[BACK]Return to xfs_buf.c CVS log [TXT][DIR] Up to [Development] / xfs-linux / linux-2.4

File: [Development] / xfs-linux / linux-2.4 / Attic / xfs_buf.c (download)

Revision 1.212, Mon Dec 19 02:48:32 2005 UTC (11 years, 10 months ago) by nathans.longdrop.melbourne.sgi.com
Branch: MAIN
Changes since 1.211: +12 -12 lines

Fix up offset type inconsistencies and gcc warnings from earlier changes.
Merge of xfs-linux-melb:xfs-kern:24875a by kenmcd.

/*
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */
#include <linux/stddef.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/vmalloc.h>
#include <linux/blkdev.h>
#include <linux/locks.h>
#include <linux/sysctl.h>
#include <linux/proc_fs.h>
#include <linux/hash.h>
#include "xfs_linux.h"

#define BN_ALIGN_MASK	((1 << (PAGE_CACHE_SHIFT - BBSHIFT)) - 1)

#ifndef GFP_READAHEAD
#define GFP_READAHEAD	0
#endif

/*
 * A backport of the 2.5 scheduler is used by many vendors of 2.4-based
 * distributions.
 * We can only guess it's presences by the lack of the SCHED_YIELD flag.
 * If the heuristic doesn't work, change this define by hand.
 */
#ifndef SCHED_YIELD
#define __HAVE_NEW_SCHEDULER	1
#endif

/*
 * cpumask_t is used for supporting NR_CPUS > BITS_PER_LONG.
 * If support for this is present, migrate_to_cpu exists and provides
 * a wrapper around the set_cpus_allowed routine.
 */
#ifdef copy_cpumask
#define __HAVE_CPUMASK_T	1
#endif

#ifndef __HAVE_CPUMASK_T
# ifndef __HAVE_NEW_SCHEDULER
#  define migrate_to_cpu(cpu)	\
	do { current->cpus_allowed = 1UL << (cpu); } while (0)
# else
#  define migrate_to_cpu(cpu)	\
	set_cpus_allowed(current, 1UL << (cpu))
# endif
#endif

#ifndef VM_MAP
#define VM_MAP	VM_ALLOC
#endif

STATIC kmem_cache_t *xfs_buf_cache;
STATIC kmem_shaker_t xfs_buf_shake;

#define MAX_IO_DAEMONS		NR_CPUS
#define CPU_TO_DAEMON(cpu)	(cpu)
STATIC int xb_logio_daemons[MAX_IO_DAEMONS];
STATIC struct list_head xfs_buf_logiodone_tq[MAX_IO_DAEMONS];
STATIC wait_queue_head_t xfs_buf_logiodone_wait[MAX_IO_DAEMONS];
STATIC int xb_dataio_daemons[MAX_IO_DAEMONS];
STATIC struct list_head xfs_buf_dataiodone_tq[MAX_IO_DAEMONS];
STATIC wait_queue_head_t xfs_buf_dataiodone_wait[MAX_IO_DAEMONS];

/*
 * For pre-allocated buffer head pool
 */

#define NR_RESERVED_BH	64
static wait_queue_head_t	xb_resv_bh_wait;
static spinlock_t		xb_resv_bh_lock = SPIN_LOCK_UNLOCKED;
struct buffer_head		*xb_resv_bh = NULL;	/* list of bh */
int				xb_resv_bh_cnt = 0;	/* # of bh available */

STATIC void _xfs_buf_ioapply(xfs_buf_t *);
STATIC int xfs_buf_daemon(void *data);
STATIC int xfs_buf_daemon_wakeup(int, unsigned int);
STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
STATIC void xfs_buf_runall_queues(struct list_head[]);

#ifdef XFS_BUF_TRACE
void
xfs_buf_trace(
	xfs_buf_t	*bp,
	char		*id,
	void		*data,
	void		*ra)
{
	ktrace_enter(xfs_buf_trace_buf,
		bp, id,
		(void *)(unsigned long)bp->b_flags,
		(void *)(unsigned long)bp->b_hold.counter,
		(void *)(unsigned long)bp->b_sema.count.counter,
		(void *)current,
		data, ra,
		(void *)(unsigned long)((bp->b_file_offset>>32) & 0xffffffff),
		(void *)(unsigned long)(bp->b_file_offset & 0xffffffff),
		(void *)(unsigned long)bp->b_buffer_length,
		NULL, NULL, NULL, NULL, NULL);
}
ktrace_t *xfs_buf_trace_buf;
#define XFS_BUF_TRACE_SIZE	4096
#define XB_TRACE(bp, id, data)	\
	xfs_buf_trace(bp, id, (void *)data, (void *)__builtin_return_address(0))
#else
#define XB_TRACE(bp, id, data)	do { } while (0)
#endif

