File: [Development] / xfs-linux / linux-2.4 / Attic / xfs_buf.c (download)
Revision 1.96, Mon Feb 17 15:00:26 2003 UTC (14 years, 8 months ago) by lord
Branch: MAIN
Changes since 1.95: +7 -0
lines
fix the new hashing code, cap buckets more aggressively, and expand
pb_hash_index to fit the new hash range.
cap hash buckets at 2K
|
/*
* Copyright (c) 2000-2002 Silicon Graphics, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
* Further, this software is distributed without any warranty that it is
* free of the rightful claim of any third person regarding infringement
* or the like. Any license provided herein, whether implied or
* otherwise, applies only to this software file. Patent licenses, if
* any, provided herein do not apply to combinations of this program with
* other software, or any other product whatsoever.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston MA 02111-1307, USA.
*
* Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
* Mountain View, CA 94043, or:
*
* http://www.sgi.com
*
* For further information regarding this notice, see:
*
* http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
*/
/*
* page_buf.c
*
* The page_buf module provides an abstract buffer cache model on top of
* the Linux page cache. Cached metadata blocks for a file system are
* hashed to the inode for the block device. The page_buf module
* assembles buffer (page_buf_t) objects on demand to aggregate such
* cached pages for I/O.
*
*
* Written by Steve Lord, Jim Mostek, Russell Cattelan
* and Rajagopal Ananthanarayanan ("ananth") at SGI.
*
*/
#include <linux/module.h>
#include <linux/stddef.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/vmalloc.h>
#include <linux/blkdev.h>
#include <linux/locks.h>
#include <linux/sysctl.h>
#include <linux/proc_fs.h>
#include <support/debug.h>
#include <support/kmem.h>
#include "page_buf_internal.h"
#define NBBY 8
#define BBSHIFT 9
#define BN_ALIGN_MASK ((1 << (PAGE_CACHE_SHIFT - BBSHIFT)) - 1)
#ifndef GFP_READAHEAD
#define GFP_READAHEAD 0
#endif
/*
* A backport of the 2.5 scheduler is used by many vendors of 2.4-based
* distributions.
* We can only guess it's presences by the lack of the SCHED_YIELD flag.
* If the heuristic doesn't work, change this define by hand.
*/
#ifndef SCHED_YIELD
#define __HAVE_NEW_SCHEDULER 1
#endif
/*
* Debug code
*/
#ifdef PAGEBUF_TRACE
static spinlock_t pb_trace_lock = SPIN_LOCK_UNLOCKED;
struct pagebuf_trace_buf pb_trace;
EXPORT_SYMBOL(pb_trace);
EXPORT_SYMBOL(pb_trace_func);
#define CIRC_INC(i) (((i) + 1) & (PB_TRACE_BUFSIZE - 1))
void
pb_trace_func(
page_buf_t *pb,
int event,
void *misc,
void *ra)
{
int j;
unsigned long flags;
if (!pb_params.p_un.debug) return;
if (ra == NULL) ra = (void *)__builtin_return_address(0);
spin_lock_irqsave(&pb_trace_lock, flags);
j = pb_trace.start;
pb_trace.start = CIRC_INC(j);
spin_unlock_irqrestore(&pb_trace_lock, flags);
pb_trace.buf[j].pb = (unsigned long) pb;
pb_trace.buf[j].event = event;
pb_trace.buf[j].flags = pb->pb_flags;
pb_trace.buf[j].hold = pb->pb_hold.counter;
pb_trace.buf[j].lock_value = pb->pb_sema.count.counter;
pb_trace.buf[j].task = (void *)current;
pb_trace.buf[j].misc = misc;
pb_trace.buf[j].ra = ra;
pb_trace.buf[j].offset = pb->pb_file_offset;
pb_trace.buf[j].size = pb->pb_buffer_length;
}
#endif /* PAGEBUF_TRACE */
/*
* File wide globals
*/
STATIC kmem_cache_t *pagebuf_cache;
STATIC struct list_head pagebuf_iodone_tq[NR_CPUS];
STATIC wait_queue_head_t pagebuf_iodone_wait[NR_CPUS];
/*
* For pre-allocated buffer head pool
*/
#define NR_RESERVED_BH 64
static wait_queue_head_t pb_resv_bh_wait;
static spinlock_t pb_resv_bh_lock = SPIN_LOCK_UNLOCKED;
struct buffer_head *pb_resv_bh = NULL; /* list of bh */
int pb_resv_bh_cnt = 0; /* # of bh available */
STATIC void pagebuf_daemon_wakeup(int);
STATIC int _pagebuf_segment_apply(page_buf_t *);
STATIC void pagebuf_delwri_queue(page_buf_t *, int);
/*
* Pagebuf module configuration parameters, exported via
* /proc/sys/vm/pagebuf
*/
unsigned long pagebuf_min[P_PARAM] = { HZ/2, 1*HZ, 0, 0 };
unsigned long pagebuf_max[P_PARAM] = { HZ*30, HZ*300, 1, 1 };
pagebuf_param_t pb_params = {{ HZ, 15 * HZ, 0, 0 }};
/*
* Pagebuf statistics variables
*/
struct pbstats pbstats;
/*
* Pagebuf allocation / freeing.
*/
#define pb_to_gfp(flags) \
(((flags) & PBF_READ_AHEAD) ? GFP_READAHEAD : \
((flags) & PBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL)
#define pagebuf_allocate(flags) \
kmem_cache_alloc(pagebuf_cache, pb_to_gfp(flags))
#define pagebuf_deallocate(pb) \
kmem_cache_free(pagebuf_cache, (pb));
/*
* Pagebuf hashing
*/
/* This structure must be a power of 2 long for the hash to work */
typedef struct {
struct list_head pb_hash;
int pb_count;
spinlock_t pb_hash_lock;
} pb_hash_t;
static pb_hash_t *pbhash;
static unsigned int pb_hash_mask;
static unsigned int pb_hash_shift;
static unsigned int pb_order;
#define pb_hash(pb) &pbhash[pb->pb_hash_index]
/*
* This hash is the same one as used on the Linux buffer cache,
* see fs/buffer.c
*/
#define _hashfn(dev,block) \
((((dev)<<(pb_hash_shift - 6)) ^ ((dev)<<(pb_hash_shift - 9))) ^ \
(((block)<<(pb_hash_shift - 6)) ^ ((block) >> 13) ^ \
((block) << (pb_hash_shift - 12))))
static inline int
_bhash(
dev_t dev,
loff_t base)
{
base >>= 9;
return (_hashfn(HASHDEV(dev),base) & pb_hash_mask);
}
/*
* Mapping of multi-page buffers into contingous virtual space
*/
STATIC void *pagebuf_mapout_locked(page_buf_t *);
STATIC spinlock_t as_lock = SPIN_LOCK_UNLOCKED;
typedef struct a_list {
void *vm_addr;
struct a_list *next;
} a_list_t;
STATIC a_list_t *as_free_head;
STATIC int as_list_len;
/*
* Try to batch vunmaps because they are costly.
*/
STATIC void
free_address(
void *addr)
{
a_list_t *aentry;
aentry = kmalloc(sizeof(a_list_t), GFP_ATOMIC);
if (aentry) {
spin_lock(&as_lock);
aentry->next = as_free_head;
aentry->vm_addr = addr;
as_free_head = aentry;
as_list_len++;
spin_unlock(&as_lock);
} else {
vunmap(addr);
}
}
STATIC void
purge_addresses(void)
{
a_list_t *aentry, *old;
if (as_free_head == NULL)
return;
spin_lock(&as_lock);
aentry = as_free_head;
as_free_head = NULL;
as_list_len = 0;
spin_unlock(&as_lock);
while ((old = aentry) != NULL) {
vunmap(aentry->vm_addr);
aentry = aentry->next;
kfree(old);
}
}
/*
* Locking model:
*
* Buffers associated with inodes for which buffer locking
* is not enabled are not protected by semaphores, and are
* assumed to be exclusively owned by the caller. There is
* spinlock in the buffer, for use by the caller when concurrent
* access is possible.
*/
/*
* Internal pagebuf object manipulation
*/
STATIC void
_pagebuf_initialize(
page_buf_t *pb,
pb_target_t *target,
loff_t range_base,
size_t range_length,
page_buf_flags_t flags)
{
/*
* We don't want certain flags to appear in pb->pb_flags.
*/
flags &= ~(PBF_LOCK|PBF_MAPPED|PBF_DONT_BLOCK|PBF_READ_AHEAD);
memset(pb, 0, sizeof(page_buf_t));
atomic_set(&pb->pb_hold, 1);
init_MUTEX_LOCKED(&pb->pb_iodonesema);
INIT_LIST_HEAD(&pb->pb_list);
INIT_LIST_HEAD(&pb->pb_hash_list);
init_MUTEX_LOCKED(&pb->pb_sema); /* held, no waiters */
PB_SET_OWNER(pb);
pb->pb_target = target;
pb->pb_file_offset = range_base;
/*
* Set buffer_length and count_desired to the same value initially.
