[BACK]Return to xfs_super.c CVS log [TXT][DIR] Up to [Development] / xfs-linux / linux-2.4

File: [Development] / xfs-linux / linux-2.4 / Attic / xfs_super.c (download)

Revision 1.335, Wed Feb 7 02:50:13 2007 UTC (10 years, 8 months ago) by dgc.longdrop.melbourne.sgi.com
Branch: MAIN
Changes since 1.334: +0 -2 lines

Remove unused header files for MAC and CAP checking functionality.

xfs_mac.h and xfs_cap.h provide definitions and macros that aren't
used anywhere in XFS at all. They are left-overs from "to be implement
at some point in the future" functionality that Irix XFS has. If this
functionality ever goes into Linux, it will be provided at a different
layer, most likely through the security hooks in the kernel so we will
never need this functionality in XFS.

Patch provided by Eric Sandeen (sandeen@sandeen.net).
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Merge of xfs-linux-melb:xfs-kern:28036a by kenmcd.

  Remove unused xfs_cap.h/xfs_mac.h header files.
  Signed-off-by: Eric Sandeen <sandeen@sandeen.net>

/*
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */
#include "xfs.h"
#include "xfs_bit.h"
#include "xfs_log.h"
#include "xfs_clnt.h"
#include "xfs_inum.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_dir2.h"
#include "xfs_alloc.h"
#include "xfs_dmapi.h"
#include "xfs_quota.h"
#include "xfs_mount.h"
#include "xfs_export.h"
#include "xfs_bmap_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_dir2_sf.h"
#include "xfs_attr_sf.h"
#include "xfs_dinode.h"
#include "xfs_inode.h"
#include "xfs_bmap.h"
#include "xfs_btree.h"
#include "xfs_ialloc.h"
#include "xfs_rtalloc.h"
#include "xfs_error.h"
#include "xfs_itable.h"
#include "xfs_rw.h"
#include "xfs_acl.h"
#include "xfs_attr.h"
#include "xfs_buf_item.h"
#include "xfs_utils.h"
#include "xfs_version.h"
#include "xfs_ioctl32.h"

#include <linux/init.h>

static struct quotactl_ops xfs_quotactl_operations;
static struct super_operations xfs_super_operations;
static kmem_zone_t *xfs_vnode_zone;

STATIC struct xfs_mount_args *
xfs_args_allocate(
	struct super_block	*sb,
	int			silent)
{
	struct xfs_mount_args	*args;

	args = kmem_zalloc(sizeof(struct xfs_mount_args), KM_SLEEP);
	args->logbufs = args->logbufsize = -1;
	strncpy(args->fsname, bdevname(sb->s_dev), MAXNAMELEN);

	/* Copy the already-parsed mount(2) flags we're interested in */
	if (sb->s_flags & MS_SYNCHRONOUS)
		args->flags |= XFSMNT_WSYNC;
	if (silent)
		args->flags |= XFSMNT_QUIET;
	args->flags |= XFSMNT_32BITINODES;

	return args;
}

__uint64_t
xfs_max_file_offset(
	unsigned int		blockshift)
{
	unsigned int		pagefactor = 1;
	unsigned int		bitshift = BITS_PER_LONG - 1;

	/* Figure out maximum filesize, on Linux this can depend on
	 * the filesystem blocksize (on 32 bit platforms).
	 * __block_prepare_write does this in an [unsigned] long...
	 *      page->index << (PAGE_CACHE_SHIFT - bbits)
	 * So, for page sized blocks (4K on 32 bit platforms),
	 * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
	 *      (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
	 * but for smaller blocksizes it is less (bbits = log2 bsize).
	 * Note1: get_block_t takes a long (implicit cast from above)
	 * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
	 * can optionally convert the [unsigned] long from above into
	 * an [unsigned] long long.
	 */