#ifdef XFS_BUF_LOCK_TRACKING
# define XB_SET_OWNER(bp)	((bp)->b_last_holder = current->pid)
# define XB_CLEAR_OWNER(bp)	((bp)->b_last_holder = -1)
# define XB_GET_OWNER(bp)	((bp)->b_last_holder)
#else
# define XB_SET_OWNER(bp)	do { } while (0)
# define XB_CLEAR_OWNER(bp)	do { } while (0)
# define XB_GET_OWNER(bp)	do { } while (0)
#endif

#define xb_to_gfp(flags) \
	(((flags) & XBF_READ_AHEAD) ? GFP_READAHEAD : \
	 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL)

#define xb_to_km(flags) \
	 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)

#define xfs_buf_allocate(flags) \
	kmem_zone_alloc(xfs_buf_cache, xb_to_km(flags))
#define xfs_buf_deallocate(bp) \
	kmem_zone_free(xfs_buf_cache, (bp));

/*
 *	Mapping of multi-page buffers into contiguous virtual space
 */

typedef struct a_list {
	void		*vm_addr;
	struct a_list	*next;
} a_list_t;

STATIC a_list_t		*as_free_head;
STATIC int		as_list_len;
STATIC DEFINE_SPINLOCK(as_lock);

/*
 *	Try to batch vunmaps because they are costly.
 */
STATIC void
free_address(
	void		*addr)
{
	a_list_t	*aentry;

	aentry = kmalloc(sizeof(a_list_t), GFP_ATOMIC & ~__GFP_HIGH);
	if (likely(aentry)) {
		spin_lock(&as_lock);
		aentry->next = as_free_head;
		aentry->vm_addr = addr;
		as_free_head = aentry;
		as_list_len++;
		spin_unlock(&as_lock);
	} else {
		vunmap(addr);
	}
}

STATIC void
purge_addresses(void)
{
	a_list_t	*aentry, *old;

	if (as_free_head == NULL)
		return;

	spin_lock(&as_lock);
	aentry = as_free_head;
	as_free_head = NULL;
	as_list_len = 0;
	spin_unlock(&as_lock);

	while ((old = aentry) != NULL) {
		vunmap(aentry->vm_addr);
		aentry = aentry->next;
		kfree(old);
	}
}

/*
 *	Internal xfs_buf_t object manipulation
 */

STATIC void
_xfs_buf_initialize(
	xfs_buf_t		*bp,
	xfs_buftarg_t		*target,
	xfs_off_t		range_base,
	size_t			range_length,
	xfs_buf_flags_t		flags)
{
	/*
	 * We don't want certain flags to appear in b_flags.
	 */
	flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);

	memset(bp, 0, sizeof(xfs_buf_t));
	atomic_set(&bp->b_hold, 1);
	init_MUTEX_LOCKED(&bp->b_iodonesema);
	INIT_LIST_HEAD(&bp->b_list);
	INIT_LIST_HEAD(&bp->b_hash_list);
	init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
	XB_SET_OWNER(bp);
	bp->b_target = target;
	bp->b_file_offset = range_base;
	/*
	 * Set buffer_length and count_desired to the same value initially.
	 * I/O routines should use count_desired, which will be the same in
	 * most cases but may be reset (e.g. XFS recovery).
	 */
	bp->b_buffer_length = bp->b_count_desired = range_length;
	bp->b_flags = flags | XBF_NONE;
	bp->b_bn = XFS_BUF_DADDR_NULL;
	atomic_set(&bp->b_pin_count, 0);
	init_waitqueue_head(&bp->b_waiters);

	XFS_STATS_INC(xb_create);
	XB_TRACE(bp, "initialize", target);
}

/*
 *	Allocate a page array capable of holding a specified number
 *	of pages, and point the page buf at it.
 */
STATIC int
_xfs_buf_get_pages(
	xfs_buf_t		*bp,
	int			page_count,
	xfs_buf_flags_t		flags)
{
	/* Make sure that we have a page list */
	if (bp->b_pages == NULL) {
		bp->b_offset = xfs_buf_poff(bp->b_file_offset);
		bp->b_page_count = page_count;
		if (page_count <= XB_PAGES) {
			bp->b_pages = bp->b_page_array;
		} else {
			bp->b_pages = kmem_alloc(sizeof(struct page *) *
					page_count, xb_to_km(flags));
			if (bp->b_pages == NULL)
				return -ENOMEM;
		}
		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
	}
	return 0;
}