* IO routines should use count_desired, which will be the same in
* most cases but may be reset (e.g. XFS recovery).
*/
pb->pb_buffer_length = pb->pb_count_desired = range_length;
pb->pb_flags = flags | PBF_NONE;
pb->pb_bn = PAGE_BUF_DADDR_NULL;
atomic_set(&pb->pb_pin_count, 0);
init_waitqueue_head(&pb->pb_waiters);
PB_STATS_INC(pbstats.pb_create);
PB_TRACE(pb, PB_TRACE_REC(get), target);
}
/*
* Allocate a page array capable of holding a specified number
* of pages, and point the page buf at it.
*/
STATIC int
_pagebuf_get_pages(
page_buf_t *pb,
int page_count,
page_buf_flags_t flags)
{
int gpf_mask = pb_to_gfp(flags);
/* Make sure that we have a page list */
if (pb->pb_pages == NULL) {
pb->pb_offset = page_buf_poff(pb->pb_file_offset);
pb->pb_page_count = page_count;
if (page_count <= PB_PAGES) {
pb->pb_pages = pb->pb_page_array;
} else {
pb->pb_pages = kmalloc(sizeof(struct page *) *
page_count, gpf_mask);
if (pb->pb_pages == NULL)
return -ENOMEM;
}
memset(pb->pb_pages, 0, sizeof(struct page *) * page_count);
}
return 0;
}
/*
* Walk a pagebuf releasing all the pages contained within it.
*/
STATIC inline void
_pagebuf_freepages(
page_buf_t *pb)
{
int buf_index;
for (buf_index = 0; buf_index < pb->pb_page_count; buf_index++) {
struct page *page = pb->pb_pages[buf_index];
if (page) {
pb->pb_pages[buf_index] = NULL;
page_cache_release(page);
}
}
if (pb->pb_pages != pb->pb_page_array)
kfree(pb->pb_pages);
}
/*
* _pagebuf_free_object
*
* _pagebuf_free_object releases the contents specified buffer.
* The modification state of any associated pages is left unchanged.
*/
void
_pagebuf_free_object(
pb_hash_t *hash, /* hash bucket for buffer */
page_buf_t *pb) /* buffer to deallocate */
{
page_buf_flags_t pb_flags = pb->pb_flags;
PB_TRACE(pb, PB_TRACE_REC(free_obj), 0);
pb->pb_flags |= PBF_FREED;
if (hash) {
if (!list_empty(&pb->pb_hash_list)) {
hash->pb_count--;
list_del_init(&pb->pb_hash_list);
}
spin_unlock(&hash->pb_hash_lock);
}
if (!(pb_flags & PBF_FREED)) {
/* release any virtual mapping */ ;
if (pb->pb_flags & _PBF_ADDR_ALLOCATED) {
void *vaddr = pagebuf_mapout_locked(pb);
if (vaddr) {
free_address(vaddr);
}
}
if (pb->pb_flags & _PBF_MEM_ALLOCATED) {
if (pb->pb_pages) {
/* release the pages in the address list */
if (pb->pb_pages[0] &&
PageSlab(pb->pb_pages[0])) {
/*
* This came from the slab
* allocator free it as such
*/
kfree(pb->pb_addr);
} else {
_pagebuf_freepages(pb);
}
pb->pb_pages = NULL;
}
pb->pb_flags &= ~_PBF_MEM_ALLOCATED;
}
}
pagebuf_deallocate(pb);
}
/*
* _pagebuf_lookup_pages
*
* _pagebuf_lookup_pages finds all pages which match the buffer
* in question and the range of file offsets supplied,
* and builds the page list for the buffer, if the
* page list is not already formed or if not all of the pages are
* already in the list. Invalid pages (pages which have not yet been
* read in from disk) are assigned for any pages which are not found.
*/
STATIC int
_pagebuf_lookup_pages(
page_buf_t *pb,
struct address_space *aspace,
page_buf_flags_t flags)
{
loff_t next_buffer_offset;
unsigned long page_count, pi, index;
struct page *page;
int gfp_mask, retry_count = 5, rval = 0;
int all_mapped, good_pages;
size_t blocksize;
/* For pagebufs where we want to map an address, do not use
* highmem pages - so that we do not need to use kmap resources
* to access the data.
*
* For pages where the caller has indicated there may be resource
* contention (e.g. called from a transaction) do not flush
* delalloc pages to obtain memory.
*/
if (flags & PBF_READ_AHEAD) {
gfp_mask = GFP_READAHEAD;
retry_count = 0;
} else if (flags & PBF_DONT_BLOCK) {
gfp_mask = GFP_NOFS;
} else if (flags & PBF_MAPPABLE) {
gfp_mask = GFP_KERNEL;
} else {
gfp_mask = GFP_HIGHUSER;
}
next_buffer_offset = pb->pb_file_offset + pb->pb_buffer_length;
good_pages = page_count = (page_buf_btoc(next_buffer_offset) -
page_buf_btoct(pb->pb_file_offset));
if (pb->pb_flags & _PBF_ALL_PAGES_MAPPED) {
/* Bring pages forward in cache */
for (pi = 0; pi < page_count; pi++) {
mark_page_accessed(pb->pb_pages[pi]);
}
if ((flags & PBF_MAPPED) && !(pb->pb_flags & PBF_MAPPED)) {
all_mapped = 1;
goto mapit;
}
return 0;
}
/* Ensure pb_pages field has been initialised */
rval = _pagebuf_get_pages(pb, page_count, flags);
if (rval)
return rval;
rval = pi = 0;
blocksize = pb->pb_target->pbr_bsize;
/* Enter the pages in the page list */
index = (pb->pb_file_offset - pb->pb_offset) >> PAGE_CACHE_SHIFT;
for (all_mapped = 1; pi < page_count; pi++, index++) {
if (pb->pb_pages[pi] == 0) {
retry:
page = find_or_create_page(aspace, index, gfp_mask);
if (!page) {
if (--retry_count > 0) {
PB_STATS_INC(pbstats.pb_page_retries);
pagebuf_daemon_wakeup(1);
current->state = TASK_UNINTERRUPTIBLE;
schedule_timeout(10);
goto retry;
}
rval = -ENOMEM;
all_mapped = 0;
continue;
}
PB_STATS_INC(pbstats.pb_page_found);
mark_page_accessed(page);
pb->pb_pages[pi] = page;
} else {
page = pb->pb_pages[pi];
lock_page(page);
}
/* If we need to do I/O on a page record the fact */
if (!Page_Uptodate(page)) {
good_pages--;
if ((blocksize == PAGE_CACHE_SIZE) &&
(flags & PBF_READ))
pb->pb_locked = 1;
}
}
if (!pb->pb_locked) {
for (pi = 0; pi < page_count; pi++) {
if (pb->pb_pages[pi])
unlock_page(pb->pb_pages[pi]);
}
}
mapit:
pb->pb_flags |= _PBF_MEM_ALLOCATED;
if (all_mapped) {
pb->pb_flags |= _PBF_ALL_PAGES_MAPPED;
/* A single page buffer is always mappable */
if (page_count == 1) {
pb->pb_addr = (caddr_t)
page_address(pb->pb_pages[0]) + pb->pb_offset;
pb->pb_flags |= PBF_MAPPED;
} else if (flags & PBF_MAPPED) {
if (as_list_len > 64)
purge_addresses();
pb->pb_addr = vmap(pb->pb_pages, page_count);
if (pb->pb_addr == NULL)
return -ENOMEM;
pb->pb_addr += pb->pb_offset;
pb->pb_flags |= PBF_MAPPED | _PBF_ADDR_ALLOCATED;
}
}
/* If some pages were found with data in them
* we are not in PBF_NONE state.
*/
if (good_pages != 0) {
pb->pb_flags &= ~(PBF_NONE);
if (good_pages != page_count) {
pb->pb_flags |= PBF_PARTIAL;
}
}
PB_TRACE(pb, PB_TRACE_REC(look_pg), good_pages);
return rval;
}
/*
* Pre-allocation of a pool of buffer heads for use in
* low-memory situations.
*/
/*
* _pagebuf_prealloc_bh
*
* Pre-allocate a pool of "count" buffer heads at startup.
* Puts them on a list at "pb_resv_bh"
* Returns number of bh actually allocated to pool.
*/
STATIC int
_pagebuf_prealloc_bh(
int count)
{
struct buffer_head *bh;
int i;
for (i = 0; i < count; i++) {
bh = kmem_cache_alloc(bh_cachep, SLAB_KERNEL);
if (!bh)
break;
bh->b_pprev = &pb_resv_bh;
bh->b_next = pb_resv_bh;
pb_resv_bh = bh;
pb_resv_bh_cnt++;
}
return i;
}
/*
* _pagebuf_get_prealloc_bh
*
* Get one buffer head from our pre-allocated pool.