#if BITS_PER_LONG == 32
# if defined(CONFIG_LBD)
	ASSERT(sizeof(sector_t) == 8);
	pagefactor = PAGE_CACHE_SIZE;
	bitshift = BITS_PER_LONG;
# else
	pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift);
# endif
#endif

	return (((__uint64_t)pagefactor) << bitshift) - 1;
}

STATIC_INLINE void
xfs_set_inodeops(
	struct inode		*inode)
{
	switch (inode->i_mode & S_IFMT) {
	case S_IFREG:
		inode->i_op = &xfs_inode_operations;
		inode->i_fop = &xfs_file_operations;
		inode->i_mapping->a_ops = &xfs_address_space_operations;
		break;
	case S_IFDIR:
		inode->i_op = &xfs_dir_inode_operations;
		inode->i_fop = &xfs_dir_file_operations;
		break;
	case S_IFLNK:
		inode->i_op = &xfs_symlink_inode_operations;
		if (inode->i_blocks)
			inode->i_mapping->a_ops = &xfs_address_space_operations;
		break;
	default:
		inode->i_op = &xfs_inode_operations;
		init_special_inode(inode, inode->i_mode,
					kdev_t_to_nr(inode->i_rdev));
		break;
	}
}

STATIC_INLINE void
xfs_revalidate_inode(
	xfs_mount_t		*mp,
	bhv_vnode_t		*vp,
	xfs_inode_t		*ip)
{
	struct inode		*inode = vn_to_inode(vp);

	inode->i_mode	= ip->i_d.di_mode;
	inode->i_nlink	= ip->i_d.di_nlink;
	inode->i_uid	= ip->i_d.di_uid;
	inode->i_gid	= ip->i_d.di_gid;

	switch (inode->i_mode & S_IFMT) {
	case S_IFBLK:
	case S_IFCHR:
		inode->i_rdev = XFS_DEV_TO_KDEVT(ip->i_df.if_u2.if_rdev);
		break;
	default:
		inode->i_rdev = NODEV;
		break;
  	}

	inode->i_blksize = xfs_preferred_iosize(mp);
	inode->i_generation = ip->i_d.di_gen;
	i_size_write(inode, ip->i_d.di_size);
	inode->i_blocks =
		XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks);
	inode->i_atime	= ip->i_d.di_atime.t_sec;
	inode->i_mtime	= ip->i_d.di_mtime.t_sec;
	inode->i_ctime	= ip->i_d.di_ctime.t_sec;
	if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE)
		inode->i_flags |= S_IMMUTABLE;
	else
		inode->i_flags &= ~S_IMMUTABLE;
	if (ip->i_d.di_flags & XFS_DIFLAG_APPEND)
		inode->i_flags |= S_APPEND;
	else
		inode->i_flags &= ~S_APPEND;
	if (ip->i_d.di_flags & XFS_DIFLAG_SYNC)
		inode->i_flags |= S_SYNC;
	else
		inode->i_flags &= ~S_SYNC;
	if (ip->i_d.di_flags & XFS_DIFLAG_NOATIME)
		inode->i_flags |= S_NOATIME;
	else
		inode->i_flags &= ~S_NOATIME;

	vp->v_flag &= ~VMODIFIED;
}

void
xfs_initialize_vnode(
	bhv_desc_t		*bdp,
	bhv_vnode_t		*vp,
	bhv_desc_t		*inode_bhv,
	int			unlock)
{
	xfs_inode_t		*ip = XFS_BHVTOI(inode_bhv);
	struct inode		*inode = vn_to_inode(vp);

	if (!inode_bhv->bd_vobj) {
		vp->v_vfsp = bhvtovfs(bdp);
		bhv_desc_init(inode_bhv, ip, vp, &xfs_vnodeops);
		bhv_insert(VN_BHV_HEAD(vp), inode_bhv);
	}

	/*
	 * We need to set the ops vectors, and unlock the inode, but if
	 * we have been called during the new inode create process, it is
	 * too early to fill in the Linux inode.  We will get called a
	 * second time once the inode is properly set up, and then we can
	 * finish our work.
	 */
	if (ip->i_d.di_mode != 0 && unlock && (inode->i_state & I_NEW)) {
		xfs_revalidate_inode(XFS_BHVTOM(bdp), vp, ip);
		xfs_set_inodeops(inode);

		ip->i_flags &= ~XFS_INEW;
		barrier();

		unlock_new_inode(inode);
	}
}

struct inode *
xfs_get_inode(
	bhv_desc_t	*bdp,
	xfs_ino_t	ino,
	int		flags)
{
	struct bhv_vfs	*vfsp = bhvtovfs(bdp);

	return iget_locked(vfsp->vfs_super, ino);
}

struct dentry *
d_alloc_anon(struct inode *inode)
{
	struct dentry *dentry;

	spin_lock(&dcache_lock);
	list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
		if (!(dentry->d_flags & DCACHE_NFSD_DISCONNECTED))
			goto found;
	}
	spin_unlock(&dcache_lock);

	dentry = d_alloc_root(inode);
	if (likely(dentry != NULL))
		dentry->d_flags |= DCACHE_NFSD_DISCONNECTED;
	return dentry;
 found:
	dget_locked(dentry);
	dentry->d_vfs_flags |= DCACHE_REFERENCED;
	spin_unlock(&dcache_lock);
	iput(inode);
	return dentry;
}

