
sub dup 0 lt {neg} if
FrameColorEpsilon le
} bind def
/FrameCmpColorsCMYK {
2 copy 0 get exch 0 get eqepsilon {
2 copy 1 get exch 1 get eqepsilon {
2 copy 2 get exch 2 get eqepsilon {
3 get exch 3 get eqepsilon
} {pop pop false} ifelse
}{pop pop false} ifelse
} {pop pop false} ifelse
} bind def
/FrameCmpColorsRGB {
2 copy 4 get exch 0 get eqepsilon {
2 copy 5 get exch 1 get eqepsilon {
6 get exch 2 get eqepsilon
}{pop pop false} ifelse
} {pop pop false} ifelse
} bind def
/RGBtoCMYK {
1 exch sub
3 1 roll
1 exch sub
3 1 roll
1 exch sub
3 1 roll
3 copy
2 copy
le { pop } { exch pop } ifelse
2 copy
le { pop } { exch pop } ifelse
dup dup dup
6 1 roll
4 1 roll
7 1 roll
sub
6 1 roll
sub
5 1 roll
sub
4 1 roll
} bind def
/CMYKtoRGB {
dup dup 4 -1 roll add
5 1 roll 3 -1 roll add
4 1 roll add
1 exch sub dup 0 lt {pop 0} if 3 1 roll
1 exch sub dup 0 lt {pop 0} if exch
1 exch sub dup 0 lt {pop 0} if exch
} bind def
/FrameSepInit {
1.0 RealSetgray
} bind def
/FrameSetSepColor {
/FrameSepBlue exch def
/FrameSepGreen exch def
/FrameSepRed exch def
/FrameSepBlack exch def
/FrameSepYellow exch def
/FrameSepMagenta exch def
/FrameSepCyan exch def
/FrameSepIs FMcustom def
setCurrentScreen
} bind def
/FrameSetCyan {
/FrameSepBlue 1.0 def
/FrameSepGreen 1.0 def
/FrameSepRed 0.0 def
/FrameSepBlack 0.0 def
/FrameSepYellow 0.0 def
/FrameSepMagenta 0.0 def
/FrameSepCyan 1.0 def
/FrameSepIs FMcyan def
setCurrentScreen
} bind def
/FrameSetMagenta {
/FrameSepBlue 1.0 def
/FrameSepGreen 0.0 def
/FrameSepRed 1.0 def
/FrameSepBlack 0.0 def
/FrameSepYellow 0.0 def
/FrameSepMagenta 1.0 def
/FrameSepCyan 0.0 def
/FrameSepIs FMmagenta def
setCurrentScreen
} bind def
/FrameSetYellow {
/FrameSepBlue 0.0 def
/FrameSepGreen 1.0 def
/FrameSepRed 1.0 def
/FrameSepBlack 0.0 def
/FrameSepYellow 1.0 def
/FrameSepMagenta 0.0 def
/FrameSepCyan 0.0 def
/FrameSepIs FMyellow def
setCurrentScreen
} bind def
/FrameSetBlack {
/FrameSepBlue 0.0 def
/FrameSepGreen 0.0 def
/FrameSepRed 0.0 def
/FrameSepBlack 1.0 def
/FrameSepYellow 0.0 def
/FrameSepMagenta 0.0 def
/FrameSepCyan 0.0 def
/FrameSepIs FMblack def
setCurrentScreen
} bind def
/FrameNoSep {
/FrameSepIs FMnone def
setCurrentScreen
} bind def
/FrameSetSepColors {
FrameDict begin
[ exch 1 add 1 roll ]
/FrameSepColors
exch def end
} bind def
/FrameColorInSepListCMYK {
FrameSepColors {
exch dup 3 -1 roll
FrameCmpColorsCMYK
{ pop true exit } if
} forall
dup true ne {pop false} if
} bind def
/FrameColorInSepListRGB {
FrameSepColors {
exch dup 3 -1 roll
FrameCmpColorsRGB
{ pop true exit } if
} forall
dup true ne {pop false} if
} bind def
/RealSetgray /setgray load def
/RealSetrgbcolor /setrgbcolor load def
/RealSethsbcolor /sethsbcolor load def
end
/setgray {
FrameDict begin
FrameSepIs FMnone eq
{ RealSetgray }
{
FrameSepIs FMblack eq
{ RealSetgray }
{ FrameSepIs FMcustom eq
FrameSepRed 0 eq and
FrameSepGreen 0 eq and
FrameSepBlue 0 eq and {
RealSetgray
} {
1 RealSetgray pop
} ifelse
} ifelse
} ifelse
end
} bind def
/setrgbcolor {
FrameDict begin
FrameSepIs FMnone eq
{ RealSetrgbcolor }
{
3 copy [ 4 1 roll ]
FrameColorInSepListRGB
{
FrameSepBlue eq exch
FrameSepGreen eq and exch
FrameSepRed eq and
{ 0 } { 1 } ifelse
}
{
FMPColor {
RealSetrgbcolor
currentcmykcolor
} {
RGBtoCMYK
} ifelse
FrameSepIs FMblack eq
{1.0 exch sub 4 1 roll pop pop pop} {
FrameSepIs FMyellow eq
{pop 1.0 exch sub 3 1 roll pop pop} {
FrameSepIs FMmagenta eq
{pop pop 1.0 exch sub exch pop } {
FrameSepIs FMcyan eq
{pop pop pop 1.0 exch sub }
{pop pop pop pop 1} ifelse } ifelse } ifelse } ifelse
} ifelse
RealSetgray
}
ifelse
end
} bind def
/sethsbcolor {
FrameDict begin
FrameSepIs FMnone eq
{ RealSethsbcolor }
{
RealSethsbcolor
currentrgbcolor
setrgbcolor
}
ifelse
end
} bind def
FrameDict begin
/setcmykcolor where {
pop /RealSetcmykcolor /setcmykcolor load def
} {
/RealSetcmykcolor {
4 1 roll
3 { 3 index add 0 max 1 min 1 exch sub 3 1 roll} repeat
RealSetrgbcolor pop
} bind def
} ifelse
userdict /setcmykcolor {
FrameDict begin
FrameSepIs FMnone eq
{ RealSetcmykcolor }
{
4 copy [ 5 1 roll ]
FrameColorInSepListCMYK
{
FrameSepBlack eq exch
FrameSepYellow eq and exch
FrameSepMagenta eq and exch
FrameSepCyan eq and
{ 0 } { 1 } ifelse
}
{
FrameSepIs FMblack eq
{1.0 exch sub 4 1 roll pop pop pop} {
FrameSepIs FMyellow eq
{pop 1.0 exch sub 3 1 roll pop pop} {
FrameSepIs FMmagenta eq
{pop pop 1.0 exch sub exch pop } {
FrameSepIs FMcyan eq
{pop pop pop 1.0 exch sub }
{pop pop pop pop 1} ifelse } ifelse } ifelse } ifelse
} ifelse
RealSetgray
}
ifelse
end
} bind put
fMLevel1 {
/patScreenDict 7 dict dup begin
<0f1e3c78f0e1c387> [ 45 { pop } {exch pop} .5 2 sqrt] FmBD
<0f87c3e1f0783c1e> [ 135 { pop } {exch pop} .5 2 sqrt] FmBD
<cccccccccccccccc> [ 0 { pop } dup .5 2 ] FmBD
<ffff0000ffff0000> [ 90 { pop } dup .5 2 ] FmBD
<8142241818244281> [ 45 { 2 copy lt {exch} if pop} dup .75 2 sqrt] FmBD
<03060c183060c081> [ 45 { pop } {exch pop} .875 2 sqrt] FmBD
<8040201008040201> [ 135 { pop } {exch pop} .875 2 sqrt] FmBD
end def
} {
/patProcDict 5 dict dup begin
<0f1e3c78f0e1c387> { 3 setlinewidth -1 -1 moveto 9 9 lineto stroke
4 -4 moveto 12 4 lineto stroke
-4 4 moveto 4 12 lineto stroke} bind def
<0f87c3e1f0783c1e> { 3 setlinewidth -1 9 moveto 9 -1 lineto stroke
-4 4 moveto 4 -4 lineto stroke
4 12 moveto 12 4 lineto stroke} bind def
<8142241818244281> { 1 setlinewidth -1 9 moveto 9 -1 lineto stroke
-1 -1 moveto 9 9 lineto stroke } bind def
<03060c183060c081> { 1 setlinewidth -1 -1 moveto 9 9 lineto stroke
4 -4 moveto 12 4 lineto stroke
-4 4 moveto 4 12 lineto stroke} bind def
<8040201008040201> { 1 setlinewidth -1 9 moveto 9 -1 lineto stroke
-4 4 moveto 4 -4 lineto stroke
4 12 moveto 12 4 lineto stroke} bind def
end def
/patDict 15 dict dup begin
/PatternType 1 def
/PaintType 2 def
/TilingType 3 def
/BBox [ 0 0 8 8 ] def
/XStep 8 def
/YStep 8 def
/PaintProc {
begin
patProcDict bstring known {
patProcDict bstring get exec
} {
8 8 true [1 0 0 -1 0 8] bstring imagemask
} ifelse
end
} bind def
end def
} ifelse
/combineColor {
FrameSepIs FMnone eq
{
graymode fMLevel1 or not {
[/Pattern [/DeviceCMYK]] setcolorspace
FrameCurColors 0 4 getinterval aload pop FrameCurPat setcolor
} {
FrameCurColors 3 get 1.0 ge {
FrameCurGray RealSetgray
} {
fMAcrobat not FMPColor graymode and and {
0 1 3 {
FrameCurColors exch get
1 FrameCurGray sub mul
} for
RealSetcmykcolor
} {
4 1 6 {
FrameCurColors exch get
graymode {
1 exch sub 1 FrameCurGray sub mul 1 exch sub
} {
1.0 lt {FrameCurGray} {1} ifelse
} ifelse
} for
RealSetrgbcolor
} ifelse
} ifelse
} ifelse
} {
FrameCurColors 0 4 getinterval aload
FrameColorInSepListCMYK {
FrameSepBlack eq exch
FrameSepYellow eq and exch
FrameSepMagenta eq and exch
FrameSepCyan eq and
FrameSepIs FMcustom eq and
{ FrameCurGray } { 1 } ifelse
} {
FrameSepIs FMblack eq
{FrameCurGray 1.0 exch sub mul 1.0 exch sub 4 1 roll pop pop pop} {
FrameSepIs FMyellow eq
{pop FrameCurGray 1.0 exch sub mul 1.0 exch sub 3 1 roll pop pop} {
FrameSepIs FMmagenta eq
{pop pop FrameCurGray 1.0 exch sub mul 1.0 exch sub exch pop } {
FrameSepIs FMcyan eq
{pop pop pop FrameCurGray 1.0 exch sub mul 1.0 exch sub }
{pop pop pop pop 1} ifelse } ifelse } ifelse } ifelse
} ifelse
graymode fMLevel1 or not {
[/Pattern [/DeviceGray]] setcolorspace
FrameCurPat setcolor
} {
graymode not fMLevel1 and {
dup 1 lt {pop FrameCurGray} if
} if
RealSetgray
} ifelse
} ifelse
} bind def
/savematrix {
orgmatrix currentmatrix pop
} bind def
/restorematrix {
orgmatrix setmatrix
} bind def
/fMDefaultMatrix matrix defaultmatrix def
/fMatrix2 matrix def
/dpi 72 0 fMDefaultMatrix dtransform
dup mul exch dup mul add sqrt def
/freq dpi dup 72 div round dup 0 eq {pop 1} if 8 mul div def
/sangle 1 0 fMDefaultMatrix dtransform exch atan def
sangle fMatrix2 rotate
fMDefaultMatrix fMatrix2 concatmatrix
dup 0 get /sflipx exch def
3 get /sflipy exch def
/screenIndex {
0 1 dpiranges length 1 sub { dup dpiranges exch get 1 sub dpi le {exit} {pop} ifelse } for
} bind def
/getCyanScreen {
FMUseHighFrequencyScreens { CHighAngles CMHighFreqs} {CLowAngles CMLowFreqs} ifelse
screenIndex dup 3 1 roll get 3 1 roll get /FMSpotFunction load
} bind def
/getMagentaScreen {
FMUseHighFrequencyScreens { MHighAngles CMHighFreqs } {MLowAngles CMLowFreqs} ifelse
screenIndex dup 3 1 roll get 3 1 roll get /FMSpotFunction load
} bind def
/getYellowScreen {
FMUseHighFrequencyScreens { YHighTDot YHighFreqs} { YLowTDot YLowFreqs } ifelse
screenIndex dup 3 1 roll get 3 1 roll get { 3 div
{2 { 1 add 2 div 3 mul dup floor sub 2 mul 1 sub exch} repeat
FMSpotFunction } } {/FMSpotFunction load } ifelse
0.0 exch
} bind def
/getBlackScreen {
FMUseHighFrequencyScreens { KHighFreqs } { KLowFreqs } ifelse
screenIndex get 45.0 /FMSpotFunction load