* If pool is empty, sleep 'til one comes back in.
* Returns aforementioned buffer head.
*/
STATIC struct buffer_head *
_pagebuf_get_prealloc_bh(void)
{
unsigned long flags;
struct buffer_head *bh;
DECLARE_WAITQUEUE (wait, current);
spin_lock_irqsave(&pb_resv_bh_lock, flags);
if (pb_resv_bh_cnt < 1) {
add_wait_queue(&pb_resv_bh_wait, &wait);
do {
set_current_state(TASK_UNINTERRUPTIBLE);
spin_unlock_irqrestore(&pb_resv_bh_lock, flags);
pagebuf_run_queues(NULL);
schedule();
spin_lock_irqsave(&pb_resv_bh_lock, flags);
} while (pb_resv_bh_cnt < 1);
__set_current_state(TASK_RUNNING);
remove_wait_queue(&pb_resv_bh_wait, &wait);
}
BUG_ON(pb_resv_bh_cnt < 1);
BUG_ON(!pb_resv_bh);
bh = pb_resv_bh;
pb_resv_bh = bh->b_next;
pb_resv_bh_cnt--;
spin_unlock_irqrestore(&pb_resv_bh_lock, flags);
return bh;
}
/*
* _pagebuf_free_bh
*
* Take care of buffer heads that we're finished with.
* Call this instead of just kmem_cache_free(bh_cachep, bh)
* when you're done with a bh.
*
* If our pre-allocated pool is full, just free the buffer head.
* Otherwise, put it back in the pool, and wake up anybody
* waiting for one.
*/
STATIC inline void
_pagebuf_free_bh(
struct buffer_head *bh)
{
unsigned long flags;
int free;
if (! (free = pb_resv_bh_cnt >= NR_RESERVED_BH)) {
spin_lock_irqsave(&pb_resv_bh_lock, flags);
if (! (free = pb_resv_bh_cnt >= NR_RESERVED_BH)) {
bh->b_pprev = &pb_resv_bh;
bh->b_next = pb_resv_bh;
pb_resv_bh = bh;
pb_resv_bh_cnt++;
if (waitqueue_active(&pb_resv_bh_wait)) {
wake_up(&pb_resv_bh_wait);
}
}
spin_unlock_irqrestore(&pb_resv_bh_lock, flags);
}
if (free) {
kmem_cache_free(bh_cachep, bh);
}
}
/*
* Finding and Reading Buffers
*/
/*
* _pagebuf_find
*
* Looks up, and creates if absent, a lockable buffer for
* a given range of an inode. The buffer is returned
* locked. If other overlapping buffers exist, they are
* released before the new buffer is created and locked,
* which may imply that this call will block until those buffers
* are unlocked. No I/O is implied by this call.
*/
STATIC page_buf_t *
_pagebuf_find( /* find buffer for block */
pb_target_t *target,/* target for block */
loff_t ioff, /* starting offset of range */
size_t isize, /* length of range */
page_buf_flags_t flags, /* PBF_TRYLOCK */
page_buf_t *new_pb)/* newly allocated buffer */
{
loff_t range_base;
size_t range_length;
int hval;
pb_hash_t *h;
struct list_head *p;
page_buf_t *pb;
int not_locked;
range_base = (ioff << BBSHIFT);
range_length = (isize << BBSHIFT);
/* Ensure we never do IOs smaller than the sector size */
BUG_ON(range_length < (1 << target->pbr_sshift));
/* Ensure we never do IOs that are not sector aligned */
BUG_ON(range_base & (loff_t)target->pbr_smask);
hval = _bhash(target->pbr_bdev->bd_dev, range_base);
h = &pbhash[hval];
spin_lock(&h->pb_hash_lock);
list_for_each(p, &h->pb_hash) {
pb = list_entry(p, page_buf_t, pb_hash_list);
if ((target == pb->pb_target) &&
(pb->pb_file_offset == range_base) &&
(pb->pb_buffer_length == range_length)) {
if (pb->pb_flags & PBF_FREED)
break;
/* If we look at something bring it to the
* front of the list for next time
*/
list_del(&pb->pb_hash_list);
list_add(&pb->pb_hash_list, &h->pb_hash);
goto found;
}
}
/* No match found */
if (new_pb) {
_pagebuf_initialize(new_pb, target, range_base,
range_length, flags | _PBF_LOCKABLE);
new_pb->pb_hash_index = hval;
h->pb_count++;
list_add(&new_pb->pb_hash_list, &h->pb_hash);
} else {
PB_STATS_INC(pbstats.pb_miss_locked);
}
spin_unlock(&h->pb_hash_lock);
return (new_pb);
found:
atomic_inc(&pb->pb_hold);
spin_unlock(&h->pb_hash_lock);
/* Attempt to get the semaphore without sleeping,
* if this does not work then we need to drop the
* spinlock and do a hard attempt on the semaphore.
*/
not_locked = down_trylock(&pb->pb_sema);
if (not_locked) {
if (!(flags & PBF_TRYLOCK)) {
/* wait for buffer ownership */
PB_TRACE(pb, PB_TRACE_REC(get_lk), 0);
pagebuf_lock(pb);
PB_STATS_INC(pbstats.pb_get_locked_waited);
} else {
/* We asked for a trylock and failed, no need
* to look at file offset and length here, we
* know that this pagebuf at least overlaps our
* pagebuf and is locked, therefore our buffer
* either does not exist, or is this buffer
*/
pagebuf_rele(pb);
PB_STATS_INC(pbstats.pb_busy_locked);
return (NULL);
}
} else {
/* trylock worked */
PB_SET_OWNER(pb);
}
if (pb->pb_flags & PBF_STALE)
pb->pb_flags &= PBF_MAPPABLE | \
PBF_MAPPED | \
_PBF_LOCKABLE | \
_PBF_ALL_PAGES_MAPPED | \
_PBF_ADDR_ALLOCATED | \
_PBF_MEM_ALLOCATED;
PB_TRACE(pb, PB_TRACE_REC(got_lk), 0);
PB_STATS_INC(pbstats.pb_get_locked);
return (pb);
}
/*
* pagebuf_find
*
* pagebuf_find returns a buffer matching the specified range of
* data for the specified target, if any of the relevant blocks
* are in memory. The buffer may have unallocated holes, if
* some, but not all, of the blocks are in memory. Even where
* pages are present in the buffer, not all of every page may be
* valid. The file system may use pagebuf_segment to visit the
* various segments of the buffer.
*/
page_buf_t *
pagebuf_find( /* find buffer for block */
/* if the block is in memory */
pb_target_t *target,/* target for block */
loff_t ioff, /* starting offset of range */
size_t isize, /* length of range */
page_buf_flags_t flags) /* PBF_TRYLOCK */
{
return _pagebuf_find(target, ioff, isize, flags, NULL);
}
/*
* pagebuf_get
*
* pagebuf_get assembles a buffer covering the specified range.
* Some or all of the blocks in the range may be valid. The file
* system may use pagebuf_segment to visit the various segments
* of the buffer. Storage in memory for all portions of the
* buffer will be allocated, although backing storage may not be.
* If PBF_READ is set in flags, pagebuf_read
*/
page_buf_t *
pagebuf_get( /* allocate a buffer */
pb_target_t *target,/* target for buffer */
loff_t ioff, /* starting offset of range */
size_t isize, /* length of range */
page_buf_flags_t flags) /* PBF_TRYLOCK */
{
page_buf_t *pb, *new_pb;
int error;
new_pb = pagebuf_allocate(flags);
if (unlikely(!new_pb))
return (NULL);
pb = _pagebuf_find(target, ioff, isize, flags, new_pb);
if (pb != new_pb) {
pagebuf_deallocate(new_pb);
if (unlikely(!pb))
return (NULL);
}
PB_STATS_INC(pbstats.pb_get);
/* fill in any missing pages */
error = _pagebuf_lookup_pages(pb, pb->pb_target->pbr_mapping, flags);
if (unlikely(error)) {
pagebuf_free(pb);
return (NULL);
}
/*
* Always fill in the block number now, the mapped cases can do
* their own overlay of this later.
*/
pb->pb_bn = ioff;
pb->pb_count_desired = pb->pb_buffer_length;
if (flags & PBF_READ) {
if (PBF_NOT_DONE(pb)) {
PB_TRACE(pb, PB_TRACE_REC(get_read), flags);
PB_STATS_INC(pbstats.pb_get_read);
pagebuf_iostart(pb, flags);
} else if (flags & PBF_ASYNC) {
/*
* Read ahead call which is already satisfied,
* drop the buffer
*/
if (flags & (PBF_LOCK | PBF_TRYLOCK))
pagebuf_unlock(pb);
pagebuf_rele(pb);
return NULL;
} else {
/* We do not want read in the flags */
pb->pb_flags &= ~PBF_READ;
}
}
PB_TRACE(pb, PB_TRACE_REC(get_obj), flags);
return (pb);
}
/*
* Create a pagebuf and populate it with pages from the address
* space of the passed in inode.