/*ARGSUSED*/
int
xfs_blkdev_get(
	xfs_mount_t		*mp,
	const char		*name,
	struct block_device	**bdevp)
{
	struct nameidata	nd;
	int			error;

	error = path_lookup(name, LOOKUP_POSITIVE|LOOKUP_FOLLOW, &nd);
	if (error) {
		printk("XFS: Invalid device [%s], error=%d\n", name, error);
		return -error;
	}

	/* I think we actually want bd_acquire here..  --hch */
	*bdevp = bdget(kdev_t_to_nr(nd.dentry->d_inode->i_rdev));
	if (*bdevp)
		error = blkdev_get(*bdevp, FMODE_READ|FMODE_WRITE, 0, BDEV_FS);
	else
		error = -ENOMEM;

	path_release(&nd);
	return -error;
}

void
xfs_blkdev_put(
	struct block_device	*bdev)
{
	if (bdev)
		blkdev_put(bdev, BDEV_FS);
}

void
xfs_mountfs_check_barriers(xfs_mount_t *mp)
{
	xfs_fs_cmn_err(CE_NOTE, mp,
	  "Write barriers not supported on Linux 2.4");
	mp->m_flags &= ~XFS_MOUNT_BARRIER;
}

void
xfs_blkdev_issue_flush(
	xfs_buftarg_t		*buftarg)
{
}

STATIC struct inode *
xfs_fs_alloc_inode(
	struct super_block	*sb)
{
	bhv_vnode_t		*vp;

	vp = (bhv_vnode_t *)kmem_zone_alloc(xfs_vnode_zone, KM_SLEEP);
	if (unlikely(!vp))
		return NULL;
	return vn_to_inode(vp);
}

STATIC void
xfs_fs_destroy_inode(
	struct inode		*inode)
{
	kmem_zone_free(xfs_vnode_zone, vn_from_inode(inode));
}

#define VNODE_SIZE	\
	(sizeof(bhv_vnode_t) - sizeof(struct inode) + offsetof(struct inode, u))

STATIC void
xfs_fs_inode_init_once(
	void			*vnode,
	kmem_zone_t		*zonep,
	unsigned long		flags)
{
	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
		      SLAB_CTOR_CONSTRUCTOR) {
		memset(vnode, 0, VNODE_SIZE);
		__inode_init_once(vn_to_inode((bhv_vnode_t *)vnode));
	}
}

STATIC int
xfs_init_inodecache( void )
{
	xfs_vnode_zone = kmem_zone_init_flags(VNODE_SIZE, "xfs_vnode",
					KM_ZONE_HWALIGN | KM_ZONE_RECLAIM,
					xfs_fs_inode_init_once);
	if (!xfs_vnode_zone)
		return -ENOMEM;
	return 0;
}

STATIC void
xfs_destroy_inodecache( void )
{
	kmem_zone_destroy(xfs_vnode_zone);
}

/*
 * Attempt to flush the inode, this will actually fail
 * if the inode is pinned, but we dirty the inode again
 * at the point when it is unpinned after a log write,
 * since this is when the inode itself becomes flushable.
 */
STATIC void
xfs_fs_write_inode(
	struct inode		*inode,
	int			sync)
{
	bhv_vnode_t		*vp = vn_from_inode(inode);
	int			error, flags = FLUSH_INODE;

	if (vp) {
		vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);
		if (sync)
			flags |= FLUSH_SYNC;
		error = bhv_vop_iflush(vp, flags);
		if (error == EAGAIN)
			error = sync? bhv_vop_iflush(vp, flags | FLUSH_LOG) : 0;
	}
}

STATIC void
xfs_fs_clear_inode(
	struct inode		*inode)
{
	bhv_vnode_t		*vp = vn_from_inode(inode);

	vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);