} bind def
/getSpotScreen {
getBlackScreen
} bind def
/getCompositeScreen {
getBlackScreen
} bind def
/FMSetScreen
fMLevel1 { /setscreen load
}{ {
8 dict begin
/HalftoneType 1 def
/SpotFunction exch def
/Angle exch def
/Frequency exch def
/AccurateScreens FMUseAcccurateScreens def
currentdict end sethalftone
} bind } ifelse
def
/setDefaultScreen {
FMPColor {
orgrxfer cvx orggxfer cvx orgbxfer cvx orgxfer cvx setcolortransfer
}
{
orgxfer cvx settransfer
} ifelse
orgfreq organgle orgproc cvx setscreen
} bind def
/setCurrentScreen {
FrameSepIs FMnone eq {
FMUseDefaultNoSeparationScreen {
setDefaultScreen
} {
getCompositeScreen FMSetScreen
} ifelse
} {
FrameSepIs FMcustom eq {
FMUseDefaultSpotSeparationScreen {
setDefaultScreen
} {
getSpotScreen FMSetScreen
} ifelse
} {
FMUseDefaultProcessSeparationScreen {
setDefaultScreen
} {
FrameSepIs FMcyan eq {
getCyanScreen FMSetScreen
} {
FrameSepIs FMmagenta eq {
getMagentaScreen FMSetScreen
} {
FrameSepIs FMyellow eq {
getYellowScreen FMSetScreen
} {
getBlackScreen FMSetScreen
} ifelse
} ifelse
} ifelse
} ifelse
} ifelse
} ifelse
} bind def
end
/FMDOCUMENT {
array /FMfonts exch def
/#copies exch def
FrameDict begin
0 ne /manualfeed exch def
/paperheight exch def
/paperwidth exch def
0 ne /fMNegative exch def
0 ne /edown exch def
/yscale exch def
/xscale exch def
fMLevel1 {
manualfeed {setmanualfeed} if
/FMdicttop countdictstack 1 add def
/FMoptop count def
setpapername
manualfeed {true} {papersize} ifelse
{manualpapersize} {false} ifelse
{desperatepapersize} {false} ifelse
{papersizefailure} if
count -1 FMoptop {pop pop} for
countdictstack -1 FMdicttop {pop end} for
}
{2 dict
dup /PageSize [paperwidth paperheight] put
manualfeed {dup /ManualFeed manualfeed put} if
{setpagedevice} stopped {papersizefailure} if
}
ifelse
FMPColor {
currentcolorscreen
cvlit /orgproc exch def
/organgle exch def
/orgfreq exch def
cvlit /orgbproc exch def
/orgbangle exch def
/orgbfreq exch def
cvlit /orggproc exch def
/orggangle exch def
/orggfreq exch def
cvlit /orgrproc exch def
/orgrangle exch def
/orgrfreq exch def
currentcolortransfer
fMNegative {
1 1 4 {
pop { 1 exch sub } fmConcatProcs 4 1 roll
} for
4 copy
setcolortransfer
} if
cvlit /orgxfer exch def
cvlit /orgbxfer exch def
cvlit /orggxfer exch def
cvlit /orgrxfer exch def
} {
currentscreen
cvlit /orgproc exch def
/organgle exch def
/orgfreq exch def
currenttransfer
fMNegative {
{ 1 exch sub } fmConcatProcs
dup settransfer
} if
cvlit /orgxfer exch def
} ifelse
end
} def
/FMBEGINPAGE {
FrameDict begin
/pagesave save def
3.86 setmiterlimit
/landscape exch 0 ne def
landscape {
90 rotate 0 exch dup /pwid exch def neg translate pop
}{
pop /pwid exch def
} ifelse
edown { [-1 0 0 1 pwid 0] concat } if
0 0 moveto paperwidth 0 lineto paperwidth paperheight lineto
0 paperheight lineto 0 0 lineto 1 setgray fill
xscale yscale scale
/orgmatrix matrix def
gsave
} def
/FMENDPAGE {
grestore
pagesave restore
end
showpage
} def
/FMFONTDEFINE {
FrameDict begin
findfont
ReEncode
1 index exch
definefont
FMfonts 3 1 roll
put
end
} def
/FMFILLS {
FrameDict begin dup
array /fillvals exch def
dict /patCache exch def
end
} def
/FMFILL {
FrameDict begin
fillvals 3 1 roll put
end
} def
/FMNORMALIZEGRAPHICS {
newpath
1 setlinewidth
0 setlinecap
0 0 0 sethsbcolor
0 setgray
} bind def
/FMBEGINEPSF {
end
/FMEPSF save def
/showpage {} def
% See Adobe's "PostScript Language Reference Manual, 2nd Edition", page 714.
% "...the following operators MUST NOT be used in an EPS file:" (emphasis ours)
/banddevice {(banddevice) FMBADEPSF} def
/clear {(clear) FMBADEPSF} def
/cleardictstack {(cleardictstack) FMBADEPSF} def
/copypage {(copypage) FMBADEPSF} def
/erasepage {(erasepage) FMBADEPSF} def
/exitserver {(exitserver) FMBADEPSF} def
/framedevice {(framedevice) FMBADEPSF} def
/grestoreall {(grestoreall) FMBADEPSF} def
/initclip {(initclip) FMBADEPSF} def
/initgraphics {(initgraphics) FMBADEPSF} def
/quit {(quit) FMBADEPSF} def
/renderbands {(renderbands) FMBADEPSF} def
/setglobal {(setglobal) FMBADEPSF} def
/setpagedevice {(setpagedevice) FMBADEPSF} def
/setshared {(setshared) FMBADEPSF} def
/startjob {(startjob) FMBADEPSF} def
/lettertray {(lettertray) FMBADEPSF} def
/letter {(letter) FMBADEPSF} def
/lettersmall {(lettersmall) FMBADEPSF} def
/11x17tray {(11x17tray) FMBADEPSF} def
/11x17 {(11x17) FMBADEPSF} def
/ledgertray {(ledgertray) FMBADEPSF} def
/ledger {(ledger) FMBADEPSF} def
/legaltray {(legaltray) FMBADEPSF} def
/legal {(legal) FMBADEPSF} def
/statementtray {(statementtray) FMBADEPSF} def
/statement {(statement) FMBADEPSF} def
/executivetray {(executivetray) FMBADEPSF} def
/executive {(executive) FMBADEPSF} def
/a3tray {(a3tray) FMBADEPSF} def
/a3 {(a3) FMBADEPSF} def
/a4tray {(a4tray) FMBADEPSF} def
/a4 {(a4) FMBADEPSF} def
/a4small {(a4small) FMBADEPSF} def
/b4tray {(b4tray) FMBADEPSF} def
/b4 {(b4) FMBADEPSF} def
/b5tray {(b5tray) FMBADEPSF} def
/b5 {(b5) FMBADEPSF} def
FMNORMALIZEGRAPHICS
[/fy /fx /fh /fw /ury /urx /lly /llx] {exch def} forall
fx fw 2 div add fy fh 2 div add translate
rotate
fw 2 div neg fh 2 div neg translate
fw urx llx sub div fh ury lly sub div scale
llx neg lly neg translate
/FMdicttop countdictstack 1 add def
/FMoptop count def
} bind def
/FMENDEPSF {
count -1 FMoptop {pop pop} for
countdictstack -1 FMdicttop {pop end} for
FMEPSF restore
FrameDict begin
} bind def
FrameDict begin
/setmanualfeed {
%%BeginFeature *ManualFeed True
statusdict /manualfeed true put
%%EndFeature
} bind def
/max {2 copy lt {exch} if pop} bind def
/min {2 copy gt {exch} if pop} bind def
/inch {72 mul} def
/pagedimen {
paperheight sub abs 16 lt exch
paperwidth sub abs 16 lt and
{/papername exch def} {pop} ifelse
} bind def
/setpapername {
/papersizedict 14 dict def
papersizedict begin
/papername /unknown def
/Letter 8.5 inch 11.0 inch pagedimen
/LetterSmall 7.68 inch 10.16 inch pagedimen
/Tabloid 11.0 inch 17.0 inch pagedimen
/Ledger 17.0 inch 11.0 inch pagedimen
/Legal 8.5 inch 14.0 inch pagedimen
/Statement 5.5 inch 8.5 inch pagedimen
/Executive 7.5 inch 10.0 inch pagedimen
/A3 11.69 inch 16.5 inch pagedimen
/A4 8.26 inch 11.69 inch pagedimen
/A4Small 7.47 inch 10.85 inch pagedimen
/B4 10.125 inch 14.33 inch pagedimen
/B5 7.16 inch 10.125 inch pagedimen
end
} bind def
/papersize {
papersizedict begin
/Letter {lettertray letter} def
/LetterSmall {lettertray lettersmall} def
/Tabloid {11x17tray 11x17} def
/Ledger {ledgertray ledger} def
/Legal {legaltray legal} def
/Statement {statementtray statement} def
/Executive {executivetray executive} def
/A3 {a3tray a3} def
/A4 {a4tray a4} def
/A4Small {a4tray a4small} def
/B4 {b4tray b4} def
/B5 {b5tray b5} def
/unknown {unknown} def
papersizedict dup papername known {papername} {/unknown} ifelse get
end
statusdict begin stopped end
} bind def
/manualpapersize {
papersizedict begin
/Letter {letter} def
/LetterSmall {lettersmall} def
/Tabloid {11x17} def
/Ledger {ledger} def
/Legal {legal} def
/Statement {statement} def
/Executive {executive} def
/A3 {a3} def
/A4 {a4} def
/A4Small {a4small} def
/B4 {b4} def
/B5 {b5} def
/unknown {unknown} def
papersizedict dup papername known {papername} {/unknown} ifelse get
end
stopped
} bind def
/desperatepapersize {
statusdict /setpageparams known
{
paperwidth paperheight 0 1
statusdict begin
{setpageparams} stopped
end
} {true} ifelse
} bind def
/papersizefailure {
FMAllowPaperSizeMismatch not
{
(The requested paper size is not available in any currently-installed tray)
(Edit the PS file to "FMAllowPaperSizeMismatch true" to use default tray)
FMFAILURE } if
} def
/DiacriticEncoding [
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
/.notdef /.notdef /.notdef /.notdef /space /exclam /quotedbl
/numbersign /dollar /percent /ampersand /quotesingle /parenleft
/parenright /asterisk /plus /comma /hyphen /period /slash /zero /one
/two /three /four /five /six /seven /eight /nine /colon /semicolon
/less /equal /greater /question /at /A /B /C /D /E /F /G /H /I /J /K
/L /M /N /O /P /Q /R /S /T /U /V /W /X /Y /Z /bracketleft /backslash
/bracketright /asciicircum /underscore /grave /a /b /c /d /e /f /g /h
/i /j /k /l /m /n /o /p /q /r /s /t /u /v /w /x /y /z /braceleft /bar
/braceright /asciitilde /.notdef /Adieresis /Aring /Ccedilla /Eacute
/Ntilde /Odieresis /Udieresis /aacute /agrave /acircumflex /adieresis
/atilde /aring /ccedilla /eacute /egrave /ecircumflex /edieresis
/iacute /igrave /icircumflex /idieresis /ntilde /oacute /ograve
/ocircumflex /odieresis /otilde /uacute /ugrave /ucircumflex
/udieresis /dagger /.notdef /cent /sterling /section /bullet
/paragraph /germandbls /registered /copyright /trademark /acute
/dieresis /.notdef /AE /Oslash /.notdef /.notdef /.notdef /.notdef