*/
page_buf_t *
pagebuf_lookup(
struct pb_target *target,
struct inode *inode,
loff_t ioff,
size_t isize,
page_buf_flags_t flags)
{
page_buf_t *pb = NULL;
flags |= _PBF_PRIVATE_BH;
pb = pagebuf_allocate(flags);
if (pb) {
_pagebuf_initialize(pb, target, ioff, isize, flags);
}
return pb;
}
/*
* If we are not low on memory then do the readahead in a deadlock
* safe manner.
*/
void
pagebuf_readahead(
pb_target_t *target,
loff_t ioff,
size_t isize,
page_buf_flags_t flags)
{
flags |= (PBF_TRYLOCK|PBF_READ|PBF_ASYNC|PBF_MAPPABLE|PBF_READ_AHEAD);
pagebuf_get(target, ioff, isize, flags);
}
page_buf_t *
pagebuf_get_empty(
pb_target_t *target)
{
page_buf_t *pb;
pb = pagebuf_allocate(_PBF_LOCKABLE);
if (pb)
_pagebuf_initialize(pb, target, 0, 0, _PBF_LOCKABLE);
return pb;
}
static inline struct page *
mem_to_page(
void *addr)
{
if (((unsigned long)addr < VMALLOC_START) ||
((unsigned long)addr >= VMALLOC_END)) {
return virt_to_page(addr);
} else {
return vmalloc_to_page(addr);
}
}
int
pagebuf_associate_memory(
page_buf_t *pb,
void *mem,
size_t len)
{
int rval;
int i = 0;
size_t ptr;
size_t end, end_cur;
off_t offset;
int page_count;
page_count = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT;
offset = (off_t) mem - ((off_t)mem & PAGE_CACHE_MASK);
if (offset && (len > PAGE_CACHE_SIZE))
page_count++;
/* Free any previous set of page pointers */
if (pb->pb_pages && (pb->pb_pages != pb->pb_page_array)) {
kfree(pb->pb_pages);
}
pb->pb_pages = NULL;
pb->pb_addr = mem;
rval = _pagebuf_get_pages(pb, page_count, 0);
if (rval)
return rval;
pb->pb_offset = offset;
ptr = (size_t) mem & PAGE_CACHE_MASK;
end = PAGE_CACHE_ALIGN((size_t) mem + len);
end_cur = end;
/* set up first page */
pb->pb_pages[0] = mem_to_page(mem);
ptr += PAGE_CACHE_SIZE;
pb->pb_page_count = ++i;
while (ptr < end) {
pb->pb_pages[i] = mem_to_page((void *)ptr);
pb->pb_page_count = ++i;
ptr += PAGE_CACHE_SIZE;
}
pb->pb_locked = 0;
pb->pb_count_desired = pb->pb_buffer_length = len;
pb->pb_flags |= PBF_MAPPED | _PBF_PRIVATE_BH;
return 0;
}
page_buf_t *
pagebuf_get_no_daddr(
size_t len,
pb_target_t *target)
{
int rval;
void *rmem = NULL;
page_buf_flags_t flags = _PBF_LOCKABLE | PBF_FORCEIO;
page_buf_t *pb;
size_t tlen = 0;
if (len > 0x20000)
return(NULL);
pb = pagebuf_allocate(flags);
if (!pb)
return NULL;
_pagebuf_initialize(pb, target, 0, len, flags);
do {
if (tlen == 0) {
tlen = len; /* first time */
} else {
kfree(rmem); /* free the mem from the previous try */
tlen <<= 1; /* double the size and try again */
}
if ((rmem = kmalloc(tlen, GFP_KERNEL)) == 0) {
pagebuf_free(pb);
return NULL;
}
} while ((size_t)rmem != ((size_t)rmem & ~target->pbr_smask));
if ((rval = pagebuf_associate_memory(pb, rmem, len)) != 0) {
kfree(rmem);
pagebuf_free(pb);
return NULL;
}
/* otherwise pagebuf_free just ignores it */
pb->pb_flags |= _PBF_MEM_ALLOCATED;
PB_CLEAR_OWNER(pb);
up(&pb->pb_sema); /* Return unlocked pagebuf */
PB_TRACE(pb, PB_TRACE_REC(no_daddr), rmem);
return pb;
}
/*
* pagebuf_hold
*
* Increment reference count on buffer, to hold the buffer concurrently
* with another thread which may release (free) the buffer asynchronously.
*
* Must hold the buffer already to call this function.
*/
void
pagebuf_hold(
page_buf_t *pb)
{
atomic_inc(&pb->pb_hold);
PB_TRACE(pb, PB_TRACE_REC(hold), 0);
}
/*
* pagebuf_free
*
* pagebuf_free releases the specified buffer. The modification
* state of any associated pages is left unchanged.
*/
void
pagebuf_free(
page_buf_t *pb)
{
if (pb->pb_flags & _PBF_LOCKABLE) {
pb_hash_t *h = pb_hash(pb);
spin_lock(&h->pb_hash_lock);
_pagebuf_free_object(h, pb);
} else {
_pagebuf_free_object(NULL, pb);
}
}
/*
* pagebuf_rele
*
* pagebuf_rele releases a hold on the specified buffer. If the
* the hold count is 1, pagebuf_rele calls pagebuf_free.
*/
void
pagebuf_rele(
page_buf_t *pb)
{
pb_hash_t *h;
PB_TRACE(pb, PB_TRACE_REC(rele), pb->pb_relse);
if (pb->pb_flags & _PBF_LOCKABLE) {
h = pb_hash(pb);
spin_lock(&h->pb_hash_lock);
} else {
h = NULL;
}
if (atomic_dec_and_test(&pb->pb_hold)) {
int do_free = 1;
if (pb->pb_relse) {
atomic_inc(&pb->pb_hold);
if (h)
spin_unlock(&h->pb_hash_lock);
(*(pb->pb_relse)) (pb);
do_free = 0;
}
if (pb->pb_flags & PBF_DELWRI) {
pb->pb_flags |= PBF_ASYNC;
atomic_inc(&pb->pb_hold);
if (h && do_free)
spin_unlock(&h->pb_hash_lock);
pagebuf_delwri_queue(pb, 0);
do_free = 0;
} else if (pb->pb_flags & PBF_FS_MANAGED) {
if (h)
spin_unlock(&h->pb_hash_lock);
do_free = 0;
}
if (do_free) {
_pagebuf_free_object(h, pb);
}
} else if (h) {
spin_unlock(&h->pb_hash_lock);
}
}
/*
* Pinning Buffer Storage in Memory
*/
/*
* pagebuf_pin
*
* pagebuf_pin locks all of the memory represented by a buffer in
* memory. Multiple calls to pagebuf_pin and pagebuf_unpin, for
* the same or different buffers affecting a given page, will
* properly count the number of outstanding "pin" requests. The
* buffer may be released after the pagebuf_pin and a different
* buffer used when calling pagebuf_unpin, if desired.
* pagebuf_pin should be used by the file system when it wants be
* assured that no attempt will be made to force the affected
* memory to disk. It does not assure that a given logical page
* will not be moved to a different physical page.
*/
void
pagebuf_pin(
page_buf_t *pb)
{
atomic_inc(&pb->pb_pin_count);
PB_TRACE(pb, PB_TRACE_REC(pin), pb->pb_pin_count.counter);
}
/*
* pagebuf_unpin
*
* pagebuf_unpin reverses the locking of memory performed by
* pagebuf_pin. Note that both functions affected the logical
* pages associated with the buffer, not the buffer itself.
*/
void
pagebuf_unpin(
page_buf_t *pb)
{
if (atomic_dec_and_test(&pb->pb_pin_count)) {
wake_up_all(&pb->pb_waiters);
}
PB_TRACE(pb, PB_TRACE_REC(unpin), pb->pb_pin_count.counter);
}
int
pagebuf_ispin(
page_buf_t *pb)
{
return atomic_read(&pb->pb_pin_count);
}
/*
* pagebuf_wait_unpin
*
* pagebuf_wait_unpin waits until all of the memory associated
* with the buffer is not longer locked in memory. It returns
* immediately if none of the affected pages are locked.