/*
 *	Frees b_pages if it was allocated.
 */
STATIC void
_xfs_buf_free_pages(
	xfs_buf_t	*bp)
{
	if (bp->b_pages != bp->b_page_array) {
		kmem_free(bp->b_pages,
			  bp->b_page_count * sizeof(struct page *));
	}
}

/*
 *	Releases the specified buffer.
 *
 * 	The modification state of any associated pages is left unchanged.
 * 	The buffer most not be on any hash - use xfs_buf_rele instead for
 * 	hashed and refcounted buffers
 */
void
xfs_buf_free(
	xfs_buf_t		*bp)
{
	XB_TRACE(bp, "free", 0);

	ASSERT(list_empty(&bp->b_hash_list));

	if (bp->b_flags & _XBF_PAGE_CACHE) {
		uint		i;

		if ((bp->b_flags & XBF_MAPPED) && (bp->b_page_count > 1))
			free_address(bp->b_addr - bp->b_offset);

		for (i = 0; i < bp->b_page_count; i++)
			page_cache_release(bp->b_pages[i]);
		_xfs_buf_free_pages(bp);
	} else if (bp->b_flags & _XBF_KMEM_ALLOC) {
		 /*
		  * XXX(hch): bp->b_count_desired might be incorrect (see
		  * xfs_buf_associate_memory for details), but fortunately
		  * the Linux version of kmem_free ignores the len argument..
		  */
		kmem_free(bp->b_addr, bp->b_count_desired);
		_xfs_buf_free_pages(bp);
	}

	xfs_buf_deallocate(bp);
}

/*
 *	Finds all pages for buffer in question and builds it's page list.
 */
STATIC int
_xfs_buf_lookup_pages(
	xfs_buf_t		*bp,
	uint			flags)
{
	struct address_space	*mapping = bp->b_target->bt_mapping;
	size_t			blocksize = bp->b_target->bt_bsize;
	int			gfp_mask = xb_to_gfp(flags);
	unsigned short		page_count, i;
	pgoff_t			first;
	xfs_off_t		end;
	int			error;

	end = bp->b_file_offset + bp->b_buffer_length;
	page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);

	error = _xfs_buf_get_pages(bp, page_count, flags);
	if (unlikely(error))
		return error;
	bp->b_flags |= _XBF_PAGE_CACHE;

	first = bp->b_file_offset >> PAGE_CACHE_SHIFT;

	for (i = 0; i < bp->b_page_count; i++) {
		struct page	*page;
		uint		retries = 0;

	      retry:
		page = find_or_create_page(mapping, first + i, gfp_mask);
		if (unlikely(page == NULL)) {
			if (flags & XBF_READ_AHEAD) {
				bp->b_page_count = i;
				for (i = 0; i < bp->b_page_count; i++)
					unlock_page(bp->b_pages[i]);
				return -ENOMEM;
			}

			/*
			 * This could deadlock.
			 *
			 * But until all the XFS lowlevel code is revamped to
			 * handle buffer allocation failures we can't do much.
			 */
			if (!(++retries % 100))
				printk(KERN_ERR
					"possible deadlock in %s (mode:0x%x)\n",
					__FUNCTION__, gfp_mask);

			XFS_STATS_INC(xb_page_retries);
			xfs_buf_daemon_wakeup(0, gfp_mask);
			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_timeout(10);
			goto retry;
		}

		XFS_STATS_INC(xb_page_found);

		/* if we need to do I/O on a page record the fact */
		if (!Page_Uptodate(page)) {
			page_count--;
			if (blocksize == PAGE_CACHE_SIZE && (flags & XBF_READ))
				bp->b_locked = 1;
		}

		bp->b_pages[i] = page;
	}

	if (!bp->b_locked) {
		for (i = 0; i < bp->b_page_count; i++)
			unlock_page(bp->b_pages[i]);
	}

	if (page_count) {
		/* if we have any uptodate pages, mark that in the buffer */
		bp->b_flags &= ~XBF_NONE;