	XFS_STATS_INC(vn_rele);
	XFS_STATS_INC(vn_remove);
	XFS_STATS_INC(vn_reclaim);
	XFS_STATS_DEC(vn_active);

	/*
	 * This can happen because xfs_iget_core calls xfs_idestroy if we
	 * find an inode with di_mode == 0 but without IGET_CREATE set.
	 */
	if (VNHEAD(vp))
		bhv_vop_inactive(vp, NULL);

	VN_LOCK(vp);
	vp->v_flag &= ~VMODIFIED;
	VN_UNLOCK(vp, 0);

	if (VNHEAD(vp))
		if (bhv_vop_reclaim(vp))
			panic("%s: cannot reclaim 0x%p\n", __FUNCTION__, vp);

	ASSERT(VNHEAD(vp) == NULL);

#ifdef XFS_VNODE_TRACE
	ktrace_free(vp->v_trace);
#endif
}

/*
 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
 * Doing this has two advantages:
 * - It saves on stack space, which is tight in certain situations
 * - It can be used (with care) as a mechanism to avoid deadlocks.
 * Flushing while allocating in a full filesystem requires both.
 */
STATIC void
xfs_syncd_queue_work(
	struct bhv_vfs	*vfs,
	void		*data,
	void		(*syncer)(bhv_vfs_t *, void *))
{
	bhv_vfs_sync_work_t	*work;

	work = kmem_alloc(sizeof(struct bhv_vfs_sync_work), KM_SLEEP);
	INIT_LIST_HEAD(&work->w_list);
	work->w_syncer = syncer;
	work->w_data = data;
	work->w_vfs = vfs;
	spin_lock(&vfs->vfs_sync_lock);
	list_add_tail(&work->w_list, &vfs->vfs_sync_list);
	spin_unlock(&vfs->vfs_sync_lock);
	wake_up_process(vfs->vfs_sync_task);
}

/*
 * Flush delayed allocate data, attempting to free up reserved space
 * from existing allocations.  At this point a new allocation attempt
 * has failed with ENOSPC and we are in the process of scratching our
 * heads, looking about for more room...
 */
STATIC void
xfs_flush_inode_work(
	bhv_vfs_t	*vfs,
	void		*inode)
{
	filemap_fdatawrite(((struct inode *)inode)->i_mapping);
	iput((struct inode *)inode);
}

void
xfs_flush_inode(
	xfs_inode_t	*ip)
{
	struct inode	*inode = vn_to_inode(XFS_ITOV(ip));
	struct bhv_vfs	*vfs = XFS_MTOVFS(ip->i_mount);

	igrab(inode);
	xfs_syncd_queue_work(vfs, inode, xfs_flush_inode_work);
	delay(HZ/2);
}

/*
 * This is the "bigger hammer" version of xfs_flush_inode_work...
 * (IOW, "If at first you don't succeed, use a Bigger Hammer").
 */
STATIC void
xfs_flush_device_work(
	bhv_vfs_t	*vfs,
	void		*inode)
{
	fsync_no_super(((struct inode *)inode)->i_dev);
	iput((struct inode *)inode);
}

void
xfs_flush_device(
	xfs_inode_t	*ip)
{
	struct inode	*inode = vn_to_inode(XFS_ITOV(ip));
	struct bhv_vfs	*vfs = XFS_MTOVFS(ip->i_mount);

	igrab(inode);
	xfs_syncd_queue_work(vfs, inode, xfs_flush_device_work);
	delay(HZ/2);
	xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
}

STATIC void
vfs_sync_worker(
	bhv_vfs_t	*vfsp,
	void		*unused)
{
	if (!(vfsp->vfs_flag & VFS_RDONLY))
		bhv_vfs_sync(vfsp, SYNC_FSDATA | SYNC_BDFLUSH | \
				   SYNC_ATTR | SYNC_REFCACHE, NULL);
}

STATIC int
xfssyncd(
	void			*arg)
{
	long			timeleft;
	bhv_vfs_t		*vfsp = (bhv_vfs_t *) arg;
	struct list_head	tmp;
	bhv_vfs_sync_work_t	*work, *n;

	daemonize();
	reparent_to_init();
	sigmask_lock();
	sigfillset(&current->blocked);
	__recalc_sigpending(current);
	sigmask_unlock();

	sprintf(current->comm, "xfssyncd");

	vfsp->vfs_sync_work.w_vfs = vfsp;
	vfsp->vfs_sync_work.w_syncer = vfs_sync_worker;
	vfsp->vfs_sync_task = current;
	wmb();
	wake_up(&vfsp->vfs_wait_sync_task);