/yen /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
/ordfeminine /ordmasculine /.notdef /ae /oslash /questiondown
/exclamdown /logicalnot /.notdef /florin /.notdef /.notdef
/guillemotleft /guillemotright /ellipsis /.notdef /Agrave /Atilde
/Otilde /OE /oe /endash /emdash /quotedblleft /quotedblright
/quoteleft /quoteright /.notdef /.notdef /ydieresis /Ydieresis
/fraction /currency /guilsinglleft /guilsinglright /fi /fl /daggerdbl
/periodcentered /quotesinglbase /quotedblbase /perthousand
/Acircumflex /Ecircumflex /Aacute /Edieresis /Egrave /Iacute
/Icircumflex /Idieresis /Igrave /Oacute /Ocircumflex /.notdef /Ograve
/Uacute /Ucircumflex /Ugrave /dotlessi /circumflex /tilde /macron
/breve /dotaccent /ring /cedilla /hungarumlaut /ogonek /caron
] def
/ReEncode {
dup
length
dict begin
{
1 index /FID ne
{def}
{pop pop} ifelse
} forall
0 eq {/Encoding DiacriticEncoding def} if
currentdict
end
} bind def
FMPColor
{
/BEGINBITMAPCOLOR {
BITMAPCOLOR} def
/BEGINBITMAPCOLORc {
BITMAPCOLORc} def
/BEGINBITMAPTRUECOLOR {
BITMAPTRUECOLOR } def
/BEGINBITMAPTRUECOLORc {
BITMAPTRUECOLORc } def
/BEGINBITMAPCMYK {
BITMAPCMYK } def
/BEGINBITMAPCMYKc {
BITMAPCMYKc } def
}
{
/BEGINBITMAPCOLOR {
BITMAPGRAY} def
/BEGINBITMAPCOLORc {
BITMAPGRAYc} def
/BEGINBITMAPTRUECOLOR {
BITMAPTRUEGRAY } def
/BEGINBITMAPTRUECOLORc {
BITMAPTRUEGRAYc } def
/BEGINBITMAPCMYK {
BITMAPCMYKGRAY } def
/BEGINBITMAPCMYKc {
BITMAPCMYKGRAYc } def
}
ifelse
/K {
FMPrintAllColorsAsBlack {
dup 1 eq 2 index 1 eq and 3 index 1 eq and not
{7 {pop} repeat 0 0 0 1 0 0 0} if
} if
FrameCurColors astore
pop combineColor
} bind def
/graymode true def
fMLevel1 {
/fmGetFlip {
fMatrix2 exch get mul 0 lt { -1 } { 1 } ifelse
} FmBD
} if
/setPatternMode {
fMLevel1 {
2 index patScreenDict exch known {
pop pop
patScreenDict exch get aload pop
freq
mul
5 2 roll
fMatrix2 currentmatrix 1 get 0 ne {
3 -1 roll 90 add 3 1 roll
sflipx 1 fmGetFlip sflipy 2 fmGetFlip neg mul
} {
sflipx 0 fmGetFlip sflipy 3 fmGetFlip mul
} ifelse
0 lt {exch pop} {pop} ifelse
fMNegative {
{neg} fmConcatProcs
} if
bind
systemdict /setscreen get exec
/FrameCurGray exch def
} {
/bwidth exch def
/bpside exch def
/bstring exch def
/onbits 0 def /offbits 0 def
freq sangle landscape {90 add} if
{/ypoint exch def
/xpoint exch def
/xindex xpoint 1 add 2 div bpside mul cvi def
/yindex ypoint 1 add 2 div bpside mul cvi def
bstring yindex bwidth mul xindex 8 idiv add get
1 7 xindex 8 mod sub bitshift and 0 ne fMNegative {not} if
{/onbits onbits 1 add def 1}
{/offbits offbits 1 add def 0}
ifelse
}
setscreen
offbits offbits onbits add div fMNegative {1.0 exch sub} if
/FrameCurGray exch def
} ifelse
} {
pop pop
dup patCache exch known {
patCache exch get
} {
dup
patDict /bstring 3 -1 roll put
patDict
9 PatFreq screenIndex get div dup matrix scale
makepattern
dup
patCache 4 -1 roll 3 -1 roll put
} ifelse
/FrameCurGray 0 def
/FrameCurPat exch def
} ifelse
/graymode false def
combineColor
} bind def
/setGrayScaleMode {
graymode not {
/graymode true def
fMLevel1 {
setCurrentScreen
} if
} if
/FrameCurGray exch def
combineColor
} bind def
/normalize {
transform round exch round exch itransform
} bind def
/dnormalize {
dtransform round exch round exch idtransform
} bind def
/lnormalize {
0 dtransform exch cvi 2 idiv 2 mul 1 add exch idtransform pop
} bind def
/H {
lnormalize setlinewidth
} bind def
/Z {
setlinecap
} bind def
/PFill {
graymode fMLevel1 or not {
gsave 1 setgray eofill grestore
} if
} bind def
/PStroke {
graymode fMLevel1 or not {
gsave 1 setgray stroke grestore
} if
stroke
} bind def
/X {
fillvals exch get
dup type /stringtype eq
{8 1 setPatternMode}
{setGrayScaleMode}
ifelse
} bind def
/V {
PFill gsave eofill grestore
} bind def
/Vclip {
clip
} bind def
/Vstrk {
currentlinewidth exch setlinewidth PStroke setlinewidth
} bind def
/N {
PStroke
} bind def
/Nclip {
strokepath clip newpath
} bind def
/Nstrk {
currentlinewidth exch setlinewidth PStroke setlinewidth
} bind def
/M {newpath moveto} bind def
/E {lineto} bind def
/D {curveto} bind def
/O {closepath} bind def
/L {
/n exch def
newpath
normalize
moveto
2 1 n {pop normalize lineto} for
} bind def
/Y {
L
closepath
} bind def
/R {
/y2 exch def
/x2 exch def
/y1 exch def
/x1 exch def
x1 y1
x2 y1
x2 y2
x1 y2
4 Y
} bind def
/rarc
{rad
arcto
} bind def
/RR {
/rad exch def
normalize
/y2 exch def
/x2 exch def
normalize
/y1 exch def
/x1 exch def
mark
newpath
{
x1 y1 rad add moveto
x1 y2 x2 y2 rarc
x2 y2 x2 y1 rarc
x2 y1 x1 y1 rarc
x1 y1 x1 y2 rarc
closepath
} stopped {x1 y1 x2 y2 R} if
cleartomark
} bind def
/RRR {
/rad exch def
normalize /y4 exch def /x4 exch def
normalize /y3 exch def /x3 exch def
normalize /y2 exch def /x2 exch def
normalize /y1 exch def /x1 exch def
newpath
normalize moveto
mark
{
x2 y2 x3 y3 rarc
x3 y3 x4 y4 rarc
x4 y4 x1 y1 rarc
x1 y1 x2 y2 rarc
closepath
} stopped
{x1 y1 x2 y2 x3 y3 x4 y4 newpath moveto lineto lineto lineto closepath} if
cleartomark
} bind def
/C {
grestore
gsave
R
clip
setCurrentScreen
} bind def
/CP {
grestore
gsave
Y
clip
setCurrentScreen
} bind def
/F {
FMfonts exch get
FMpointsize scalefont
setfont
} bind def
/Q {
/FMpointsize exch def
F
} bind def
/T {
moveto show
} bind def
/RF {
rotate
0 ne {-1 1 scale} if
} bind def
/TF {
gsave
moveto
RF
show
grestore
} bind def
/P {
moveto
0 32 3 2 roll widthshow
} bind def
/PF {
gsave
moveto
RF
0 32 3 2 roll widthshow
grestore
} bind def
/S {
moveto
0 exch ashow
} bind def
/SF {
gsave
moveto
RF
0 exch ashow
grestore
} bind def
/B {
moveto
0 32 4 2 roll 0 exch awidthshow
} bind def
/BF {
gsave
moveto
RF
0 32 4 2 roll 0 exch awidthshow
grestore
} bind def
/G {
gsave
newpath
normalize translate 0.0 0.0 moveto
dnormalize scale
0.0 0.0 1.0 5 3 roll arc
closepath
PFill fill
grestore
} bind def
/Gstrk {
savematrix
newpath
2 index 2 div add exch 3 index 2 div sub exch
normalize 2 index 2 div sub exch 3 index 2 div add exch
translate
scale
0.0 0.0 1.0 5 3 roll arc
restorematrix
currentlinewidth exch setlinewidth PStroke setlinewidth
} bind def
/Gclip {
newpath
savematrix
normalize translate 0.0 0.0 moveto
dnormalize scale
0.0 0.0 1.0 5 3 roll arc
closepath
clip newpath
restorematrix
} bind def
/GG {
gsave
newpath
normalize translate 0.0 0.0 moveto
rotate
dnormalize scale
0.0 0.0 1.0 5 3 roll arc
closepath
PFill
fill
grestore
} bind def
/GGclip {
savematrix
newpath
normalize translate 0.0 0.0 moveto
rotate
dnormalize scale
0.0 0.0 1.0 5 3 roll arc
closepath
clip newpath
restorematrix
} bind def
/GGstrk {
savematrix
newpath
normalize translate 0.0 0.0 moveto
rotate
dnormalize scale
0.0 0.0 1.0 5 3 roll arc
closepath
restorematrix
currentlinewidth exch setlinewidth PStroke setlinewidth
} bind def
/A {
gsave
savematrix
newpath
2 index 2 div add exch 3 index 2 div sub exch
normalize 2 index 2 div sub exch 3 index 2 div add exch
translate
scale
0.0 0.0 1.0 5 3 roll arc
restorematrix
PStroke
grestore
} bind def
/Aclip {
newpath
savematrix
normalize translate 0.0 0.0 moveto
dnormalize scale
0.0 0.0 1.0 5 3 roll arc
closepath
strokepath clip newpath
restorematrix
} bind def
/Astrk {
Gstrk
} bind def
/AA {
gsave
savematrix
newpath
3 index 2 div add exch 4 index 2 div sub exch
normalize 3 index 2 div sub exch 4 index 2 div add exch
translate
rotate
scale
0.0 0.0 1.0 5 3 roll arc
restorematrix
PStroke
grestore
} bind def
/AAclip {
savematrix
newpath
normalize translate 0.0 0.0 moveto
rotate
dnormalize scale
0.0 0.0 1.0 5 3 roll arc
closepath
strokepath clip newpath
restorematrix
} bind def
/AAstrk {
GGstrk
} bind def
/BEGINPRINTCODE {
/FMdicttop countdictstack 1 add def
/FMoptop count 7 sub def
/FMsaveobject save def
userdict begin
/showpage {} def
FMNORMALIZEGRAPHICS
3 index neg 3 index neg translate
} bind def
/ENDPRINTCODE {
count -1 FMoptop {pop pop} for
countdictstack -1 FMdicttop {pop end} for
FMsaveobject restore
} bind def
/gn {
0
{ 46 mul
cf read pop
32 sub
dup 46 lt {exit} if
46 sub add
} loop
add
} bind def
/cfs {
/str sl string def
0 1 sl 1 sub {str exch val put} for
str def
} bind def
/ic [
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0223
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0223
0
{0 hx} {1 hx} {2 hx} {3 hx} {4 hx} {5 hx} {6 hx} {7 hx} {8 hx} {9 hx}
{10 hx} {11 hx} {12 hx} {13 hx} {14 hx} {15 hx} {16 hx} {17 hx} {18 hx}
{19 hx} {gn hx} {0} {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12}
{13} {14} {15} {16} {17} {18} {19} {gn} {0 wh} {1 wh} {2 wh} {3 wh}
{4 wh} {5 wh} {6 wh} {7 wh} {8 wh} {9 wh} {10 wh} {11 wh} {12 wh}
{13 wh} {14 wh} {gn wh} {0 bl} {1 bl} {2 bl} {3 bl} {4 bl} {5 bl} {6 bl}
{7 bl} {8 bl} {9 bl} {10 bl} {11 bl} {12 bl} {13 bl} {14 bl} {gn bl}
{0 fl} {1 fl} {2 fl} {3 fl} {4 fl} {5 fl} {6 fl} {7 fl} {8 fl} {9 fl}