		/* if some pages aren't uptodate, mark that in the buffer */
		if (page_count != bp->b_page_count)
			bp->b_flags |= XBF_PARTIAL;
	}

	XB_TRACE(bp, "lookup_pages", (long)page_count);
	return error;
}

/*
 *	Map buffer into kernel address-space if nessecary.
 */
STATIC int
_xfs_buf_map_pages(
	xfs_buf_t		*bp,
	uint			flags)
{
	/* A single page buffer is always mappable */
	if (bp->b_page_count == 1) {
		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
		bp->b_flags |= XBF_MAPPED;
	} else if (flags & XBF_MAPPED) {
		if (as_list_len > 64)
			purge_addresses();
		bp->b_addr = vmap(bp->b_pages, bp->b_page_count,
					VM_MAP, PAGE_KERNEL);
		if (unlikely(bp->b_addr == NULL))
			return -ENOMEM;
		bp->b_addr += bp->b_offset;
		bp->b_flags |= XBF_MAPPED;
	}

	return 0;
}

/*
 *	Pre-allocation of a pool of buffer heads for use in
 *	low-memory situations.
 */

/*
 *	_xfs_buf_prealloc_bh
 *
 *	Pre-allocate a pool of "count" buffer heads at startup.
 *	Puts them on a list at "xb_resv_bh"
 *	Returns number of bh actually allocated to pool.
 */
STATIC int
_xfs_buf_prealloc_bh(
	int			count)
{
	struct buffer_head	*bh;
	int			i;

	for (i = 0; i < count; i++) {
		bh = kmem_cache_alloc(bh_cachep, SLAB_KERNEL);
		if (!bh)
			break;
		bh->b_pprev = &xb_resv_bh;
		bh->b_next = xb_resv_bh;
		xb_resv_bh = bh;
		xb_resv_bh_cnt++;
	}
	return i;
}

/*
 *	_xfs_buf_get_prealloc_bh
 *
 *	Get one buffer head from our pre-allocated pool.
 *	If pool is empty, sleep 'til one comes back in.
 *	Returns aforementioned buffer head.
 */
STATIC struct buffer_head *
_xfs_buf_get_prealloc_bh(void)
{
	unsigned long		flags;
	struct buffer_head	*bh;
	DECLARE_WAITQUEUE	(wait, current);

	spin_lock_irqsave(&xb_resv_bh_lock, flags);

	if (xb_resv_bh_cnt < 1) {
		add_wait_queue(&xb_resv_bh_wait, &wait);
		do {
			set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irqrestore(&xb_resv_bh_lock, flags);
			run_task_queue(&tq_disk);
			schedule();
			spin_lock_irqsave(&xb_resv_bh_lock, flags);
		} while (xb_resv_bh_cnt < 1);
		__set_current_state(TASK_RUNNING);
		remove_wait_queue(&xb_resv_bh_wait, &wait);
	}

	BUG_ON(xb_resv_bh_cnt < 1);
	BUG_ON(!xb_resv_bh);

	bh = xb_resv_bh;
	xb_resv_bh = bh->b_next;
	xb_resv_bh_cnt--;

	spin_unlock_irqrestore(&xb_resv_bh_lock, flags);
	return bh;
}

/*
 *	_xfs_buf_free_bh
 *
 *	Take care of buffer heads that we're finished with.
 *	Call this instead of just kmem_cache_free(bh_cachep, bh)
 *	when you're done with a bh.
 *
 *	If our pre-allocated pool is full, just free the buffer head.
 *	Otherwise, put it back in the pool, and wake up anybody
 *	waiting for one.
 */
STATIC inline void
_xfs_buf_free_bh(
	struct buffer_head	*bh)
{
	unsigned long		flags;
	int			free;

	if (! (free = xb_resv_bh_cnt >= NR_RESERVED_BH)) {
		spin_lock_irqsave(&xb_resv_bh_lock, flags);

		if (! (free = xb_resv_bh_cnt >= NR_RESERVED_BH)) {
			bh->b_pprev = &xb_resv_bh;
			bh->b_next = xb_resv_bh;
			xb_resv_bh = bh;
			xb_resv_bh_cnt++;

			if (waitqueue_active(&xb_resv_bh_wait)) {
				wake_up(&xb_resv_bh_wait);
			}
		}

		spin_unlock_irqrestore(&xb_resv_bh_lock, flags);
	}
	if (free) {
		kmem_cache_free(bh_cachep, bh);
	}
}