	INIT_LIST_HEAD(&tmp);
	timeleft = (xfs_syncd_centisecs * HZ) / 100;
	for (;;) {
		set_current_state(TASK_INTERRUPTIBLE);
		timeleft = schedule_timeout(timeleft);
		if ((vfsp->vfs_flag & VFS_UMOUNT) &&
			list_empty(&vfsp->vfs_sync_list))
			break;

		spin_lock(&vfsp->vfs_sync_lock);
		if (!timeleft) {
			timeleft = (xfs_syncd_centisecs * HZ) / 100;
			INIT_LIST_HEAD(&vfsp->vfs_sync_work.w_list);
			list_add_tail(&vfsp->vfs_sync_work.w_list,
					&vfsp->vfs_sync_list);
		}
		list_for_each_entry_safe(work, n, &vfsp->vfs_sync_list, w_list)
			list_move(&work->w_list, &tmp);
		spin_unlock(&vfsp->vfs_sync_lock);

		list_for_each_entry_safe(work, n, &tmp, w_list) {
			(*work->w_syncer)(vfsp, work->w_data);
			list_del(&work->w_list);
			if (work == &vfsp->vfs_sync_work)
				continue;
			kmem_free(work, sizeof(struct bhv_vfs_sync_work));
		}
	}

	vfsp->vfs_sync_task = NULL;
	wmb();
	wake_up(&vfsp->vfs_wait_sync_task);

	return 0;
}

STATIC int
xfs_fs_start_syncd(
	bhv_vfs_t		*vfsp)
{
	int			pid;

	pid = kernel_thread(xfssyncd, (void *) vfsp,
			CLONE_VM | CLONE_FS | CLONE_FILES);
	if (pid < 0)
		return pid;
	wait_event(vfsp->vfs_wait_sync_task, vfsp->vfs_sync_task);
	return 0;
}

STATIC void
xfs_fs_stop_syncd(
	bhv_vfs_t		*vfsp)
{
	vfsp->vfs_flag |= VFS_UMOUNT;
	wmb();

	wake_up_process(vfsp->vfs_sync_task);
	wait_event(vfsp->vfs_wait_sync_task, !vfsp->vfs_sync_task);
}

STATIC void
xfs_fs_put_super(
	struct super_block	*sb)
{
	bhv_vfs_t		*vfsp = vfs_from_sb(sb);
	int			error;

	xfs_fs_stop_syncd(vfsp);
	bhv_vfs_sync(vfsp, SYNC_ATTR | SYNC_DELWRI, NULL);
	error = bhv_vfs_unmount(vfsp, 0, NULL);
	if (error) {
		printk("XFS: unmount got error=%d\n", error);
		printk("%s: vfs=0x%p left dangling!\n", __FUNCTION__, vfsp);
	} else {
		vfs_deallocate(vfsp);
	}
}

STATIC void
xfs_fs_write_super(
	struct super_block	*sb)
{
	if (!(sb->s_flags & MS_RDONLY))
		bhv_vfs_sync(vfs_from_sb(sb), SYNC_FSDATA, NULL);
	sb->s_dirt = 0;
}

STATIC int
xfs_fs_sync_super(
	struct super_block	*sb)
{
	int		error;

	error = bhv_vfs_sync(vfs_from_sb(sb), SYNC_FSDATA | SYNC_WAIT, NULL);
	sb->s_dirt = 0;
	return -error;
}

STATIC int
xfs_fs_statfs(
	struct super_block	*sb,
	struct statfs		*statp)
{
	return -bhv_vfs_statvfs(vfs_from_sb(sb), statp, NULL);
}

STATIC int
xfs_fs_remount(
	struct super_block	*sb,
	int			*flags,
	char			*options)
{
	bhv_vfs_t		*vfsp = vfs_from_sb(sb);
	struct xfs_mount_args	*args = xfs_args_allocate(sb, 0);
	int			error;

	error = bhv_vfs_parseargs(vfsp, options, args, 1);
	if (!error)
		error = bhv_vfs_mntupdate(vfsp, flags, args);
	kmem_free(args, sizeof(*args));
	return -error;
}

struct super_block *freeze_bdev(struct block_device *bdev)
{
	struct super_block *sb;
	struct bhv_vfs *vfsp;

	sb = get_super(to_kdev_t(bdev->bd_dev));
	if (sb && !(sb->s_flags & MS_RDONLY)) {
		vfsp = vfs_from_sb(sb);