{10 fl} {11 fl} {12 fl} {13 fl} {14 fl} {gn fl}
] def
/ms {
/sl exch def
/val 255 def
/ws cfs
/im cfs
/val 0 def
/bs cfs
/cs cfs
} bind def
400 ms
/ip {
is
0
cf cs readline pop
{ ic exch get exec
add
} forall
pop
} bind def
/rip {
bis ris copy pop
is
0
cf cs readline pop
{ ic exch get exec
add
} forall
pop pop
ris gis copy pop
dup is exch
cf cs readline pop
{ ic exch get exec
add
} forall
pop pop
gis bis copy pop
dup add is exch
cf cs readline pop
{ ic exch get exec
add
} forall
pop
} bind def
/rip4 {
kis cis copy pop
is
0
cf cs readline pop
{ ic exch get exec
add
} forall
pop pop
cis mis copy pop
dup is exch
cf cs readline pop
{ ic exch get exec
add
} forall
pop pop
mis yis copy pop
dup dup add is exch
cf cs readline pop
{ ic exch get exec
add
} forall
pop pop
yis kis copy pop
3 mul is exch
cf cs readline pop
{ ic exch get exec
add
} forall
pop
} bind def
/wh {
/len exch def
/pos exch def
ws 0 len getinterval im pos len getinterval copy pop
pos len
} bind def
/bl {
/len exch def
/pos exch def
bs 0 len getinterval im pos len getinterval copy pop
pos len
} bind def
/s1 1 string def
/fl {
/len exch def
/pos exch def
/val cf s1 readhexstring pop 0 get def
pos 1 pos len add 1 sub {im exch val put} for
pos len
} bind def
/hx {
3 copy getinterval
cf exch readhexstring pop pop
} bind def
/wbytes {
dup dup
8 gt { pop 8 idiv mul }
{ 8 eq {pop} {1 eq {7 add 8 idiv} {3 add 4 idiv} ifelse} ifelse } ifelse
} bind def
/BEGINBITMAPBWc {
1 {} COMMONBITMAPc
} bind def
/BEGINBITMAPGRAYc {
8 {} COMMONBITMAPc
} bind def
/BEGINBITMAP2BITc {
2 {} COMMONBITMAPc
} bind def
/COMMONBITMAPc {
/cvtProc exch def
/depth exch def
gsave
3 index 2 div add exch
4 index 2 div add exch
translate
rotate
1 index 2 div neg
1 index 2 div neg
translate
scale
/height exch def /width exch def
/lb width depth wbytes def
sl lb lt {lb ms} if
/bitmapsave save def
cvtProc
/is im 0 lb getinterval def
ws 0 lb getinterval is copy pop
/cf currentfile def
width height depth [width 0 0 height neg 0 height]
{ip} image
bitmapsave restore
grestore
} bind def
/BEGINBITMAPBW {
1 {} COMMONBITMAP
} bind def
/BEGINBITMAPGRAY {
8 {} COMMONBITMAP
} bind def
/BEGINBITMAP2BIT {
2 {} COMMONBITMAP
} bind def
/COMMONBITMAP {
/cvtProc exch def
/depth exch def
gsave
3 index 2 div add exch
4 index 2 div add exch
translate
rotate
1 index 2 div neg
1 index 2 div neg
translate
scale
/height exch def /width exch def
/bitmapsave save def
cvtProc
/is width depth wbytes string def
/cf currentfile def
width height depth [width 0 0 height neg 0 height]
{cf is readhexstring pop} image
bitmapsave restore
grestore
} bind def
/ngrayt 256 array def
/nredt 256 array def
/nbluet 256 array def
/ngreent 256 array def
fMLevel1 {
/colorsetup {
currentcolortransfer
/gryt exch def
/blut exch def
/grnt exch def
/redt exch def
0 1 255 {
/indx exch def
/cynu 1 red indx get 255 div sub def
/magu 1 green indx get 255 div sub def
/yelu 1 blue indx get 255 div sub def
/kk cynu magu min yelu min def
/u kk currentundercolorremoval exec def
% /u 0 def
nredt indx 1 0 cynu u sub max sub redt exec put
ngreent indx 1 0 magu u sub max sub grnt exec put
nbluet indx 1 0 yelu u sub max sub blut exec put
ngrayt indx 1 kk currentblackgeneration exec sub gryt exec put
} for
{255 mul cvi nredt exch get}
{255 mul cvi ngreent exch get}
{255 mul cvi nbluet exch get}
{255 mul cvi ngrayt exch get}
setcolortransfer
{pop 0} setundercolorremoval
{} setblackgeneration
} bind def
}
{
/colorSetup2 {
[ /Indexed /DeviceRGB 255
{dup red exch get 255 div
exch dup green exch get 255 div
exch blue exch get 255 div}
] setcolorspace
} bind def
} ifelse
/fakecolorsetup {
/tran 256 string def
0 1 255 {/indx exch def
tran indx
red indx get 77 mul
green indx get 151 mul
blue indx get 28 mul
add add 256 idiv put} for
currenttransfer
{255 mul cvi tran exch get 255.0 div}
exch fmConcatProcs settransfer
} bind def
/BITMAPCOLOR {
/depth 8 def
gsave
3 index 2 div add exch
4 index 2 div add exch
translate
rotate
1 index 2 div neg
1 index 2 div neg
translate
scale
/height exch def /width exch def
/bitmapsave save def
fMLevel1 {
colorsetup
/is width depth wbytes string def
/cf currentfile def
width height depth [width 0 0 height neg 0 height]
{cf is readhexstring pop} {is} {is} true 3 colorimage
} {
colorSetup2
/is width depth wbytes string def
/cf currentfile def
7 dict dup begin
/ImageType 1 def
/Width width def
/Height height def
/ImageMatrix [width 0 0 height neg 0 height] def
/DataSource {cf is readhexstring pop} bind def
/BitsPerComponent depth def
/Decode [0 255] def
end image
} ifelse
bitmapsave restore
grestore
} bind def
/BITMAPCOLORc {
/depth 8 def
gsave
3 index 2 div add exch
4 index 2 div add exch
translate
rotate
1 index 2 div neg
1 index 2 div neg
translate
scale
/height exch def /width exch def
/lb width depth wbytes def
sl lb lt {lb ms} if
/bitmapsave save def
fMLevel1 {
colorsetup
/is im 0 lb getinterval def
ws 0 lb getinterval is copy pop
/cf currentfile def
width height depth [width 0 0 height neg 0 height]
{ip} {is} {is} true 3 colorimage
} {
colorSetup2
/is im 0 lb getinterval def
ws 0 lb getinterval is copy pop
/cf currentfile def
7 dict dup begin
/ImageType 1 def
/Width width def
/Height height def
/ImageMatrix [width 0 0 height neg 0 height] def
/DataSource {ip} bind def
/BitsPerComponent depth def
/Decode [0 255] def
end image
} ifelse
bitmapsave restore
grestore
} bind def
/BITMAPTRUECOLORc {
/depth 24 def
gsave
3 index 2 div add exch
4 index 2 div add exch
translate
rotate
1 index 2 div neg
1 index 2 div neg
translate
scale
/height exch def /width exch def
/lb width depth wbytes def
sl lb lt {lb ms} if
/bitmapsave save def
/is im 0 lb getinterval def
/ris im 0 width getinterval def
/gis im width width getinterval def
/bis im width 2 mul width getinterval def
ws 0 lb getinterval is copy pop
/cf currentfile def
width height 8 [width 0 0 height neg 0 height]
{width rip pop ris} {gis} {bis} true 3 colorimage
bitmapsave restore
grestore
} bind def
/BITMAPCMYKc {
/depth 32 def
gsave
3 index 2 div add exch
4 index 2 div add exch
translate
rotate
1 index 2 div neg
1 index 2 div neg
translate
scale
/height exch def /width exch def
/lb width depth wbytes def
sl lb lt {lb ms} if
/bitmapsave save def
/is im 0 lb getinterval def
/cis im 0 width getinterval def
/mis im width width getinterval def
/yis im width 2 mul width getinterval def
/kis im width 3 mul width getinterval def
ws 0 lb getinterval is copy pop
/cf currentfile def
width height 8 [width 0 0 height neg 0 height]
{width rip4 pop cis} {mis} {yis} {kis} true 4 colorimage
bitmapsave restore
grestore
} bind def
/BITMAPTRUECOLOR {
gsave
3 index 2 div add exch
4 index 2 div add exch
translate
rotate
1 index 2 div neg
1 index 2 div neg
translate
scale
/height exch def /width exch def
/bitmapsave save def
/is width string def
/gis width string def
/bis width string def
/cf currentfile def
width height 8 [width 0 0 height neg 0 height]
{ cf is readhexstring pop }
{ cf gis readhexstring pop }
{ cf bis readhexstring pop }
true 3 colorimage
bitmapsave restore
grestore
} bind def
/BITMAPCMYK {
gsave
3 index 2 div add exch
4 index 2 div add exch
translate
rotate
1 index 2 div neg
1 index 2 div neg
translate
scale
/height exch def /width exch def
/bitmapsave save def
/is width string def
/mis width string def
/yis width string def
/kis width string def
/cf currentfile def
width height 8 [width 0 0 height neg 0 height]
{ cf is readhexstring pop }
{ cf mis readhexstring pop }
{ cf yis readhexstring pop }
{ cf kis readhexstring pop }
true 4 colorimage
bitmapsave restore
grestore
} bind def
/BITMAPTRUEGRAYc {
/depth 24 def
gsave
3 index 2 div add exch
4 index 2 div add exch
translate
rotate
1 index 2 div neg
1 index 2 div neg
translate
scale
/height exch def /width exch def
/lb width depth wbytes def
sl lb lt {lb ms} if
/bitmapsave save def
/is im 0 lb getinterval def
/ris im 0 width getinterval def
/gis im width width getinterval def
/bis im width 2 mul width getinterval def
ws 0 lb getinterval is copy pop
/cf currentfile def
width height 8 [width 0 0 height neg 0 height]
{width rip pop ris gis bis width gray} image
bitmapsave restore
grestore
} bind def
/BITMAPCMYKGRAYc {
/depth 32 def
gsave
3 index 2 div add exch
4 index 2 div add exch
translate
rotate
1 index 2 div neg
1 index 2 div neg
translate
scale
/height exch def /width exch def
/lb width depth wbytes def
sl lb lt {lb ms} if
/bitmapsave save def
/is im 0 lb getinterval def
/cis im 0 width getinterval def
/mis im width width getinterval def
/yis im width 2 mul width getinterval def
/kis im width 3 mul width getinterval def
ws 0 lb getinterval is copy pop
/cf currentfile def
width height 8 [width 0 0 height neg 0 height]