/*
 *	Finding and Reading Buffers
 */

/*
 *	_xfs_buf_find
 *
 *	Looks up, and creates if absent, a lockable buffer for
 *	a given range of an inode.  The buffer is returned
 *	locked.	 If other overlapping buffers exist, they are
 *	released before the new buffer is created and locked,
 *	which may imply that this call will block until those buffers
 *	are unlocked.  No I/O is implied by this call.
 */
xfs_buf_t *
_xfs_buf_find(
	xfs_buftarg_t		*btp,	/* block device target		*/
	xfs_off_t		ioff,	/* starting offset of range	*/
	size_t			isize,	/* length of range		*/
	xfs_buf_flags_t		flags,
	xfs_buf_t		*new_bp)
{
	xfs_off_t		range_base;
	size_t			range_length;
	xfs_bufhash_t		*hash;
	xfs_buf_t		*bp, *n;

	range_base = (ioff << BBSHIFT);
	range_length = (isize << BBSHIFT);

	/* Check for IOs smaller than the sector size / not sector aligned */
	ASSERT(!(range_length < (1 << btp->bt_sshift)));
	ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));

	hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];

	spin_lock(&hash->bh_lock);

	list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
		ASSERT(btp == bp->b_target);
		if (bp->b_file_offset == range_base &&
		    bp->b_buffer_length == range_length) {
			/*
			 * If we look at something, bring it to the
			 * front of the list for next time.
			 */
			atomic_inc(&bp->b_hold);
			list_move(&bp->b_hash_list, &hash->bh_list);
			goto found;
		}
	}

	/* No match found */
	if (new_bp) {
		_xfs_buf_initialize(new_bp, btp, range_base,
				range_length, flags);
		new_bp->b_hash = hash;
		list_add(&new_bp->b_hash_list, &hash->bh_list);
	} else {
		XFS_STATS_INC(xb_miss_locked);
	}

	spin_unlock(&hash->bh_lock);
	return new_bp;

found:
	spin_unlock(&hash->bh_lock);

	/* Attempt to get the semaphore without sleeping,
	 * if this does not work then we need to drop the
	 * spinlock and do a hard attempt on the semaphore.
	 */
	if (down_trylock(&bp->b_sema)) {
		if (!(flags & XBF_TRYLOCK)) {
			/* wait for buffer ownership */
			XB_TRACE(bp, "get_lock", 0);
			xfs_buf_lock(bp);
			XFS_STATS_INC(xb_get_locked_waited);
		} else {
			/* We asked for a trylock and failed, no need
			 * to look at file offset and length here, we
			 * know that this buffer at least overlaps our
			 * buffer and is locked, therefore our buffer
			 * either does not exist, or is this buffer.
			 */
			xfs_buf_rele(bp);
			XFS_STATS_INC(xb_busy_locked);
			return NULL;
		}
	} else {
		/* trylock worked */
		XB_SET_OWNER(bp);
	}

	if (bp->b_flags & XBF_STALE) {
		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
		bp->b_flags &= XBF_MAPPED;
	}
	XB_TRACE(bp, "got_lock", 0);
	XFS_STATS_INC(xb_get_locked);
	return bp;
}

/*
 *	xfs_buf_get_flags assembles a buffer covering the specified range.
 *
 *	Storage in memory for all portions of the buffer will be allocated,
 *	although backing storage may not be.
 */
xfs_buf_t *
xfs_buf_get_flags(
	xfs_buftarg_t		*target,/* target for buffer		*/
	xfs_off_t		ioff,	/* starting offset of range	*/
	size_t			isize,	/* length of range		*/
	xfs_buf_flags_t		flags)
{
	xfs_buf_t		*bp, *new_bp;
	int			error = 0, i;

	new_bp = xfs_buf_allocate(flags);
	if (unlikely(!new_bp))
		return NULL;

	bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
	if (bp == new_bp) {
		error = _xfs_buf_lookup_pages(bp, flags);
		if (error)
			goto no_buffer;
	} else {
		xfs_buf_deallocate(new_bp);
		if (unlikely(bp == NULL))
			return NULL;
	}

	for (i = 0; i < bp->b_page_count; i++)
		mark_page_accessed(bp->b_pages[i]);

	if (!(bp->b_flags & XBF_MAPPED)) {
		error = _xfs_buf_map_pages(bp, flags);
		if (unlikely(error)) {
			printk(KERN_WARNING "%s: failed to map pages\n",
					__FUNCTION__);
			goto no_buffer;
		}
	}