*/
static inline void
_pagebuf_wait_unpin(
page_buf_t *pb)
{
DECLARE_WAITQUEUE (wait, current);
if (atomic_read(&pb->pb_pin_count) == 0)
return;
add_wait_queue(&pb->pb_waiters, &wait);
for (;;) {
current->state = TASK_UNINTERRUPTIBLE;
if (atomic_read(&pb->pb_pin_count) == 0) {
break;
}
pagebuf_run_queues(pb);
schedule();
}
remove_wait_queue(&pb->pb_waiters, &wait);
current->state = TASK_RUNNING;
}
/*
* Buffer Utility Routines
*/
/*
* pagebuf_iodone
*
* pagebuf_iodone marks a buffer for which I/O is in progress
* done with respect to that I/O. The pb_iodone routine, if
* present, will be called as a side-effect.
*/
void
pagebuf_iodone_sched(
void *v)
{
page_buf_t *pb = (page_buf_t *)v;
if (pb->pb_iodone) {
(*(pb->pb_iodone)) (pb);
return;
}
if (pb->pb_flags & PBF_ASYNC) {
if ((pb->pb_flags & _PBF_LOCKABLE) && !pb->pb_relse)
pagebuf_unlock(pb);
pagebuf_rele(pb);
}
}
void
pagebuf_iodone(
page_buf_t *pb,
int schedule)
{
pb->pb_flags &= ~(PBF_READ | PBF_WRITE);
if (pb->pb_error == 0) {
pb->pb_flags &= ~(PBF_PARTIAL | PBF_NONE);
}
PB_TRACE(pb, PB_TRACE_REC(done), pb->pb_iodone);
if ((pb->pb_iodone) || (pb->pb_flags & PBF_ASYNC)) {
if (schedule) {
INIT_TQUEUE(&pb->pb_iodone_sched,
pagebuf_iodone_sched, (void *)pb);
queue_task(&pb->pb_iodone_sched,
&pagebuf_iodone_tq[smp_processor_id()]);
wake_up(&pagebuf_iodone_wait[smp_processor_id()]);
} else {
pagebuf_iodone_sched(pb);
}
} else {
up(&pb->pb_iodonesema);
}
}
/*
* pagebuf_ioerror
*
* pagebuf_ioerror sets the error code for a buffer.
*/
void
pagebuf_ioerror( /* mark/clear buffer error flag */
page_buf_t *pb, /* buffer to mark */
unsigned int error) /* error to store (0 if none) */
{
pb->pb_error = error;
PB_TRACE(pb, PB_TRACE_REC(ioerror), error);
}
/*
* pagebuf_iostart
*
* pagebuf_iostart initiates I/O on a buffer, based on the flags supplied.
* If necessary, it will arrange for any disk space allocation required,
* and it will break up the request if the block mappings require it.
* The pb_iodone routine in the buffer supplied will only be called
* when all of the subsidiary I/O requests, if any, have been completed.
* pagebuf_iostart calls the pagebuf_ioinitiate routine or
* pagebuf_iorequest, if the former routine is not defined, to start
* the I/O on a given low-level request.
*/
int
pagebuf_iostart( /* start I/O on a buffer */
page_buf_t *pb, /* buffer to start */
page_buf_flags_t flags) /* PBF_LOCK, PBF_ASYNC, PBF_READ, */
/* PBF_WRITE, PBF_DELWRI, */
/* PBF_SYNC, PBF_DONT_BLOCK */
{
int status = 0;
PB_TRACE(pb, PB_TRACE_REC(iostart), flags);
if (flags & PBF_DELWRI) {
pb->pb_flags &= ~(PBF_READ | PBF_WRITE | PBF_ASYNC);
pb->pb_flags |= flags &
(PBF_DELWRI | PBF_ASYNC | PBF_SYNC);
pagebuf_delwri_queue(pb, 1);
return status;
}
pb->pb_flags &= ~(PBF_READ|PBF_WRITE|PBF_ASYNC|PBF_DELWRI|PBF_READ_AHEAD);
pb->pb_flags |= flags & (PBF_READ|PBF_WRITE|PBF_ASYNC|PBF_SYNC|PBF_READ_AHEAD);
BUG_ON(pb->pb_bn == PAGE_BUF_DADDR_NULL);
/* For writes call internal function which checks for
* filesystem specific callout function and execute it.
*/
if (flags & PBF_WRITE) {
status = __pagebuf_iorequest(pb);
} else {
status = pagebuf_iorequest(pb);
}
/* Wait for I/O if we are not an async request */
if ((status == 0) && (flags & PBF_ASYNC) == 0) {
status = pagebuf_iowait(pb);
}
return status;
}
/*
* Helper routines for pagebuf_iorequest (pagebuf I/O completion)
*
* (different routines for locked/unlocked, and single/multi-bh pagebufs)
*/
STATIC inline void
_pb_io_done(
page_buf_t *pb)
{
if (atomic_dec_and_test(&pb->pb_io_remaining) == 1) {
pb->pb_locked = 0;
pagebuf_iodone(pb, 1);
}
}
STATIC void
_end_pagebuf_page_io(
struct buffer_head *bh,
int uptodate,
int locked)
{
struct page *page;
page_buf_t *pb = (page_buf_t *) bh->b_private;
mark_buffer_uptodate(bh, uptodate);
atomic_dec(&bh->b_count);
page = bh->b_page;
if (!test_bit(BH_Uptodate, &bh->b_state)) {
set_bit(PG_error, &page->flags);
pb->pb_error = EIO;
}
unlock_buffer(bh);
_pagebuf_free_bh(bh);
SetPageUptodate(page);
if (locked)
unlock_page(page);
_pb_io_done(pb);
}
STATIC void
_end_io_locked(
struct buffer_head *bh,
int uptodate)
{
_end_pagebuf_page_io(bh, uptodate, 1);
}
STATIC void
_end_io_nolock(
struct buffer_head *bh,
int uptodate)
{
_end_pagebuf_page_io(bh, uptodate, 0);
}
typedef struct {
page_buf_t *pb; /* pointer to pagebuf page is within */
int locking; /* are pages locked? */
atomic_t remain; /* count of remaining I/O requests */
} pagesync_t;
STATIC void
_end_pagebuf_page_io_multi(
struct buffer_head *bh,
int uptodate,
int fullpage)
{
pagesync_t *psync = (pagesync_t *) bh->b_private;
page_buf_t *pb = psync->pb;
struct page *page;
mark_buffer_uptodate(bh, uptodate);
put_bh(bh);
page = bh->b_page;
if (!test_bit(BH_Uptodate, &bh->b_state)) {
set_bit(PG_error, &page->flags);
pb->pb_error = EIO;
}
unlock_buffer(bh);
if (fullpage)
_pagebuf_free_bh(bh);
if (atomic_dec_and_test(&psync->remain) == 1) {
if (fullpage)
SetPageUptodate(page);
if (psync->locking)
unlock_page(page);
kfree(psync);
_pb_io_done(pb);
}
}
STATIC void
_end_io_multi_full(
struct buffer_head *bh,
int uptodate)
{
_end_pagebuf_page_io_multi(bh, uptodate, 1);
}
STATIC void
_end_io_multi_part(
struct buffer_head *bh,
int uptodate)
{
_end_pagebuf_page_io_multi(bh, uptodate, 0);
}
/*
* Initiate I/O on part of a page we are interested in
*/
STATIC int
_pagebuf_page_io(
struct page *page, /* Page structure we are dealing with */
pb_target_t *pbr, /* device parameters (bsz, ssz, dev) */
page_buf_t *pb, /* pagebuf holding it, can be NULL */
page_buf_daddr_t bn, /* starting block number */
off_t pg_offset, /* starting offset in page */
size_t pg_length, /* count of data to process */
int locking, /* page locking in use */
int rw, /* read/write operation */
int flush)
{
size_t sector;
size_t blk_length = 0;
struct buffer_head *bh, *head, *bufferlist[MAX_BUF_PER_PAGE];
int sector_shift = pbr->pbr_sshift;
int i = 0, cnt = 0, err = 0;
int public_bh = 0;
int multi_ok;
if ((pbr->pbr_bsize < PAGE_CACHE_SIZE) &&
!(pb->pb_flags & _PBF_PRIVATE_BH)) {
int cache_ok;
cache_ok = !((pb->pb_flags & PBF_FORCEIO) || (rw == WRITE));
public_bh = multi_ok = 1;
if (!page_has_buffers(page)) {
if (!locking) {
lock_page(page);
if (!page_has_buffers(page)) {
create_empty_buffers(page, pbr->pbr_kdev,
1 << sector_shift);
}
unlock_page(page);
} else {
create_empty_buffers(page, pbr->pbr_kdev,
1 << sector_shift);
}
}
/* Find buffer_heads belonging to just this pagebuf */
bh = head = page_buffers(page);
do {
if (buffer_uptodate(bh) && cache_ok)
continue;
blk_length = i << sector_shift;
if (blk_length < pg_offset)
continue;
if (blk_length >= pg_offset + pg_length)
break;
lock_buffer(bh);
get_bh(bh);
ASSERT(!waitqueue_active(&bh->b_wait));
bh->b_size = 1 << sector_shift;
bh->b_blocknr = bn + (i - (pg_offset >> sector_shift));
bufferlist[cnt++] = bh;
} while (i++, (bh = bh->b_this_page) != head);
goto request;
}
/* Calculate the block offsets and length we will be using */
if (pg_offset) {
size_t block_offset;
block_offset = pg_offset >> sector_shift;
block_offset = pg_offset - (block_offset << sector_shift);
blk_length = (pg_length + block_offset + pbr->pbr_smask) >>
sector_shift;
} else {
blk_length = (pg_length + pbr->pbr_smask) >> sector_shift;
}
/* This will attempt to make a request bigger than the sector
* size if we are well aligned.