{width rip pop cis mis yis kis width cgray} image
bitmapsave restore
grestore
} bind def
/cgray {
/ww exch def
/k exch def
/y exch def
/m exch def
/c exch def
0 1 ww 1 sub { /i exch def c i get m i get y i get k i get CMYKtoRGB
.144 mul 3 1 roll .587 mul 3 1 roll .299 mul add add
c i 3 -1 roll floor cvi put } for
c
} bind def
/gray {
/ww exch def
/b exch def
/g exch def
/r exch def
0 1 ww 1 sub { /i exch def r i get .299 mul g i get .587 mul
b i get .114 mul add add r i 3 -1 roll floor cvi put } for
r
} bind def
/BITMAPTRUEGRAY {
gsave
3 index 2 div add exch
4 index 2 div add exch
translate
rotate
1 index 2 div neg
1 index 2 div neg
translate
scale
/height exch def /width exch def
/bitmapsave save def
/is width string def
/gis width string def
/bis width string def
/cf currentfile def
width height 8 [width 0 0 height neg 0 height]
{ cf is readhexstring pop
cf gis readhexstring pop
cf bis readhexstring pop width gray} image
bitmapsave restore
grestore
} bind def
/BITMAPCMYKGRAY {
gsave
3 index 2 div add exch
4 index 2 div add exch
translate
rotate
1 index 2 div neg
1 index 2 div neg
translate
scale
/height exch def /width exch def
/bitmapsave save def
/is width string def
/yis width string def
/mis width string def
/kis width string def
/cf currentfile def
width height 8 [width 0 0 height neg 0 height]
{ cf is readhexstring pop
cf mis readhexstring pop
cf yis readhexstring pop
cf kis readhexstring pop width cgray} image
bitmapsave restore
grestore
} bind def
/BITMAPGRAY {
8 {fakecolorsetup} COMMONBITMAP
} bind def
/BITMAPGRAYc {
8 {fakecolorsetup} COMMONBITMAPc
} bind def
/ENDBITMAP {
} bind def
end
/ALDmatrix matrix def ALDmatrix currentmatrix pop
/StartALD {
/ALDsave save def
savematrix
ALDmatrix setmatrix
} bind def
/InALD {
restorematrix
} bind def
/DoneALD {
ALDsave restore
} bind def
/I { setdash } bind def
/J { [] 0 setdash } bind def
%%EndProlog
%%BeginSetup
(5.0) FMVERSION
1 1 0 0 612 792 0 1 7 FMDOCUMENT
0 0 /Palatino-Roman FMFONTDEFINE
1 0 /Times-Roman FMFONTDEFINE
2 0 /Times-Bold FMFONTDEFINE
3 0 /Courier-Bold FMFONTDEFINE
32 FMFILLS
0 0 FMFILL
1 0.1 FMFILL
2 0.3 FMFILL
3 0.5 FMFILL
4 0.7 FMFILL
5 0.9 FMFILL
6 0.97 FMFILL
7 1 FMFILL
8 <0f1e3c78f0e1c387> FMFILL
9 <0f87c3e1f0783c1e> FMFILL
10 <cccccccccccccccc> FMFILL
11 <ffff0000ffff0000> FMFILL
12 <8142241818244281> FMFILL
13 <03060c183060c081> FMFILL
14 <8040201008040201> FMFILL
16 1 FMFILL
17 0.9 FMFILL
18 0.7 FMFILL
19 0.5 FMFILL
20 0.3 FMFILL
21 0.1 FMFILL
22 0.03 FMFILL
23 0 FMFILL
24 <f0e1c3870f1e3c78> FMFILL
25 <f0783c1e0f87c3e1> FMFILL
26 <3333333333333333> FMFILL
27 <0000ffff0000ffff> FMFILL
28 <7ebddbe7e7dbbd7e> FMFILL
29 <fcf9f3e7cf9f3f7e> FMFILL
30 <7fbfdfeff7fbfdfe> FMFILL
%%EndSetup
%%Page: "1" 1
%%BeginPaperSize: Letter
%%EndPaperSize
612 792 0 FMBEGINPAGE
[0 0 0 1 0 0 0]
[ 0 1 1 0 1 0 0]
[ 1 0 1 0 0 1 0]
[ 1 1 0 0 0 0 1]
[ 1 0 0 0 0 1 1]
[ 0 1 0 0 1 0 1]
[ 0 0 1 0 1 1 0]
7 FrameSetSepColors
FrameNoSep
0 0 0 1 0 0 0 K
J
0 0 0 1 0 0 0 K
0 0 0 1 0 0 0 K
0 0 0 1 0 0 0 K
0 0 0 1 0 0 0 K
0 0 0 1 0 0 0 K
0 8 Q
0 X
0 0 0 1 0 0 0 K
(Silicon Graphics Pr) 72 750.67 T
(oprietary) 139.61 750.67 T
72 54 540 54 2 L
0.25 H
2 Z
N
(xFS Block Zer) 72 42.62 T
(oing Mechanism) 120.54 42.62 T
(August 2, 1994) 261.84 42.62 T
(1) 500 42.62 T
1 24 Q
(xFS Block Zeroing Mechanism) 155 704 T
2 12 Q
(Adam Sweeney) 266.84 664 T
2 16 Q
(1.0 Intr) 72 621.33 T
(oduction) 127.26 621.33 T
1 12 Q
-0.16 (This document describes the mechanisms used in xFS to ensure that we ne) 72 594 P
-0.16 (v) 427.69 594 P
-0.16 (er return uninitialized) 433.51 594 P
(data to an) 72 580 T
(yone reading a \336le. This could potentially occur when:) 118.48 580 T
3 F
(\245) 72 560 T
1 F
-0.22 (Blocks are allocated to a \336le, b) 85.75 560 P
-0.22 (ut before the data for those blocks are written to disk the system) 232.52 560 P
(crashes.) 85.75 546 T
3 F
(\245) 72 526 T
1 F
(A \336le with \336x) 85.75 526 T
(ed sized e) 152.57 526 T
(xtents is written sparsely) 199.71 526 T
(. In this case what w) 317.92 526 T
(ould ha) 415.78 526 T
(v) 451.2 526 T
(e been holes in) 457.02 526 T
(the \336le are actually allocated space on disk, b) 85.75 512 T
(ut the user ne) 303.12 512 T
(v) 367.14 512 T
(er speci\336es an) 372.96 512 T
(y data to be written) 440.76 512 T
-0.02 (into those holes. It is the job of the \336le system to ensure that the user cannot tell the dif) 85.75 498 P
-0.02 (ference) 501.71 498 P
(between these holes and re) 85.75 484 T
(gular holes which al) 214.19 484 T
(w) 311.06 484 T
(ays return zeros when read.) 319.6 484 T
-0.28 (The goal of this design is to a) 72 458 P
-0.28 (v) 211.48 458 P
-0.28 (oid whene) 217.24 458 P
-0.28 (v) 266.32 458 P
-0.28 (er possible actually writing zeros to the disk or memory) 272.14 458 P
-0.02 (when the user has speci\336ed data to be written there. Writing zeros is a pessimistic strate) 72 444 P
-0.02 (gy which) 492.72 444 P
(adds cpu and I/O o) 72 430 T
(v) 162.47 430 T
(erhead to the \336le writing process. The only times in which writing zeroes is) 168.29 430 T
-0.34 (acceptable are when the user does not initialize that portion of the \336le \050case 2 abo) 72 416 P
-0.34 (v) 457.57 416 P
-0.34 (e\051 or during \336le) 463.39 416 P
-0.04 (system reco) 72 402 P
-0.04 (v) 128.76 402 P
-0.04 (ery) 134.58 402 P
-0.04 (. In place of actually writing the zeros to the \336le, xFS will place operations in the) 149.13 402 P
-0.09 (log which indicate that during reco) 72 388 P
-0.09 (v) 239.04 388 P
-0.09 (ery we should zero the speci\336ed \336le blocks. This w) 244.86 388 P
-0.09 (ay we use) 489.94 388 P
(the transaction mechanism to eliminate the o) 72 374 T
(v) 286.46 374 T
(erhead of block zeroing.) 292.28 374 T
2 16 Q
(2.0 Backgr) 72 333.33 T
(ound) 149.49 333.33 T
1 12 Q
-0.41 (In xFS we use delayed allocation to impro) 72 306 P
-0.41 (v) 271.95 306 P
-0.41 (e the contiguity of our \336le block allocations. Instead of) 277.77 306 P
(deciding which blocks to associate with a range of a \336le when the user initially writes to that) 72 292 T
-0.22 (range, we instead only reserv) 72 278 P
-0.22 (e space on the disk for the necessary number of blocks and delay the) 211.22 278 P
(choice of which blocks until we ha) 72 264 T
(v) 239.06 264 T
(e to actually \337ush the user\325) 244.88 264 T
(s data to disk. This w) 373.87 264 T
(ay we tak) 475.75 264 T
(e) 521.62 264 T
(adv) 72 250 T
(antage of the UNIX write behind mechanisms to g) 89.03 250 T
(ain a better idea of the e) 330.92 250 T
(v) 445.92 250 T
(entual size of the) 451.74 250 T
(\336le.) 72 236 T
(When a delayed write, delayed allocation b) 72 210 T
(uf) 279.37 210 T
(fer is \336nally pushed out it is sent to the) 289.07 210 T
(xfs_strat_write\050\051 routine. There we allocate blocks for the \336le range co) 72 196 T
(v) 411.4 196 T
(ered by the delayed allo-) 417.22 196 T
(cation b) 72 182 T
(uf) 110.09 182 T
(fer as well as an) 119.78 182 T
(y other delayed allocation blocks in the \336le which are contiguous to) 196.91 182 T
(ours. The idea is to allocate all of the blocks as a single lar) 72 168 T
(ge e) 352.4 168 T
(xtent.) 371.88 168 T
(At the point at which we con) 72 142 T
(v) 210.17 142 T
(ert a delayed allocation e) 215.99 142 T
(xtent into a real one we are writing out a) 335.77 142 T
(b) 72 128 T
(uf) 77.76 128 T
(fer which co) 87.46 128 T
(v) 147.25 128 T
(ers some subset of the allocated e) 153.07 128 T
(xtent. Most delayed allocation b) 313.52 128 T
(uf) 467.6 128 T
(fers are) 477.3 128 T
-0.21 (pushed out in the conte) 72 114 P
-0.21 (xt of an xfsd daemon. There are a limited number of these daemons, so we) 182.29 114 P
(can\325) 72 100 T
(t sleep in the daemon w) 92.44 100 T
(aiting for other delayed allocation b) 205.97 100 T
(uf) 377.36 100 T
(fers to be written out. Speci\336-) 387.06 100 T
(cally we can\325) 72 86 T
(t w) 135.76 86 T
(ait in the xfsd daemon for the b) 150.64 86 T
(uf) 300.71 86 T
(fers co) 310.4 86 T
(v) 342.54 86 T
(ering the rest of the ne) 348.36 86 T
(wly allocated) 455.7 86 T
FMENDPAGE
%%EndPage: "1" 1
%%Page: "2" 2
612 792 0 FMBEGINPAGE
[0 0 0 1 0 0 0]
[ 0 1 1 0 1 0 0]
[ 1 0 1 0 0 1 0]
[ 1 1 0 0 0 0 1]
[ 1 0 0 0 0 1 1]
[ 0 1 0 0 1 0 1]
[ 0 0 1 0 1 1 0]
7 FrameSetSepColors
FrameNoSep
0 0 0 1 0 0 0 K
0 0 0 1 0 0 0 K
0 0 0 1 0 0 0 K
0 0 0 1 0 0 0 K
0 8 Q
0 X
0 0 0 1 0 0 0 K
(Silicon Graphics Pr) 72 750.67 T
(oprietary) 139.61 750.67 T
72 54 540 54 2 L
0.25 H
2 Z
N
(xFS Block Zer) 72 42.62 T
(oing Mechanism) 120.54 42.62 T
(August 2, 1994) 261.84 42.62 T
(2) 500 42.62 T
1 12 Q
-0.21 (e) 72 712 P
-0.21 (xtent to be \337ushed, because it may be that this daemon is the only one so if we don\325) 77.15 712 P
-0.21 (t do it no one) 474.73 712 P
(will.) 72 698 T