	XFS_STATS_INC(xb_get);

	/*
	 * Always fill in the block number now, the mapped cases can do
	 * their own overlay of this later.
	 */
	bp->b_bn = ioff;
	bp->b_count_desired = bp->b_buffer_length;

	XB_TRACE(bp, "get", (unsigned long)flags);
	return bp;

 no_buffer:
	if (flags & (XBF_LOCK | XBF_TRYLOCK))
		xfs_buf_unlock(bp);
	xfs_buf_rele(bp);
	return NULL;
}

xfs_buf_t *
xfs_buf_read_flags(
	xfs_buftarg_t		*target,
	xfs_off_t		ioff,
	size_t			isize,
	xfs_buf_flags_t		flags)
{
	xfs_buf_t		*bp;

	flags |= XBF_READ;

	bp = xfs_buf_get_flags(target, ioff, isize, flags);
	if (bp) {
		if (XBF_NOT_DONE(bp)) {
			XB_TRACE(bp, "read", (unsigned long)flags);
			XFS_STATS_INC(xb_get_read);
			xfs_buf_iostart(bp, flags);
		} else if (flags & XBF_ASYNC) {
			XB_TRACE(bp, "read_async", (unsigned long)flags);
			/*
			 * Read ahead call which is already satisfied,
			 * drop the buffer
			 */
			goto no_buffer;
		} else {
			XB_TRACE(bp, "read_done", (unsigned long)flags);
			/* We do not want read in the flags */
			bp->b_flags &= ~XBF_READ;
		}
	}

	return bp;

 no_buffer:
	if (flags & (XBF_LOCK | XBF_TRYLOCK))
		xfs_buf_unlock(bp);
	xfs_buf_rele(bp);
	return NULL;
}

/*
 * Create a skeletal xfs_buf (no pages associated with it).
 */
xfs_buf_t *
xfs_buf_lookup(
	xfs_buftarg_t		*target,
	xfs_off_t		ioff,
	size_t			isize,
	xfs_buf_flags_t	flags)
{
	xfs_buf_t		*bp;

	flags |= _XBF_PRIVATE_BH;
	bp = xfs_buf_allocate(flags);
	if (bp) {
		_xfs_buf_initialize(bp, target, ioff, isize, flags);
	}
	return bp;
}

/*
 * If we are not low on memory then do the readahead in a deadlock
 * safe manner.
 */
void
xfs_buf_readahead(
	xfs_buftarg_t		*target,
	xfs_off_t		ioff,
	size_t			isize,
	xfs_buf_flags_t		flags)
{
	flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
	xfs_buf_read_flags(target, ioff, isize, flags);
}

xfs_buf_t *
xfs_buf_get_empty(
	size_t			len,
	xfs_buftarg_t		*target)
{
	xfs_buf_t		*bp;

	bp = xfs_buf_allocate(0);
	if (bp)
		_xfs_buf_initialize(bp, target, 0, len, 0);
	return bp;
}

static inline struct page *
mem_to_page(
	void			*addr)
{
	if (((unsigned long)addr < VMALLOC_START) ||
	    ((unsigned long)addr >= VMALLOC_END)) {
		return virt_to_page(addr);
	} else {
		return vmalloc_to_page(addr);
	}
}

int
xfs_buf_associate_memory(
	xfs_buf_t		*bp,
	void			*mem,
	size_t			len)
{
	int			rval;
	int			i = 0;
	size_t			ptr;
	size_t			end, end_cur;
	off_t			offset;
	int			page_count;

	page_count = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT;
	offset = (off_t) mem - ((off_t)mem & PAGE_CACHE_MASK);
	if (offset && (len > PAGE_CACHE_SIZE))
		page_count++;