*/
switch (pb->pb_target->pbr_flags) {
case 0:
sector = blk_length << sector_shift;
blk_length = 1;
break;
case PBR_ALIGNED_ONLY:
if ((pg_offset == 0) && (pg_length == PAGE_CACHE_SIZE) &&
(((unsigned int) bn) & BN_ALIGN_MASK) == 0) {
sector = blk_length << sector_shift;
blk_length = 1;
break;
}
case PBR_SECTOR_ONLY:
/* Fallthrough, same as default */
default:
sector = 1 << sector_shift;
}
/* If we are doing I/O larger than the bh->b_size field then
* we need to split this request up.
*/
while (sector > ((1 << NBBY * sizeof(bh->b_size)) - 1)) {
sector >>= 1;
blk_length++;
}
multi_ok = (blk_length != 1);
for (; blk_length > 0; blk_length--, pg_offset += sector) {
bh = kmem_cache_alloc(bh_cachep, SLAB_NOFS);
if (!bh) {
bh = _pagebuf_get_prealloc_bh();
if (!bh) {
/* This should never happen */
err = -ENOMEM;
goto error;
}
}
memset(bh, 0, sizeof(*bh));
bh->b_size = sector;
bh->b_blocknr = bn++;
bh->b_dev = pbr->pbr_kdev;
set_bit(BH_Lock, &bh->b_state);
set_bh_page(bh, page, pg_offset);
init_waitqueue_head(&bh->b_wait);
atomic_set(&bh->b_count, 1);
bufferlist[cnt++] = bh;
}
request:
if (cnt) {
pagesync_t *psync = NULL;
void (*callback)(struct buffer_head *, int);
if (multi_ok) {
psync = kmalloc(sizeof(*psync), GFP_NOFS);
if (unlikely(!psync)) {
err = -ENOMEM;
goto error;
}
psync->pb = pb;
psync->locking = locking;
atomic_set(&psync->remain, cnt);
callback = public_bh ?
_end_io_multi_part : _end_io_multi_full;
} else {
callback = locking ? _end_io_locked : _end_io_nolock;
}
/* Indicate that there is another page in progress */
atomic_inc(&pb->pb_io_remaining);
#ifdef RQ_WRITE_ORDERED
if (flush)
set_bit(BH_Ordered_Flush, &bufferlist[cnt-1]->b_state);
#endif
for (i = 0; i < cnt; i++) {
bh = bufferlist[i];
/* Complete the buffer_head, then submit the IO */
if (psync) {
init_buffer(bh, callback, psync);
} else {
init_buffer(bh, callback, pb);
}
bh->b_rdev = bh->b_dev;
bh->b_rsector = bh->b_blocknr;
set_bit(BH_Mapped, &bh->b_state);
set_bit(BH_Req, &bh->b_state);
if (rw == WRITE) {
set_bit(BH_Uptodate, &bh->b_state);
}
generic_make_request(rw, bh);
}
} else {
if (locking)
unlock_page(page);
}
return err;
error:
/* If we ever do get here then clean up what we already did */
for (i = 0; i < cnt; i++) {
atomic_set_buffer_clean(bufferlist[i]);
bufferlist[i]->b_end_io(bufferlist[i], 0);
}
return err;
}
STATIC int
_page_buf_page_apply(
page_buf_t *pb,
loff_t offset,
struct page *page,
size_t pg_offset,
size_t pg_length,
int last)
{
page_buf_daddr_t bn = pb->pb_bn;
pb_target_t *pbr = pb->pb_target;
loff_t pb_offset;
size_t ret_len = pg_length;
int err = 0;
ASSERT(page);
if ((pbr->pbr_bsize == PAGE_CACHE_SIZE) &&
(pb->pb_buffer_length < PAGE_CACHE_SIZE) &&
(pb->pb_flags & PBF_READ) && pb->pb_locked) {
bn -= (pb->pb_offset >> pbr->pbr_sshift);
pg_offset = 0;
pg_length = PAGE_CACHE_SIZE;
} else {
pb_offset = offset - pb->pb_file_offset;
if (pb_offset) {
bn += (pb_offset + pbr->pbr_smask) >> pbr->pbr_sshift;
}
}
if (pb->pb_flags & PBF_READ) {
err = _pagebuf_page_io(page, pbr, pb, bn,
(off_t)pg_offset, pg_length, pb->pb_locked, READ, 0);
} else if (pb->pb_flags & PBF_WRITE) {
int locking = (pb->pb_flags & _PBF_LOCKABLE) == 0;
/* Check we need to lock pages */
if (locking && (pb->pb_locked == 0))
lock_page(page);
err = _pagebuf_page_io(page, pbr, pb, bn,
(off_t)pg_offset, pg_length, locking, WRITE,
last && (pb->pb_flags & PBF_FLUSH));
}
return (err ? err : ret_len);
}
/*
* pagebuf_iorequest
*
* pagebuf_iorequest is the core I/O request routine.
* It assumes that the buffer is well-formed and
* mapped and ready for physical I/O, unlike
* pagebuf_iostart() and pagebuf_iophysio(). Those
* routines call the pagebuf_ioinitiate routine to start I/O,
* if it is present, or else call pagebuf_iorequest()
* directly if the pagebuf_ioinitiate routine is not present.
*
* This function will be responsible for ensuring access to the
* pages is restricted whilst I/O is in progress - for locking
* pagebufs the pagebuf lock is the mediator, for non-locking
* pagebufs the pages will be locked. In the locking case we
* need to use the pagebuf lock as multiple meta-data buffers
* will reference the same page.
*/
int
pagebuf_iorequest( /* start real I/O */
page_buf_t *pb) /* buffer to convey to device */
{
int status = 0;
PB_TRACE(pb, PB_TRACE_REC(ioreq), 0);
if (pb->pb_flags & PBF_DELWRI) {
pagebuf_delwri_queue(pb, 1);
return status;
}
if (pb->pb_flags & PBF_WRITE) {
_pagebuf_wait_unpin(pb);
}
/* Set the count to 1 initially, this will stop an I/O
* completion callout which happens before we have started
* all the I/O from calling pagebuf_iodone too early.
*/
atomic_set(&pb->pb_io_remaining, 1);
status = _pagebuf_segment_apply(pb);
/* Drop our count and if everything worked we are done */
if (atomic_dec_and_test(&pb->pb_io_remaining) == 1) {
pagebuf_iodone(pb, 0);
}
return status < 0 ? status : 0;
}
/*
* pagebuf_iowait
*
* pagebuf_iowait waits for I/O to complete on the buffer supplied.
* It returns immediately if no I/O is pending. In any case, it returns
* the error code, if any, or 0 if there is no error.
*/
int
pagebuf_iowait(
page_buf_t *pb)
{
PB_TRACE(pb, PB_TRACE_REC(iowait), 0);
pagebuf_run_queues(pb);
down(&pb->pb_iodonesema);
PB_TRACE(pb, PB_TRACE_REC(iowaited), (int)pb->pb_error);
return pb->pb_error;
}
STATIC void *
pagebuf_mapout_locked(
page_buf_t *pb)
{
void *old_addr = NULL;
if (pb->pb_flags & PBF_MAPPED) {
if (pb->pb_flags & _PBF_ADDR_ALLOCATED)
old_addr = pb->pb_addr - pb->pb_offset;
pb->pb_addr = NULL;
pb->pb_flags &= ~(PBF_MAPPED | _PBF_ADDR_ALLOCATED);
}
return old_addr; /* Caller must free the address space,
* we are under a spin lock, probably
* not safe to do vfree here
*/
}
caddr_t
pagebuf_offset(
page_buf_t *pb,
off_t offset)
{
struct page *page;
offset += pb->pb_offset;
page = pb->pb_pages[offset >> PAGE_CACHE_SHIFT];
return (caddr_t) page_address(page) + (offset & (PAGE_CACHE_SIZE - 1));
}
/*
* pagebuf_iomove
*
* Move data into or out of a buffer.