		/* Stop new writers */
		vfsp->vfs_frozen = SB_FREEZE_WRITE;
		wmb();

		/* Flush the refcache */
		bhv_vfs_sync(vfsp, SYNC_REFCACHE | SYNC_WAIT, NULL);

		/* Flush delalloc and delwri data */
		bhv_vfs_sync(vfsp,
			SYNC_FSDATA|SYNC_DELWRI|SYNC_WAIT|SYNC_IOWAIT, NULL);

		/* Pause transaction subsystem */
		vfsp->vfs_frozen = SB_FREEZE_TRANS;
		wmb();

		/* Flush any remaining inodes into buffers */
		bhv_vfs_sync(vfsp, SYNC_ATTR | SYNC_WAIT, NULL);

		 /* Push all buffers out to disk */
		sync_buffers(sb->s_dev, 1);

		/* Push the superblock and write an unmount record */
		bhv_vfs_freeze(vfsp);
	}

	sync_buffers(to_kdev_t(bdev->bd_dev), 1);
	return sb;      /* thaw_bdev releases sb->s_umount */
}

void thaw_bdev(struct block_device *bdev, struct super_block *sb)
{
	if (sb) {
		struct bhv_vfs *vfsp = vfs_from_sb(sb);

		BUG_ON(sb->s_bdev != bdev);

		vfsp->vfs_frozen = SB_UNFROZEN;
		wmb();
		wake_up(&vfsp->vfs_wait_unfrozen);

		drop_super(sb);
	}
}

STATIC void
xfs_fs_lockfs(
	struct super_block	*sb)
{
	if (sb->s_flags & MS_RDONLY)
		return;
	freeze_bdev(sb->s_bdev);
}

STATIC void
xfs_fs_unlockfs(
	struct super_block	*sb)
{
	thaw_bdev(sb->s_bdev, sb);
}

/*
 * XFS encodes and decodes the fileid portion of NFS filehandles
 * itself instead of letting the generic NFS code do it.  This
 * was previously the case but now we use new fileid formats which
 * allow filesystems with 64 bit inode numbers to be exported.
 *
 * Note a side effect of the new formats is that xfs_vget() won't
 * be passed a zero inode/generation pair under normal circumstances.
 * As however a malicious client could send us such data, the check
 * remains in that code.
 */

STATIC int
xfs_fs_dentry_to_fh(
	struct dentry		*dentry,
	__u32			*data,
	int			*lenp,
	int			need_parent)
{
	struct inode		*inode = dentry->d_inode;
	int			type = 2;
	__u32			*p = data;
	int			len;
	int			is64 = 0;
#if XFS_BIG_INUMS
	bhv_vfs_t		*vfs = vfs_from_sb(inode->i_sb);

	if (!(vfs->vfs_flag & VFS_32BITINOOPT)) {
		/* filesystem may contain 64bit inode numbers */
		is64 = XFS_FILEID_TYPE_64FLAG;
	}
#endif

	/*
	 * Only encode if there is enough space given.  In practice
	 * this means we can't export a filesystem with 64bit inodes
	 * over NFSv2 with the subtree_check export option; the other
	 * seven combinations work.  The real answer is "don't use v2".
	 */
	len = xfs_fileid_length(need_parent, is64);
	if (*lenp < len)
		return 255;
	*lenp = len;

	p = xfs_fileid_encode_inode(p, inode, is64);
	if (need_parent) {
#ifdef HAVE_DPARENT_LOCK
		read_lock(&dparent_lock);
#endif
		p = xfs_fileid_encode_inode(p, dentry->d_parent->d_inode, is64);
#ifdef HAVE_DPARENT_LOCK
		read_unlock(&dparent_lock);
#endif
		type = 4;
	}
	if ((p - data) != len)
		BUG();
	return type | is64;
}