(While in performing the allocation we can log an item stating that the allocated blocks should be) 72 672 T
-0.07 (zeroed if we don\325) 72 658 P
-0.07 (t log an) 155.87 658 P
-0.07 (ything stating otherwise, it is dif) 191.55 658 P
-0.07 (\336cult to kno) 346.23 658 P
-0.07 (w when we can actually log) 403.8 658 P
-0.28 (an item stating not to perform the zeroing. W) 72 644 P
-0.28 (e cannot log such an item until we kno) 285.74 644 P
-0.28 (w for sure that) 468.49 644 P
(all of the b) 72 630 T
(uf) 123.42 630 T
(fers co) 133.12 630 T
(v) 165.25 630 T
(ering the allocated e) 171.07 630 T
(xtent ha) 267.86 630 T
(v) 305.95 630 T
(e been allocated, b) 311.77 630 T
(ut we cannot w) 400.84 630 T
(ait in) 473.7 630 T
(xfs_strat_write\050\051 for that to happen. An) 72 616 T
(y solution to this problem must also address ho) 260.45 616 T
(w we are) 486.16 616 T
(going to kno) 72 602 T
(w when e) 132.37 602 T
(v) 178.06 602 T
(erything in the allocated range has been written.) 183.88 602 T
(Another problem in) 72 576 T
(v) 166.18 576 T
(olving getting the rest of the b) 171.94 576 T
(uf) 316.36 576 T
(fers co) 326.05 576 T
(v) 358.19 576 T
(ering the allocated re) 364.01 576 T
(gion \337ushed to) 464.8 576 T
(disk in) 72 562 T
(v) 103.86 562 T
(olv) 109.62 562 T
(es the interaction with the log reserv) 124.78 562 T
(ation mechanism used by all transactions. Since) 299.11 562 T
(we are going to log a block zero item along with the allocation of the e) 72 548 T
(xtent, the log will not be) 411.43 548 T
-0.22 (able to wrap around be) 72 534 P
-0.22 (yond that block zero item until we kno) 180.9 534 P
-0.22 (w that all of the b) 364.71 534 P
-0.22 (uf) 447.69 534 P
-0.22 (fers co) 457.38 534 P
-0.22 (v) 489.3 534 P
-0.22 (ering the) 495.12 534 P
(allocated e) 72 520 T
(xtent ha) 123.47 520 T
(v) 161.56 520 T
(e been \337ushed. If getting those b) 167.38 520 T
(uf) 323.45 520 T
(fers \337ushed in) 333.14 520 T
(v) 400.66 520 T
(olv) 406.42 520 T
(es acquiring a log reser-) 421.57 520 T
(v) 72 506 T
(ation then we could deadlock on the log space resource.) 77.7 506 T
2 16 Q
(3.0 Solution) 72 465.33 T
1 12 Q
-0.04 (The solution proposed here does not li) 72 438 P
-0.04 (v) 255.42 438 P
-0.04 (e up to the goal speci\336ed in the introduction. Speci\336cally) 261.24 438 P
-0.04 (,) 534.04 438 P
(it requires writing zeroes to the disk e) 72 424 T
(v) 252.67 424 T
(en when the data for the re) 258.49 424 T
(gion being zeroed resides in) 386.27 424 T
(memory) 72 410 T
(. This w) 111.22 410 T
(as not my \336rst choice, b) 150.1 410 T
(ut the restricti) 264.52 410 T
(v) 330.88 410 T
(eness of the en) 336.7 410 T
(vironment in which the) 407.2 410 T
(block zeroing tak) 72 396 T
(es place has so f) 155.2 396 T
(ar left me no alternati) 233.05 396 T
(v) 336.06 396 T
(e.) 341.88 396 T
(The basic mechanism is described in the sections belo) 72 370 T
(w) 331 370 T
(.) 338.88 370 T
2 14 Q
(3.1 Delay) 72 336.67 T
(ed Allocation Extent Con) 130.58 336.67 T
(v) 280.52 336.67 T
(ersion) 287.38 336.67 T
1 12 Q
-0.27 (A b) 72 310 P
-0.27 (uf) 89.15 310 P
-0.27 (fer o) 98.85 310 P
-0.27 (v) 120.71 310 P
-0.27 (er a delayed allocation e) 126.54 310 P
-0.27 (xtent is pick) 241.89 310 P
-0.27 (ed up by an xfsd to be \337ushed out and is passed to) 299.89 310 P
(xfs_strat_write\050\051. Then we tak) 72 296 T
(e the follo) 217.18 296 T
(wing steps:) 265.54 296 T
3 F
(\245) 72 276 T
1 F
(Acquire the inode lock e) 85.75 276 T
(xclusi) 203.54 276 T
(v) 231.9 276 T
(ely) 237.73 276 T
(.) 251.61 276 T
3 F
(\245) 72 256 T
1 F
(While re) 85.75 256 T
(gion locks o) 127.22 256 T
(v) 185.71 256 T
(erlapping our b) 191.52 256 T
(uf) 264.61 256 T
(fer e) 274.3 256 T
(xist: drop the inode lock; sleep on the re) 295.77 256 T
(gion lock;) 488.24 256 T
(reacquire the inode lock and check ag) 85.75 242 T
(ain.) 266.96 242 T
3 F
(\245) 72 222 T
1 F
(Once we kno) 85.75 222 T
(w that we don\325) 148.76 222 T
(t o) 220.19 222 T
(v) 232.35 222 T
(erlap a re) 238.17 222 T
(gion, we determine the layout of the e) 282.63 222 T
(xtents underly-) 464.42 222 T
(ing our b) 85.75 208 T
(uf) 128.84 208 T
(fer by calling xfs_bmapi\050\051 as if we were going to read. The underlying e) 138.53 208 T
(xtents can) 484.94 208 T
(be an) 85.75 194 T
(y mix of real and delayed allocation e) 111.22 194 T
(xtents.) 292 194 T
3 F
(\245) 72 174 T
1 F
-0.27 (If there are an) 85.75 174 P
-0.27 (y delayed allocation e) 151.7 174 P
-0.27 (xtents underlying our b) 255.68 174 P
-0.27 (uf) 366.27 174 P
-0.27 (fer) 375.97 174 P
-0.27 (, then create a re) 388.81 174 P
-0.27 (gion lock from) 466.49 174 P
(the start of the \336rst delayed allocation e) 85.75 160 T
(xtent to the end of the last one. W) 275.2 160 T
(e can ASSER) 436.55 160 T
(T that) 501.16 160 T
-0.05 (this does not o) 85.75 146 P
-0.05 (v) 155.08 146 P
-0.05 (erlap an) 160.9 146 P
-0.05 (y other re) 198.99 146 P
-0.05 (gion locks, e) 244.69 146 P
-0.05 (v) 305.28 146 P
-0.05 (en if the re) 311.1 146 P
-0.05 (gion lock we get e) 362.41 146 P
-0.05 (xtends be) 450.01 146 P
-0.05 (yond the) 495.44 146 P
(bounds of our b) 85.75 132 T
(uf) 161.16 132 T
(fer) 170.86 132 T
(.) 183.52 132 T
3 F
(\245) 72 112 T
1 F
-0.3 (Allocate a block zero item that can store the number of delayed allocation e) 85.75 112 P
-0.3 (xtents we are going) 444.56 112 P
(to mak) 85.75 98 T
(e real.) 118.62 98 T
FMENDPAGE
%%EndPage: "2" 2
%%Page: "3" 3
612 792 0 FMBEGINPAGE
[0 0 0 1 0 0 0]
[ 0 1 1 0 1 0 0]
[ 1 0 1 0 0 1 0]
[ 1 1 0 0 0 0 1]
[ 1 0 0 0 0 1 1]
[ 0 1 0 0 1 0 1]
[ 0 0 1 0 1 1 0]
7 FrameSetSepColors
FrameNoSep
0 0 0 1 0 0 0 K
0 0 0 1 0 0 0 K
0 0 0 1 0 0 0 K
0 0 0 1 0 0 0 K
0 8 Q
0 X
0 0 0 1 0 0 0 K
(Silicon Graphics Pr) 72 750.67 T
(oprietary) 139.61 750.67 T
72 54 540 54 2 L
0.25 H
2 Z
N
(xFS Block Zer) 72 42.62 T
(oing Mechanism) 120.54 42.62 T
(August 2, 1994) 261.84 42.62 T
(3) 500 42.62 T
3 12 Q
(\245) 72 712 T
1 F
-0.15 (F) 85.75 712 P
-0.15 (or each delayed allocation e) 92.24 712 P
-0.15 (xtent underlying our b) 225.42 712 P
-0.15 (uf) 331.72 712 P
-0.15 (fer: start a transaction or inherit the trans-) 341.42 712 P
(action from11 the pre) 85.75 698 T
(vious loop; add the inode to the transaction; call xfs_bmapi\050\051 to con) 189.09 698 T
(v) 513.58 698 T
(ert) 519.4 698 T
-0.43 (the delayed allocation e) 85.75 684 P
-0.43 (xtent to a real e) 197.92 684 P
-0.43 (xtent; add the re) 270.01 684 P
-0.43 (gion for this delayed allocation e) 346.2 684 P
-0.43 (xtent to) 501.52 684 P
(the BZ item and add it to the transaction; and commit the transaction. W) 85.75 670 T
(e use a permanent log) 432.09 670 T
-0.16 (reserv) 85.75 656 P
-0.16 (ation transaction for this loop and al) 114.76 656 P
-0.16 (w) 287.03 656 P
-0.16 (ays relog the inode and BZ item with each commit) 295.57 656 P
(in order to guarantee that we don\325) 85.75 642 T
(t run out of log space.) 248.15 642 T
3 F
(\245) 72 622 T
1 F
(Zero an) 85.75 622 T
(y portions of space which we allocated abo) 122.55 622 T
(v) 329.32 622 T
(e b) 335.14 622 T
(ut were not delayed allocation e) 349.23 622 T
(xtents) 502.01 622 T
-0.03 (when we started. These will only occur because of \336x) 85.75 608 P
-0.03 (ed size e) 343.25 608 P
-0.03 (xtents and real time e) 384.33 608 P
-0.03 (xtents. W) 486.69 608 P
-0.03 (e) 531.7 608 P
-0.09 (need to zero them before dropping the inode lock since there is not data in memory for the cor-) 85.75 594 P
(responding blocks, the blocks on disk are full of g) 85.75 580 T
(arbage, and once the inode lock is dropped) 325.66 580 T
(the blocks become visible for reading.) 85.75 566 T
3 F
(\245) 72 546 T
1 F
(Drop the inode lock.) 85.75 546 T
3 F
(\245) 72 526 T
1 F
(Map out the re) 85.75 526 T
(gion co) 155.88 526 T
(v) 191.37 526 T
(ered by our b) 197.19 526 T
(uf) 260.6 526 T
(fer and its underlying delayed allocation e) 270.29 526 T
(xtents. F) 472.07 526 T
(or) 513.23 526 T
-0.3 (e) 85.75 512 P
-0.3 (xtents which underlie our b) 90.89 512 P
-0.3 (uf) 220.75 512 P
-0.3 (fer) 230.45 512 P
-0.3 (, write out the corresponding portion of the b) 243.29 512 P
-0.3 (uf) 456.25 512 P
-0.3 (fer) 465.95 512 P
-0.3 (. F) 478.61 512 P
-0.3 (or e) 490.8 512 P
-0.3 (xtents) 508.64 512 P
(which we allocated b) 85.75 498 T
(ut are not encompassed by our b) 187.15 498 T
(uf) 342.21 498 T
(fer) 351.9 498 T
(, allocate and write out a b) 364.74 498 T
(uf) 491.48 498 T
(fer of) 501.17 498 T
(zeros. As we write the b) 85.75 484 T
(uf) 201.47 484 T
(fers chain them together so that we can w) 211.17 484 T
(ait for them later) 410.33 484 T
(.) 489.99 484 T
3 F
(\245) 72 464 T
1 F
(W) 85.75 464 T
(ait for all of the b) 96.11 464 T
(uf) 179.52 464 T
(fers to complete their I/O.) 189.22 464 T