*/
void
pagebuf_iomove(
page_buf_t *pb, /* buffer to process */
size_t boff, /* starting buffer offset */
size_t bsize, /* length to copy */
caddr_t data, /* data address */
page_buf_rw_t mode) /* read/write flag */
{
size_t bend, cpoff, csize;
struct page *page;
bend = boff + bsize;
while (boff < bend) {
page = pb->pb_pages[page_buf_btoct(boff + pb->pb_offset)];
cpoff = page_buf_poff(boff + pb->pb_offset);
csize = min_t(size_t,
PAGE_CACHE_SIZE-cpoff, pb->pb_count_desired-boff);
ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
switch (mode) {
case PBRW_ZERO:
memset(page_address(page) + cpoff, 0, csize);
break;
case PBRW_READ:
memcpy(data, page_address(page) + cpoff, csize);
break;
case PBRW_WRITE:
memcpy(page_address(page) + cpoff, data, csize);
}
boff += csize;
data += csize;
}
}
/*
* _pagebuf_segment_apply
*
* Applies _page_buf_page_apply to each segment of the page_buf_t.
*/
STATIC int
_pagebuf_segment_apply( /* apply function to segments */
page_buf_t *pb) /* buffer to examine */
{
int buf_index, sval, status = 0;
loff_t buffer_offset = pb->pb_file_offset;
size_t buffer_len = pb->pb_count_desired;
size_t page_offset, len, total = 0;
size_t cur_offset, cur_len;
pagebuf_hold(pb);
cur_offset = pb->pb_offset;
cur_len = buffer_len;
for (buf_index = 0; buf_index < pb->pb_page_count; buf_index++) {
if (cur_len == 0)
break;
if (cur_offset >= PAGE_CACHE_SIZE) {
cur_offset -= PAGE_CACHE_SIZE;
continue;
}
page_offset = cur_offset;
cur_offset = 0;
len = PAGE_CACHE_SIZE - page_offset;
if (len > cur_len)
len = cur_len;
cur_len -= len;
sval = _page_buf_page_apply(pb, buffer_offset,
pb->pb_pages[buf_index], page_offset, len,
buf_index+1 == pb->pb_page_count);
if (sval <= 0) {
status = sval;
break;
} else {
len = sval;
total += len;
}
buffer_offset += len;
buffer_len -= len;
}
pagebuf_rele(pb);
if (!status)
status = total;
return (status);
}
/*
* Pagebuf delayed write buffer handling
*/
STATIC int pbd_active = 1;
STATIC LIST_HEAD(pbd_delwrite_queue);
STATIC spinlock_t pbd_delwrite_lock = SPIN_LOCK_UNLOCKED;
STATIC void
pagebuf_delwri_queue(
page_buf_t *pb,
int unlock)
{
PB_TRACE(pb, PB_TRACE_REC(delwri_q), unlock);
spin_lock(&pbd_delwrite_lock);
/* If already in the queue, dequeue and place at tail */
if (!list_empty(&pb->pb_list)) {
if (unlock) {
atomic_dec(&pb->pb_hold);
}
list_del(&pb->pb_list);
}
list_add_tail(&pb->pb_list, &pbd_delwrite_queue);
pb->pb_flushtime = jiffies + pb_params.p_un.age_buffer;
spin_unlock(&pbd_delwrite_lock);
if (unlock && (pb->pb_flags & _PBF_LOCKABLE)) {
pagebuf_unlock(pb);
}
}
void
pagebuf_delwri_dequeue(
page_buf_t *pb)
{
PB_TRACE(pb, PB_TRACE_REC(delwri_uq), 0);
spin_lock(&pbd_delwrite_lock);
list_del_init(&pb->pb_list);
pb->pb_flags &= ~PBF_DELWRI;
spin_unlock(&pbd_delwrite_lock);
}
/*
* The pagebuf iodone daemon
*/
STATIC int pb_daemons[NR_CPUS];
STATIC int
pagebuf_iodone_daemon(
void *__bind_cpu)
{
int bind_cpu = (int) (long) __bind_cpu;
int cpu = cpu_logical_map(bind_cpu);
DECLARE_WAITQUEUE (wait, current);
/* Set up the thread */
daemonize();
/* Avoid signals */
spin_lock_irq(¤t->sigmask_lock);
sigfillset(¤t->blocked);
recalc_sigpending(current);
spin_unlock_irq(¤t->sigmask_lock);
/* Migrate to the right CPU */
#ifdef __HAVE_NEW_SCHEDULER
set_cpus_allowed(current, 1UL << cpu);
if (smp_processor_id() != cpu)
BUG();
#else
current->cpus_allowed = 1UL << cpu;
while (smp_processor_id() != cpu)
schedule();
#endif
sprintf(current->comm, "pagebuf/%d", bind_cpu);
INIT_LIST_HEAD(&pagebuf_iodone_tq[cpu]);
init_waitqueue_head(&pagebuf_iodone_wait[cpu]);
__set_current_state(TASK_INTERRUPTIBLE);
mb();
pb_daemons[cpu] = 1;
for (;;) {
add_wait_queue(&pagebuf_iodone_wait[cpu],
&wait);
if (TQ_ACTIVE(pagebuf_iodone_tq[cpu]))
__set_task_state(current, TASK_RUNNING);
schedule();
remove_wait_queue(&pagebuf_iodone_wait[cpu],
&wait);
run_task_queue(&pagebuf_iodone_tq[cpu]);
if (pb_daemons[cpu] == 0)
break;
__set_current_state(TASK_INTERRUPTIBLE);
}
pb_daemons[cpu] = -1;
wake_up_interruptible(&pagebuf_iodone_wait[cpu]);
return 0;
}
/* Defines for pagebuf daemon */
DECLARE_WAIT_QUEUE_HEAD(pbd_waitq);
STATIC int force_flush;
STATIC void
pagebuf_daemon_wakeup(
int flag)
{
force_flush = flag;
if (waitqueue_active(&pbd_waitq)) {
wake_up_interruptible(&pbd_waitq);
}
}
typedef void (*timeout_fn)(unsigned long);
STATIC int
pagebuf_daemon(
void *data)
{
int count;
page_buf_t *pb;
struct list_head *curr, *next, tmp;
struct timer_list pb_daemon_timer =
{ {NULL, NULL}, 0, 0, (timeout_fn)pagebuf_daemon_wakeup };
/* Set up the thread */
daemonize();
/* Avoid signals */
spin_lock_irq(¤t->sigmask_lock);
sigfillset(¤t->blocked);
recalc_sigpending(current);
spin_unlock_irq(¤t->sigmask_lock);
strcpy(current->comm, "pagebufd");
current->flags |= PF_MEMALLOC;
INIT_LIST_HEAD(&tmp);
do {
if (pbd_active == 1) {
del_timer(&pb_daemon_timer);
pb_daemon_timer.expires = jiffies +
pb_params.p_un.flush_interval;
add_timer(&pb_daemon_timer);
interruptible_sleep_on(&pbd_waitq);
}
if (pbd_active == 0) {
del_timer(&pb_daemon_timer);
}
spin_lock(&pbd_delwrite_lock);
count = 0;
list_for_each_safe(curr, next, &pbd_delwrite_queue) {
pb = list_entry(curr, page_buf_t, pb_list);
PB_TRACE(pb, PB_TRACE_REC(walkq1), pagebuf_ispin(pb));
if ((pb->pb_flags & PBF_DELWRI) && !pagebuf_ispin(pb) &&
(((pb->pb_flags & _PBF_LOCKABLE) == 0) ||
!pagebuf_cond_lock(pb))) {
if (!force_flush &&
time_before(jiffies, pb->pb_flushtime)) {
pagebuf_unlock(pb);
break;
}
list_del(&pb->pb_list);
list_add(&pb->pb_list, &tmp);
count++;
}
}
spin_unlock(&pbd_delwrite_lock);
while (!list_empty(&tmp)) {
pb = list_entry(tmp.next, page_buf_t, pb_list);
list_del_init(&pb->pb_list);
pb->pb_flags &= ~PBF_DELWRI;
pb->pb_flags |= PBF_WRITE;
__pagebuf_iorequest(pb);
}
if (as_list_len > 0)
purge_addresses();
if (count)
pagebuf_run_queues(NULL);
force_flush = 0;
} while (pbd_active == 1);
pbd_active = -1;
wake_up_interruptible(&pbd_waitq);
return 0;
}
void
pagebuf_delwri_flush(
pb_target_t *target,
u_long flags,
int *pinptr)
{
page_buf_t *pb;
struct list_head *curr, *next, tmp;
int pincount = 0;
spin_lock(&pbd_delwrite_lock);
INIT_LIST_HEAD(&tmp);
list_for_each_safe(curr, next, &pbd_delwrite_queue) {
pb = list_entry(curr, page_buf_t, pb_list);
/*
* Skip other targets, markers and in progress buffers
*/
if ((pb->pb_flags == 0) || (pb->pb_target != target) ||
!(pb->pb_flags & PBF_DELWRI)) {
continue;
}
PB_TRACE(pb, PB_TRACE_REC(walkq2), pagebuf_ispin(pb));
if (pagebuf_ispin(pb)) {
pincount++;
continue;
}
if (flags & PBDF_TRYLOCK) {
if (!pagebuf_cond_lock(pb)) {
pincount++;
continue;
}
}
list_del_init(&pb->pb_list);
if (flags & PBDF_WAIT) {
list_add(&pb->pb_list, &tmp);
pb->pb_flags &= ~PBF_ASYNC;
}
spin_unlock(&pbd_delwrite_lock);
if ((flags & PBDF_TRYLOCK) == 0) {
pagebuf_lock(pb);
}
pb->pb_flags &= ~PBF_DELWRI;
pb->pb_flags |= PBF_WRITE;
__pagebuf_iorequest(pb);
spin_lock(&pbd_delwrite_lock);
}
spin_unlock(&pbd_delwrite_lock);
pagebuf_run_queues(NULL);
if (pinptr)
*pinptr = pincount;
if ((flags & PBDF_WAIT) == 0)
return;
while (!list_empty(&tmp)) {
pb = list_entry(tmp.next, page_buf_t, pb_list);
list_del_init(&pb->pb_list);
pagebuf_iowait(pb);
if (!pb->pb_relse)
pagebuf_unlock(pb);
pagebuf_rele(pb);
}
}
STATIC int
pagebuf_daemon_start(void)
{
int cpu;
kernel_thread(pagebuf_daemon, NULL,
CLONE_FS|CLONE_FILES|CLONE_VM);
for (cpu = 0; cpu < smp_num_cpus; cpu++) {
if (kernel_thread(pagebuf_iodone_daemon,
(void *)(long) cpu,
CLONE_FS|CLONE_FILES|CLONE_VM) < 0) {
printk("pagebuf_daemon_start failed\n");
} else {
while (!pb_daemons[cpu_logical_map(cpu)])
yield();
}
}
return 0;
}
/*
* pagebuf_daemon_stop
*
* Note: do not mark as __exit, it is called from pagebuf_terminate.