	/* Free any previous set of page pointers */
	if (bp->b_pages)
		_xfs_buf_free_pages(bp);

	bp->b_pages = NULL;
	bp->b_addr = mem;

	rval = _xfs_buf_get_pages(bp, page_count, 0);
	if (rval)
		return rval;

	bp->b_offset = offset;
	ptr = (size_t) mem & PAGE_CACHE_MASK;
	end = PAGE_CACHE_ALIGN((size_t) mem + len);
	end_cur = end;
	/* set up first page */
	bp->b_pages[0] = mem_to_page(mem);

	ptr += PAGE_CACHE_SIZE;
	bp->b_page_count = ++i;
	while (ptr < end) {
		bp->b_pages[i] = mem_to_page((void *)ptr);
		bp->b_page_count = ++i;
		ptr += PAGE_CACHE_SIZE;
	}
	bp->b_locked = 0;

	bp->b_count_desired = bp->b_buffer_length = len;
	bp->b_flags |= XBF_MAPPED | _XBF_PRIVATE_BH;

	return 0;
}

xfs_buf_t *
xfs_buf_get_noaddr(
	size_t			len,
	xfs_buftarg_t		*target)
{
	size_t			malloc_len = len;
	xfs_buf_t		*bp;
	void			*data;
	int			error;

	bp = xfs_buf_allocate(0);
	if (unlikely(bp == NULL))
		goto fail;
	_xfs_buf_initialize(bp, target, 0, len, XBF_FORCEIO);

 try_again:
	data = kmem_alloc(malloc_len, KM_SLEEP | KM_MAYFAIL);
	if (unlikely(data == NULL))
		goto fail_free_buf;

	/* check whether alignment matches.. */
	if ((__psunsigned_t)data !=
	    ((__psunsigned_t)data & ~target->bt_smask)) {
		/* .. else double the size and try again */
		kmem_free(data, malloc_len);
		malloc_len <<= 1;
		goto try_again;
	}

	error = xfs_buf_associate_memory(bp, data, len);
	if (error)
		goto fail_free_mem;
	bp->b_flags |= _XBF_KMEM_ALLOC;

	xfs_buf_unlock(bp);

	XB_TRACE(bp, "no_daddr", data);
	return bp;
 fail_free_mem:
	kmem_free(data, malloc_len);
 fail_free_buf:
	xfs_buf_free(bp);
 fail:
	return NULL;
}

/*
 *	Increment reference count on buffer, to hold the buffer concurrently
 *	with another thread which may release (free) the buffer asynchronously.
 *	Must hold the buffer already to call this function.
 */
void
xfs_buf_hold(
	xfs_buf_t		*bp)
{
	atomic_inc(&bp->b_hold);
	XB_TRACE(bp, "hold", 0);
}

/*
 *	Releases a hold on the specified buffer.  If the
 *	the hold count is 1, calls xfs_buf_free.
 */
void
xfs_buf_rele(
	xfs_buf_t		*bp)
{
	xfs_bufhash_t		*hash = bp->b_hash;

	XB_TRACE(bp, "rele", bp->b_relse);

	/*
	 * xfs_buf_lookup buffers are not hashed, not delayed write,
	 * and don't have their own release routines.  Special case.
	 */
	if (unlikely(!hash)) {
		ASSERT(!bp->b_relse);
		if (atomic_dec_and_test(&bp->b_hold))
			xfs_buf_free(bp);
		return;
	}

	if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
		int		do_free = 1;

		if (bp->b_relse) {
			atomic_inc(&bp->b_hold);
			spin_unlock(&hash->bh_lock);
			(*(bp->b_relse)) (bp);
			spin_lock(&hash->bh_lock);
			do_free = 0;
		}

		if (bp->b_flags & XBF_FS_MANAGED) {
			do_free = 0;
		}

		if (do_free) {
			ASSERT((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == 0);
			list_del_init(&bp->b_hash_list);
			spin_unlock(&hash->bh_lock);
			xfs_buf_free(bp);
		} else {
			spin_unlock(&hash->bh_lock);
		}
	} else {
		/*
		 * Catch reference count leaks
		 */
		ASSERT(atomic_read(&bp->b_hold) >= 0);
	}
}


/*
 *	Mutual exclusion on buffers.  Locking model:
 *
 *	Buffers associated with inodes for which buffer locking
 *	is not enabled are not protected by semaphores, and are
 *	assumed to be exclusively owned by the caller.  There is a
 *	spinlock in the buffer, used by the caller when concurrent
 *	access is possible.
 */

/*
 *	Locks a buffer object, if it is not already locked.
 *	Note that this in no way locks the underlying pages, so it is only
 *	useful for synchronizing concurrent use of buffer objects, not for
 *	synchronizing independent access to the underlying pages.
 */
int
xfs_buf_cond_lock(
	xfs_buf_t		*bp)
{
	int			locked;

	locked = down_trylock(&bp->b_sema) == 0;
	if (locked) {
		XB_SET_OWNER(bp);
	}
	XB_TRACE(bp, "cond_lock", (long)locked);
	return locked ? 0 : -EBUSY;
}