STATIC struct dentry *
xfs_fs_fh_to_dentry(
	struct super_block	*sb,
	__u32			*data,
	int			len,
	int			fhtype,
	int			parent)
{
	bhv_vnode_t		*vp;
	struct inode		*inode = NULL;
	struct dentry		*result;
	xfs_fid2_t		xfid;
	bhv_vfs_t		*vfsp = vfs_from_sb(sb);
	int			error;
	int			is64 = 0;

#if XFS_BIG_INUMS
	is64 = (fhtype & XFS_FILEID_TYPE_64FLAG);
	fhtype &= ~XFS_FILEID_TYPE_64FLAG;
#endif

	/*
	 * Note that we only accept fileids which are long enough
	 * rather than allow the parent generation number to default
	 * to zero.  XFS considers zero a valid generation number not
	 * an invalid/wildcard value.  There's little point printk'ing
	 * a warning here as we don't have the client information
	 * which would make such a warning useful.
	 */
	if (fhtype > 2 ||
	    len < xfs_fileid_length((fhtype == 2), is64) ||
	    (parent && fhtype != 2))
		return ERR_PTR(-ESTALE);

	data = xfs_fileid_decode_fid2(data, &xfid, is64);
	if (parent)
		data = xfs_fileid_decode_fid2(data, &xfid, is64);

	error = bhv_vfs_vget(vfsp, &vp, (fid_t *)&xfid);
	if (error || vp == NULL)
		return ERR_PTR(-ESTALE);

	inode = vn_to_inode(vp);

	result = d_alloc_anon(inode);
	if (unlikely(result == NULL)) {
		iput(inode);
		return ERR_PTR(-ENOMEM);
	}
	return result;
}

STATIC int
xfs_fs_show_options(
	struct seq_file		*m,
	struct vfsmount		*mnt)
{
	return bhv_vfs_showargs(vfs_from_sb(mnt->mnt_sb), m);
}

STATIC int
xfs_fs_quotasync(
	struct super_block	*sb,
	int			type)
{
	return -bhv_vfs_quotactl(vfs_from_sb(sb), Q_XQUOTASYNC, 0, NULL);
}

STATIC int
xfs_fs_getxstate(
	struct super_block	*sb,
	struct fs_quota_stat	*fqs)
{
	return -bhv_vfs_quotactl(vfs_from_sb(sb), Q_XGETQSTAT, 0, (caddr_t)fqs);
}

STATIC int
xfs_fs_setxstate(
	struct super_block	*sb,
	unsigned int		flags,
	int			op)
{
	return -bhv_vfs_quotactl(vfs_from_sb(sb), op, 0, (caddr_t)&flags);
}

STATIC int
xfs_fs_getxquota(
	struct super_block	*sb,
	int			type,
	qid_t			id,
	struct fs_disk_quota	*fdq)
{
	return -bhv_vfs_quotactl(vfs_from_sb(sb),
			(type == USRQUOTA) ? Q_XGETQUOTA :
			 ((type == GRPQUOTA) ? Q_XGETGQUOTA : Q_XGETPQUOTA),
			  id, (caddr_t)fdq);
}

STATIC int
xfs_fs_setxquota(
	struct super_block	*sb,
	int			type,
	qid_t			id,
	struct fs_disk_quota	*fdq)
{
	return -bhv_vfs_quotactl(vfs_from_sb(sb),
			(type == USRQUOTA) ? Q_XSETQLIM :
			 ((type == GRPQUOTA) ? Q_XSETGQLIM : Q_XSETPQLIM),
			  id, (caddr_t)fdq);
}

STATIC struct super_block *
xfs_fs_read_super(
	struct super_block	*sb,
	void			*data,
	int			silent)
{
	struct bhv_vnode	*rootvp;
	struct bhv_vfs		*vfsp = vfs_allocate(sb);
	struct xfs_mount_args	*args = xfs_args_allocate(sb, silent);
	struct statfs		statvfs;
	int			error;

	bhv_insert_all_vfsops(vfsp);

	error = bhv_vfs_parseargs(vfsp, (char *)data, args, 0);
	if (error) {
		bhv_remove_all_vfsops(vfsp, 1);
		goto fail_vfsop;
	}

	sb_min_blocksize(sb, BBSIZE);
	sb->s_qcop = &xfs_quotactl_operations;
	sb->s_op = &xfs_super_operations;