*/
STATIC void
pagebuf_daemon_stop(void)
{
int cpu, pcpu;
pbd_active = 0;
wake_up_interruptible(&pbd_waitq);
wait_event_interruptible(pbd_waitq, pbd_active);
for (pcpu = 0; pcpu < smp_num_cpus; pcpu++) {
cpu = cpu_logical_map(pcpu);
pb_daemons[cpu] = 0;
wake_up(&pagebuf_iodone_wait[cpu]);
wait_event_interruptible(pagebuf_iodone_wait[cpu],
pb_daemons[cpu] == -1);
}
}
/*
* Pagebuf sysctl interface
*/
STATIC int
pb_stats_clear_handler(
ctl_table *ctl,
int write,
struct file *filp,
void *buffer,
size_t *lenp)
{
int ret;
int *valp = ctl->data;
ret = proc_doulongvec_minmax(ctl, write, filp, buffer, lenp);
if (!ret && write && *valp) {
printk("XFS Clearing pbstats\n");
memset(&pbstats, 0, sizeof(pbstats));
pb_params.p_un.stats_clear = 0;
}
return ret;
}
STATIC struct ctl_table_header *pagebuf_table_header;
STATIC ctl_table pagebuf_table[] = {
{PB_FLUSH_INT, "flush_int", &pb_params.data[0],
sizeof(ulong), 0644, NULL, &proc_doulongvec_ms_jiffies_minmax,
&sysctl_intvec, NULL, &pagebuf_min[0], &pagebuf_max[0]},
{PB_FLUSH_AGE, "flush_age", &pb_params.data[1],
sizeof(ulong), 0644, NULL, &proc_doulongvec_ms_jiffies_minmax,
&sysctl_intvec, NULL, &pagebuf_min[1], &pagebuf_max[1]},
{PB_STATS_CLEAR, "stats_clear", &pb_params.data[2],
sizeof(ulong), 0644, NULL, &pb_stats_clear_handler,
&sysctl_intvec, NULL, &pagebuf_min[2], &pagebuf_max[2]},
#ifdef PAGEBUF_TRACE
{PB_DEBUG, "debug", &pb_params.data[3],
sizeof(ulong), 0644, NULL, &proc_doulongvec_minmax,
&sysctl_intvec, NULL, &pagebuf_min[3], &pagebuf_max[3]},
#endif
{0}
};
STATIC ctl_table pagebuf_dir_table[] = {
{VM_PAGEBUF, "pagebuf", NULL, 0, 0555, pagebuf_table},
{0}
};
STATIC ctl_table pagebuf_root_table[] = {
{CTL_VM, "vm", NULL, 0, 0555, pagebuf_dir_table},
{0}
};
#ifdef CONFIG_PROC_FS
STATIC int
pagebuf_readstats(
char *buffer,
char **start,
off_t offset,
int count,
int *eof,
void *data)
{
int i, len;
len = 0;
len += sprintf(buffer + len, "pagebuf");
for (i = 0; i < sizeof(pbstats) / sizeof(u_int32_t); i++) {
len += sprintf(buffer + len, " %u",
*(((u_int32_t*)&pbstats) + i));
}
buffer[len++] = '\n';
if (offset >= len) {
*start = buffer;
*eof = 1;
return 0;
}
*start = buffer + offset;
if ((len -= offset) > count)
return count;
*eof = 1;
return len;
}
#endif /* CONFIG_PROC_FS */
STATIC void
pagebuf_shaker(void)
{
pagebuf_daemon_wakeup(1);
}
/*
* Initialization and Termination
*/
int __init
pagebuf_init(void)
{
int order, mempages, i;
unsigned int nr_hash;
extern int xfs_physmem;
mempages = xfs_physmem >>= 16;
mempages *= sizeof(pb_hash_t);
for (order = 0; (1 << order) < mempages; order++)
;
if (order > 3) order = 3; /* cap us at 2K buckets */
do {
unsigned long tmp;
nr_hash = (PAGE_SIZE << order) / sizeof(pb_hash_t);
nr_hash = 1 << (ffs(nr_hash) - 1);
pb_hash_mask = (nr_hash - 1);
tmp = nr_hash;
pb_hash_shift = 0;
while((tmp >>= 1UL) != 0UL)
pb_hash_shift++;
pbhash = (pb_hash_t *)
__get_free_pages(GFP_KERNEL, order);
pb_order = order;
} while (pbhash == NULL && --order > 0);
printk("pagebuf cache hash table entries: %d (order: %d, %ld bytes)\n",
nr_hash, order, (PAGE_SIZE << order));
for(i = 0; i < nr_hash; i++) {
spin_lock_init(&pbhash[i].pb_hash_lock);
INIT_LIST_HEAD(&pbhash[i].pb_hash);
}
pagebuf_table_header = register_sysctl_table(pagebuf_root_table, 1);
#ifdef CONFIG_PROC_FS
if (proc_mkdir("fs/pagebuf", 0))
create_proc_read_entry(
"fs/pagebuf/stat", 0, 0, pagebuf_readstats, NULL);
#endif
pagebuf_cache = kmem_cache_create("page_buf_t", sizeof(page_buf_t), 0,
SLAB_HWCACHE_ALIGN, NULL, NULL);
if (pagebuf_cache == NULL) {
printk("pagebuf: couldn't init pagebuf cache\n");
pagebuf_terminate();
return -ENOMEM;
}
if (_pagebuf_prealloc_bh(NR_RESERVED_BH) < NR_RESERVED_BH) {
printk("pagebuf: couldn't pre-allocate %d buffer heads\n",
NR_RESERVED_BH);
pagebuf_terminate();
return -ENOMEM;
}
init_waitqueue_head(&pb_resv_bh_wait);
#ifdef PAGEBUF_TRACE
pb_trace.buf = (pagebuf_trace_t *)kmalloc(
PB_TRACE_BUFSIZE * sizeof(pagebuf_trace_t), GFP_KERNEL);
memset(pb_trace.buf, 0, PB_TRACE_BUFSIZE * sizeof(pagebuf_trace_t));
pb_trace.start = 0;
pb_trace.end = PB_TRACE_BUFSIZE - 1;
#endif
pagebuf_daemon_start();
kmem_shake_register(pagebuf_shaker);
return 0;
}
/*
* pagebuf_terminate.
*
* Note: do not mark as __exit, this is also called from the __init code.
*/
void
pagebuf_terminate(void)
{
pagebuf_daemon_stop();
kmem_cache_destroy(pagebuf_cache);
kmem_shake_deregister(pagebuf_shaker);
free_pages((unsigned long)pbhash, pb_order);
unregister_sysctl_table(pagebuf_table_header);
#ifdef CONFIG_PROC_FS
remove_proc_entry("fs/pagebuf/stat", NULL);
remove_proc_entry("fs/pagebuf", NULL);
#endif
}
/*
* Module management (for kernel debugger module)
*/
EXPORT_SYMBOL(pagebuf_offset);