3 F
(\245) 72 444 T
1 F
-0.18 (Pull the BZ item from the AIL and or mark it such that it will not be added to the AIL when its) 85.75 444 P
(transactions commit.) 85.75 430 T
3 F
(\245) 72 410 T
1 F
(Drop the re) 85.75 410 T
(gion lock we acquired earlier) 140.21 410 T
(.) 279.51 410 T
3 F
(\245) 72 390 T
1 F
(Mak) 85.75 390 T
(e a transaction and log a don\325) 107.62 390 T
(t block zero \050DBZ\051 item corresponding to the BZ items) 248.71 390 T
-0.31 (logged earlier) 85.75 376 P
-0.31 (. W) 151.09 376 P
-0.31 (e use the pointer to the BZ item as a k) 167.15 376 P
-0.31 (e) 345.92 376 P
-0.31 (y to pair up the BZ and DBZ items. W) 351.07 376 P
-0.31 (e) 531.98 376 P
-0.33 (w) 85.75 362 P
-0.33 (ait until after logging the DBZ item to free the BZ item so that that k) 94.29 362 P
-0.33 (e) 418.86 362 P
-0.33 (y cannot be reused until) 424.01 362 P
(after the DBZ item is logged.) 85.75 348 T
3 F
(\245) 72 328 T
1 F
(Free the BZ item or mark it to be freed when its last transaction commits.) 85.75 328 T
2 14 Q
(3.2 Writing out) 72 294.67 T
( non delay) 166.89 294.67 T
(ed allocation b) 228.21 294.67 T
(uffers) 315.05 294.67 T
1 12 Q
(A b) 72 268 T
(uf) 89.42 268 T
(fer NO) 99.12 268 T
(T o) 132.29 268 T
(v) 148.44 268 T
(er a delayed allocation e) 154.26 268 T
(xtent comes through the xfs_strate) 270.71 268 T
(gy\050\051 code to be writ-) 435.84 268 T
(ten. Then we tak) 72 254 T
(e the follo) 151.86 254 T
(wing steps.) 200.22 254 T
3 F
(\245) 72 234 T
1 F
(Acquire the inode lock SHARED.) 85.75 234 T
3 F
(\245) 72 214 T
1 F
(While re) 85.75 214 T
(gion locks o) 127.22 214 T
(v) 185.71 214 T
(erlapping our b) 191.52 214 T
(uf) 264.61 214 T
(fer e) 274.3 214 T
(xist: drop the inode lock; sleep on the re) 295.77 214 T
(gion lock;) 488.24 214 T
-0.18 (reacquire the inode lock and check ag) 85.75 200 P
-0.18 (ain. The reason we do this is to ensure that if the underly-) 265.88 200 P
-0.07 (ing blocks are being zeroed we w) 85.75 186 P
-0.07 (ait for the zeros to mak) 245.82 186 P
-0.07 (e it to disk before sending out the real) 356.33 186 P
(data. W) 85.75 172 T
(e w) 122.11 172 T
(ouldn\325) 138.98 172 T
(t w) 170.09 172 T
(ant to reorder them.) 184.97 172 T
3 F
(\245) 72 152 T
1 F
(Drop the inode lock and send the b) 85.75 152 T
(uf) 253.15 152 T
(fer out to disk.) 262.84 152 T
FMENDPAGE
%%EndPage: "3" 3
%%Page: "4" 4
612 792 0 FMBEGINPAGE
[0 0 0 1 0 0 0]
[ 0 1 1 0 1 0 0]
[ 1 0 1 0 0 1 0]
[ 1 1 0 0 0 0 1]
[ 1 0 0 0 0 1 1]
[ 0 1 0 0 1 0 1]
[ 0 0 1 0 1 1 0]
7 FrameSetSepColors
FrameNoSep
0 0 0 1 0 0 0 K
0 0 0 1 0 0 0 K
0 0 0 1 0 0 0 K
0 0 0 1 0 0 0 K
0 8 Q
0 X
0 0 0 1 0 0 0 K
(Silicon Graphics Pr) 72 750.67 T
(oprietary) 139.61 750.67 T
72 54 540 54 2 L
0.25 H
2 Z
N
(xFS Block Zer) 72 42.62 T
(oing Mechanism) 120.54 42.62 T
(August 2, 1994) 261.84 42.62 T
(4) 500 42.62 T
2 14 Q
(3.3 Interaction with \336le truncation) 72 710.67 T
1 12 Q
(The truncate code will be changed to w) 72 684 T
(ait for an) 260.83 684 T
(y re) 303.97 684 T
(gion locks in the re) 322.12 684 T
(gion being freed to be) 413.93 684 T
(dropped before freeing the underlying e) 72 670 T
(xtents. This will ensure that we don\325) 262.76 670 T
(t free blocks which) 437.53 670 T
(are still being zeroed.) 72 656 T
2 14 Q
(3.4 Implementation r) 72 622.67 T
(equir) 201.63 622.67 T
(ements) 233.27 622.67 T
1 12 Q
-0.32 (The block zeroing mechanism requires se) 72 596 P
-0.32 (v) 269.74 596 P
-0.32 (eral small modi\336cations to the current implementation.) 275.56 596 P
(The) 72 582 T
(y are listed belo) 90.48 582 T
(w:) 166.5 582 T
3 F
(\245) 72 562 T
1 F
(Add a block zero item and a don\325) 85.75 562 T
(t block zero item to be logged to indicate blocks which may) 245.82 562 T
(need to be zeroed in the e) 85.75 548 T
(v) 208.07 548 T
(ent of a crash.) 213.89 548 T
3 F
(\245) 72 528 T
1 F
(Add a re) 85.75 528 T
(gion lock mechanism to the in-core inode to ensure the proper ordering of zeros and) 126.88 528 T
(data being written to disk. This allo) 85.75 514 T
(ws us to drop the inode lock while writing the zeros.) 255.77 514 T
3 F
(\245) 72 494 T
1 F
(Modify the b) 85.75 494 T
(uf) 148.17 494 T
(fer strate) 157.87 494 T
(gy path to use and recognize the inode re) 200 494 T
(gion locks.) 396.44 494 T
3 F
(\245) 72 474 T
1 F
(Modify the code in the \336le truncation path to recognize the inode re) 85.75 474 T
(gion locks.) 410.18 474 T
3 F
(\245) 72 454 T
1 F
(Add functionality to the reco) 85.75 454 T
(v) 224.21 454 T
(ery code to recognize and process BZ and DBZ items) 230.03 454 T
3 F
(\245) 72 434 T
1 F
-0.31 (Modify the xfs_bmapi\050\051 code to con) 85.75 434 P
-0.31 (v) 257.36 434 P
-0.31 (ert from delayed to real ONL) 263.18 434 P
-0.31 (Y the re) 400.72 434 P
-0.31 (gion speci\336ed by the) 438.58 434 P
(caller as opposed to the entire delayed allocation e) 85.75 420 T
(xtent) 327.51 420 T
-0.39 (All together these pieces incorporate a complete block zeroing solution. Each of the pieces will be) 72 394 P
(discussed in more detail in the follo) 72 380 T
(wing sections.) 243.02 380 T
2 F
(3.4.1 Block Zer) 72 348 T
(o and Don\325t Block Zer) 152.78 348 T
(o Items) 267.24 348 T
1 F
(The block zero \050BZ\051 and don\325) 72 322 T
(t block zero \050DBZ\051 log items will be placed in the on disk log to) 215.41 322 T
(indicate that a portion of a \336le should be zeroed or no longer needs to be zeroed in the f) 72 308 T
(ace of a) 491.46 308 T
-0.05 (system crash. The BZ item will contain an array of ranges of blocks to be zeroed or not zeroed in) 72 294 P
(the on disk image. The BZ and DBZ items will both contain an inode number) 72 280 T
(, inode generation) 443.83 280 T
(number) 72 266 T
(, and the pointer to the DBZ item as a k) 108.18 266 T
(e) 297.71 266 T
(y binding the tw) 302.86 266 T
(o items in the log.) 381.07 266 T
(In memory the BZ item will adhere to the standard log item format. Its pri) 72 240 T
(v) 427.33 240 T
(ate \336elds will include:) 433.03 240 T
3 F
(\245) 72 220 T
1 F
(An array of of) 85.75 220 T
(fset length pairs to indicate what ranges of the \336le must be zeroed.) 153.75 220 T
3 F
(\245) 72 200 T
1 F
(A count of the number of entries in the array which are currently v) 85.75 200 T
(alid.) 405.03 200 T
3 F
(\245) 72 180 T
1 F
(A count of the total number of entries.) 85.75 180 T
(Once it is logged, a BZ item will be placed in the AIL with the lsn of its transaction. It will only) 72 154 T
(mo) 72 140 T
(v) 87.16 140 T
(e forw) 92.98 140 T
(ard in the AIL when it is relogged. It will not be able to be pushed. It will only be) 123.84 140 T
(remo) 72 126 T
(v) 96.48 126 T
(ed from the AIL when the re) 102.3 126 T
(gion it describes has been entirely \337ushed out or zeroed. It is) 239.41 126 T
(important that the BZ item is remo) 72 112 T
(v) 238.49 112 T
(ed from the AIL before the DBZ item is logged, because we) 244.31 112 T
(may not be able to obtain a log reserv) 72 98 T
(ation to log the DBZ item until the BZ item has been) 252.34 98 T
(remo) 72 84 T
(v) 96.48 84 T
(ed from the AIL.) 102.3 84 T
FMENDPAGE
%%EndPage: "4" 4
%%Page: "5" 5
612 792 0 FMBEGINPAGE
[0 0 0 1 0 0 0]
[ 0 1 1 0 1 0 0]
[ 1 0 1 0 0 1 0]
[ 1 1 0 0 0 0 1]
[ 1 0 0 0 0 1 1]
[ 0 1 0 0 1 0 1]
[ 0 0 1 0 1 1 0]
7 FrameSetSepColors
FrameNoSep
0 0 0 1 0 0 0 K
0 0 0 1 0 0 0 K
0 0 0 1 0 0 0 K
0 0 0 1 0 0 0 K
0 8 Q
0 X
0 0 0 1 0 0 0 K
(Silicon Graphics Pr) 72 750.67 T
(oprietary) 139.61 750.67 T
72 54 540 54 2 L
0.25 H
2 Z
N
(xFS Block Zer) 72 42.62 T
(oing Mechanism) 120.54 42.62 T
(August 2, 1994) 261.84 42.62 T
(5) 500 42.62 T
1 12 Q
-0.12 (The DBZ items will ne) 72 712 P
-0.12 (v) 181.9 712 P
-0.12 (er be entered into the AIL. As soon as the) 187.72 712 P
-0.12 (y ha) 386.44 712 P
-0.12 (v) 406.41 712 P
-0.12 (e been logged to disk the) 412.23 712 P
-0.12 (y) 531.12 712 P
-0.33 (are no longer needed, because it is guaranteed that the DBZ item will not be o) 72 698 P
-0.33 (v) 440.83 698 P
-0.33 (erwritten in the log) 446.65 698 P
-0.18 (until after its corresponding BZ item has been o) 72 684 P
-0.18 (v) 299.68 684 P
-0.18 (erwritten. The on disk image of the BZ item will) 305.5 684 P
-0.42 (identify its corresponding DBZ item by the using the in memory BZ item pointer as a k) 72 670 P
-0.42 (e) 484.52 670 P
-0.42 (y) 489.66 670 P
-0.42 (. W) 494.88 670 P
-0.42 (e will) 510.83 670 P
(guarantee that the BZ item is not reused until after the DBZ item has been committed.) 72 656 T
2 F
(3.4.2 Inode Region Locks) 72 624 T
1 F
(Re) 72 598 T
(gion locks will be used to control access to portions of a \336le while the) 85.15 598 T
(y are being con) 420.28 598 T
(v) 493.44 598 T
(erted) 499.26 598 T
(from delayed allocation to real e) 72 584 T