	error = bhv_vfs_mount(vfsp, args, NULL);
	if (error) {
		bhv_remove_all_vfsops(vfsp, 1);
		goto fail_vfsop;
	}

	error = bhv_vfs_statvfs(vfsp, &statvfs, NULL);
	if (error)
		goto fail_unmount;

	sb->s_dirt = 1;
	sb->s_magic = statvfs.f_type;
	sb->s_blocksize = statvfs.f_bsize;
	sb->s_blocksize_bits = ffs(statvfs.f_bsize) - 1;
	sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
	set_posix_acl_flag(sb);

	error = bhv_vfs_root(vfsp, &rootvp);
	if (error)
		goto fail_unmount;

	sb->s_root = d_alloc_root(vn_to_inode(rootvp));
	if (!sb->s_root)
		goto fail_vnrele;
	if (is_bad_inode(sb->s_root->d_inode))
		goto fail_vnrele;
	if (xfs_fs_start_syncd(vfsp))
		goto fail_vnrele;
	vn_trace_exit(rootvp, __FUNCTION__, (inst_t *)__return_address);

	kmem_free(args, sizeof(*args));
	return sb;

fail_vnrele:
	if (sb->s_root) {
		dput(sb->s_root);
		sb->s_root = NULL;
	} else {
		VN_RELE(rootvp);
	}

fail_unmount:
	bhv_vfs_unmount(vfsp, 0, NULL);

fail_vfsop:
	vfs_deallocate(vfsp);
	kmem_free(args, sizeof(*args));
	return NULL;
}


static struct super_operations xfs_super_operations = {
	.alloc_inode		= xfs_fs_alloc_inode,
	.destroy_inode		= xfs_fs_destroy_inode,
	.write_inode		= xfs_fs_write_inode,
	.clear_inode		= xfs_fs_clear_inode,
	.put_super		= xfs_fs_put_super,
	.write_super		= xfs_fs_write_super,
	.sync_fs		= xfs_fs_sync_super,
	.write_super_lockfs	= xfs_fs_lockfs,
	.unlockfs		= xfs_fs_unlockfs,
	.statfs			= xfs_fs_statfs,
	.remount_fs		= xfs_fs_remount,
	.fh_to_dentry		= xfs_fs_fh_to_dentry,
	.dentry_to_fh		= xfs_fs_dentry_to_fh,
	.show_options		= xfs_fs_show_options,
};

static struct quotactl_ops xfs_quotactl_operations = {
	.quota_sync		= xfs_fs_quotasync,
	.get_xstate		= xfs_fs_getxstate,
	.set_xstate		= xfs_fs_setxstate,
	.get_xquota		= xfs_fs_getxquota,
	.set_xquota		= xfs_fs_setxquota,
};

struct file_system_type xfs_fs_type = {
	.owner			= THIS_MODULE,
	.name			= "xfs",
	.read_super		= xfs_fs_read_super,
	.fs_flags		= FS_REQUIRES_DEV,
};
EXPORT_SYMBOL(xfs_fs_type);

STATIC int __init
init_xfs_fs( void )
{
	int			error;
	struct sysinfo		si;
	static char		message[] __initdata = KERN_INFO \
		XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled\n";

	printk(message);

	si_meminfo(&si);
	xfs_physmem = si.totalram;

	ktrace_init(64);

	error = xfs_init_inodecache();
	if (error < 0)
		goto undo_inodecache;

	error = xfs_buf_init();
	if (error < 0)
		goto undo_buffers;

	vn_init();
	xfs_init();
	uuid_init();

	error = xfs_register_ioctl_converters();
	if (error)
		goto undo_register;

	error = register_filesystem(&xfs_fs_type);
	if (error)
		goto undo_register;
	return 0;

undo_register:
	xfs_unregister_ioctl_converters();
	xfs_buf_terminate();

undo_buffers:
	xfs_destroy_inodecache();

undo_inodecache:
	return error;
}

STATIC void __exit
exit_xfs_fs( void )
{
	unregister_filesystem(&xfs_fs_type);
	xfs_unregister_ioctl_converters();
	xfs_cleanup();
	xfs_buf_terminate();
	xfs_destroy_inodecache();
	ktrace_uninit();
}

module_init(init_xfs_fs);
module_exit(exit_xfs_fs);

MODULE_AUTHOR("Silicon Graphics, Inc.");
MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
MODULE_LICENSE("GPL");