(xtents as described abo) 227.45 584 T
(v) 338.24 584 T
(e. Each lock will be described by a data) 344.06 584 T
(structure containing:) 72 570 T
3 F
(\245) 72 550 T
1 F
(An of) 85.75 550 T
(fset and length in \336le system blocks) 113.11 550 T
3 F
(\245) 72 530 T
1 F
(A spinlock used to synchronize going to sleep on the lock) 85.75 530 T
3 F
(\245) 72 510 T
1 F
(A count of the number of procs sleeping on the lock) 85.75 510 T
3 F
(\245) 72 490 T
1 F
(F) 85.75 490 T
(orw) 92.24 490 T
(ard and backw) 110.78 490 T
(ard pointers for the lock list) 180.63 490 T
-0.35 (In addition, all re) 72 464 P
-0.35 (gion locks for a gi) 153.43 464 P
-0.35 (v) 239.07 464 P
-0.35 (en inode will use a single semaphore pointed to by the in core) 244.89 464 P
(inode structure. The common sleeping semaphore for all the re) 72 450 T
(gion locks will be used to reduce) 373.09 450 T
(the amount of memory used by the locks and to solv) 72 436 T
(e the problem of when the semaphore itself) 323.14 436 T
(can be freed. Speci\336cally) 72 422 T
(, the problem is that the processes w) 192.52 422 T
(aking up on the semaphore actually) 366.37 422 T
(reference it, so it cannot be freed until all of the sleepers ha) 72 408 T
(v) 356.02 408 T
(e left the semaphore code. Also, the) 361.84 408 T
(common semaphore will be dynamically allocated separately from the inode so that we only use) 72 394 T
(the semaphore memory when necessary) 72 380 T
(. The semaphore will be freed when the inode is e) 262.5 380 T
(v) 501.14 380 T
(entu-) 506.96 380 T
(ally freed.) 72 366 T
-0.02 (Since there is no w) 72 340 P
-0.02 (ay to atomically drop a multi-reader lock \050the inode lock\051 and go to sleep on a) 163.11 340 P
(semaphore, the follo) 72 326 T
(wing sequence will be used to go to sleep on a re) 170.02 326 T
(gion lock:) 404.8 326 T
3 F
(\245) 72 306 T
1 F
(Acquire the inode lock e) 85.75 306 T
(xclusi) 203.54 306 T
(v) 231.9 306 T
(ely) 237.73 306 T
3 F
(\245) 72 286 T
1 F
(Find the re) 85.75 286 T
(gion lock on which we\325) 137.56 286 T
(re going to sleep, if it is not there then there is no need to) 250.28 286 T
(sleep) 85.75 272 T
3 F
(\245) 72 252 T
1 F
(Acquire the re) 85.75 252 T
(gion lock spin lock) 154.21 252 T
3 F
(\245) 72 232 T
1 F
(Bump the count of sleeping processes on the re) 85.75 232 T
(gion lock) 312.2 232 T
3 F
(\245) 72 212 T
1 F
(Drop the inode lock) 85.75 212 T
3 F
(\245) 72 192 T
1 F
(Use the spunlock_psema\050\051 routine to atomically drop the spinlock and go to sleep on the) 85.75 192 T
(inode\325) 85.75 178 T
(s semaphore) 115.75 178 T
(W) 72 152 T
(aking up the processes sleeping on a re) 82.37 152 T
(gion lock will require:) 269.15 152 T
3 F
(\245) 72 132 T
1 F
(Acquire the inode lock e) 85.75 132 T
(xclusi) 203.54 132 T
(v) 231.9 132 T
(ely) 237.73 132 T
3 F
(\245) 72 112 T
1 F
(If the sleep count in the re) 85.75 112 T
(gion lock is zero then there is nothing to do and the re) 210.87 112 T
(gion lock can) 469.33 112 T
(be freed) 85.75 98 T
3 F
(\245) 72 78 T
1 F
(Acquire the spin lock in the re) 85.75 78 T
(gion lock to ensure that noone is in the process of going to sleep) 230.87 78 T
FMENDPAGE
%%EndPage: "5" 5
%%Page: "6" 6
612 792 0 FMBEGINPAGE
[0 0 0 1 0 0 0]
[ 0 1 1 0 1 0 0]
[ 1 0 1 0 0 1 0]
[ 1 1 0 0 0 0 1]
[ 1 0 0 0 0 1 1]
[ 0 1 0 0 1 0 1]
[ 0 0 1 0 1 1 0]
7 FrameSetSepColors
FrameNoSep
0 0 0 1 0 0 0 K
0 0 0 1 0 0 0 K
0 0 0 1 0 0 0 K
0 0 0 1 0 0 0 K
0 8 Q
0 X
0 0 0 1 0 0 0 K
(Silicon Graphics Pr) 72 750.67 T
(oprietary) 139.61 750.67 T
72 54 540 54 2 L
0.25 H
2 Z
N
(xFS Block Zer) 72 42.62 T
(oing Mechanism) 120.54 42.62 T
(August 2, 1994) 261.84 42.62 T
(6) 500 42.62 T
3 12 Q
(\245) 72 712 T
1 F
(Remo) 85.75 712 T
(v) 114.23 712 T
(e the re) 120.05 712 T
(gion lock structure from the inode\325) 155.19 712 T
(s list) 322.17 712 T
3 F
(\245) 72 692 T
1 F
(W) 85.75 692 T
(ak) 96.11 692 T
(e up all processes sleeping on the inode\325) 107.32 692 T
(s semaphore) 300.29 692 T
-0.24 (Since we w) 72 666 P
-0.24 (ak) 126.71 666 P
-0.24 (e up all the processes sleeping for an) 137.92 666 P
-0.24 (y re) 312.33 666 P
-0.24 (gion lock whene) 330.23 666 P
-0.24 (v) 408.77 666 P
-0.24 (er one is released, the pro-) 414.59 666 P
(cesses which ha) 72 652 T
(v) 148.4 652 T
(e a) 154.22 652 T
(w) 167.7 652 T
(ok) 176.24 652 T
(en must check to see if the) 188.12 652 T
(y can no) 315.25 652 T
(w run. T) 355.61 652 T
(o do so the) 395.64 652 T
(y must repeat the) 447.79 652 T
-0.13 (steps described abo) 72 638 P
-0.13 (v) 164.87 638 P
-0.13 (e used to go to sleep in the \336rst place. This scheme may cause some unneces-) 170.69 638 P
(sary w) 72 624 T
(ak) 103.54 624 T
(eups, b) 114.74 624 T
(ut the number of re) 148.5 624 T
(gion locks and processes sleeping on re) 240.3 624 T
(gion locks should) 429.42 624 T
(al) 72 610 T
(w) 80.54 610 T
(ays be small. This is because the re) 89.09 610 T
(gion locks are limited in use to the xfsds, processes trying) 257.54 610 T
(to truncate the \336le, and other processes pushing out dirty b) 72 596 T
(uf) 352.73 596 T
(fers.) 362.42 596 T
2 16 Q
(4.0 Conclusion) 72 555.33 T
1 12 Q
(This paper presents a solution to the block zeroing problem for xFS. It is not a great solution per-) 72 528 T
-0.03 (formance wise, b) 72 514 P
-0.03 (ut there is plenty of room for optimization. Basically) 154.01 514 P
-0.03 (, optimizations will in) 406 514 P
-0.03 (v) 510.78 514 P
-0.03 (olv) 516.54 514 P
-0.03 (e) 531.7 514 P
-0.15 (searching the chunk cache for b) 72 500 P
-0.15 (uf) 223.3 500 P
-0.15 (fers which o) 232.99 500 P
-0.15 (v) 291.83 500 P
-0.15 (erlap the re) 297.65 500 P
-0.15 (gions we\325) 351.15 500 P
-0.15 (re going to write zeros to and) 397.4 500 P
(writing the cached b) 72 486 T
(uf) 169.4 486 T
(fer instead. This, along with better b) 179.1 486 T
(uf) 352.84 486 T
(fer clustering algorithms will mini-) 362.53 486 T
(mize the number of zeros we actually write to disk.) 72 472 T
(Coming up with a design which w) 72 446 T
(orks within the restrictions of our transaction, locking, chunk) 236.54 446 T
(cache, and delayed allocation mechanisms is much trickier than I originally e) 72 432 T
(xpected. Belo) 442.42 432 T
(w are) 508.1 432 T
(listed some of the interesting \322rules\323 encountered during the design process:) 72 418 T
(1.) 72 398 T
(W) 85.75 398 T
(e really can\325) 96.11 398 T
(t acquire locks before getting log reserv) 155.2 398 T
(ations.) 345.52 398 T
(2.) 72 378 T
-0.18 (An) 85.75 378 P
-0.18 (y lock which we do acquire before getting a log reserv) 100.23 378 P
-0.18 (ation must al) 359.38 378 P
-0.18 (w) 420.89 378 P
-0.18 (ays be acquired before) 429.44 378 P
-0.46 (getting the log reserv) 85.75 364 P
-0.46 (ation and must not be dropped until the transaction or sequence of chained) 185.71 364 P
(transactions it is a part of is complete. Otherwise we end up with lock v) 85.75 350 T
(ersus log space dead-) 429.18 350 T
(locks. In other w) 85.75 336 T
(ords, in a sequence of chained transactions al) 166.28 336 T
(w) 382.77 336 T
(ays hold on to your locks.) 391.31 336 T
(3.) 72 316 T
(When something is placed in the log which cannot simply be \337ushed out \050e.g. a BZ item\051 we) 85.75 316 T
(must ensure that the process which placed it there will remo) 85.75 302 T
(v) 373.52 302 T
(e it in the same sequence of) 379.34 302 T
(instructions. Lea) 85.75 288 T
(ving it there to be processed in an asynchronous f) 165.5 288 T
(ashion is v) 403 288 T
(ery) 454.16 288 T
(, v) 468.7 288 T
(ery danger-) 480.52 288 T
-0.04 (ous. W) 85.75 274 P
-0.04 (e al) 118.74 274 P
-0.04 (w) 135.58 274 P
-0.04 (ays tend to lose our locks or the log space necessary to remo) 144.12 274 P
-0.04 (v) 433.43 274 P
-0.04 (e it, and then we run) 439.25 274 P
(out of log space.) 85.75 260 T
(4.) 72 240 T
(A daemon which is responsible for performing a certain action \050e.g. \337ushing out b) 85.75 240 T
(uf) 479.78 240 T
(fers\051 can-) 489.47 240 T
(not w) 85.75 226 T
(ait for that action on another object to complete, because it is usually the case the that) 112.62 226 T
(daemon will be w) 85.75 212 T
(aiting for itself.) 171.28 212 T
(5.) 72 192 T
(T) 85.75 192 T
(ransactions must be acti) 92.66 192 T
(v) 207.34 192 T
(e. W) 213.16 192 T
(aiting for an asynchronous e) 234.86 192 T
(v) 370.53 192 T
(ent to occur in the middle of a) 376.35 192 T
(transaction or sequence of chained transactions is dangerous. All of the log space tends to get) 85.75 178 T
(used up while you\325) 85.75 164 T
(re w) 176.8 164 T
(aiting.) 197.67 164 T
FMENDPAGE
%%EndPage: "6" 6
%%Trailer
%%BoundingBox: 0 0 612 792
%%PageOrder: Ascend
%%Pages: 6
%%DocumentFonts: Palatino-Roman
%%+ Times-Roman
%%+ Times-Bold
%%+ Courier-Bold
%%EOF