#if defined(DEBUG) || defined(XFS_BLI_TRACE)
int
xfs_buf_lock_value(
	xfs_buf_t		*bp)
{
	return atomic_read(&bp->b_sema.count);
}
#endif

/*
 *	Locks a buffer object.
 *	Note that this in no way locks the underlying pages, so it is only
 *	useful for synchronizing concurrent use of buffer objects, not for
 *	synchronizing independent access to the underlying pages.
 */
void
xfs_buf_lock(
	xfs_buf_t		*bp)
{
	XB_TRACE(bp, "lock", 0);
	if (atomic_read(&bp->b_io_remaining))
		run_task_queue(&tq_disk);
	down(&bp->b_sema);
	XB_SET_OWNER(bp);
	XB_TRACE(bp, "locked", 0);
}

/*
 *	Releases the lock on the buffer object.
 *	If the buffer is marked delwri but is not queued, do so before we
 *	unlock the buffer as we need to set flags correctly.  We also need to
 *	take a reference for the delwri queue because the unlocker is going to
 *	drop their's and they don't know we just queued it.
 */
void
xfs_buf_unlock(
	xfs_buf_t		*bp)
{
	if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
		atomic_inc(&bp->b_hold);
		bp->b_flags |= XBF_ASYNC;
		xfs_buf_delwri_queue(bp, 0);
	}

	XB_CLEAR_OWNER(bp);
	up(&bp->b_sema);
	XB_TRACE(bp, "unlock", 0);
}


/*
 *	Pinning Buffer Storage in Memory
 *	Ensure that no attempt to force a buffer to disk will succeed.
 */
void
xfs_buf_pin(
	xfs_buf_t		*bp)
{
	atomic_inc(&bp->b_pin_count);
	XB_TRACE(bp, "pin", (long)bp->b_pin_count.counter);
}

void
xfs_buf_unpin(
	xfs_buf_t		*bp)
{
	if (atomic_dec_and_test(&bp->b_pin_count))
		wake_up_all(&bp->b_waiters);
	XB_TRACE(bp, "unpin", (long)bp->b_pin_count.counter);
}

int
xfs_buf_ispin(
	xfs_buf_t		*bp)
{
	return atomic_read(&bp->b_pin_count);
}

STATIC void
xfs_buf_wait_unpin(
	xfs_buf_t		*bp)
{
	DECLARE_WAITQUEUE	(wait, current);

	if (atomic_read(&bp->b_pin_count) == 0)
		return;

	add_wait_queue(&bp->b_waiters, &wait);
	for (;;) {
		set_current_state(TASK_UNINTERRUPTIBLE);
		if (atomic_read(&bp->b_pin_count) == 0)
			break;
		if (atomic_read(&bp->b_io_remaining))
			run_task_queue(&tq_disk);
		schedule();
	}
	remove_wait_queue(&bp->b_waiters, &wait);
	set_current_state(TASK_RUNNING);
}

/*
 *	Buffer Utility Routines
 */

void
xfs_buf_iodone_sched(
	void			*v)
{
	xfs_buf_t		*bp = (xfs_buf_t *)v;

	if (bp->b_iodone)
		(*(bp->b_iodone))(bp);
	else if (bp->b_flags & XBF_ASYNC)
		xfs_buf_relse(bp);
}

void
xfs_buf_ioend(
	xfs_buf_t		*bp,
	int			dataio,
	int			schedule)
{
	bp->b_flags &= ~(XBF_READ | XBF_WRITE);
	if (bp->b_error == 0) {
		bp->b_flags &= ~(XBF_PARTIAL | XBF_NONE);
	}

	XB_TRACE(bp, "iodone", bp->b_iodone);

	if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
		if (schedule) {
			int	daemon = CPU_TO_DAEMON(smp_processor_id());

			INIT_TQUEUE(&bp->b_iodone_sched,
				xfs_buf_iodone_sched, (void *)bp);
			queue_task(&bp->b_iodone_sched, dataio ?
				&xfs_buf_dataiodone_tq[daemon] :
				&xfs_buf_logiodone_tq[daemon]);
			wake_up(dataio ?
				&xfs_buf_dataiodone_wait[daemon] :
				&xfs_buf_logiodone_wait[daemon]);
		} else {
			xfs_buf_iodone_sched(bp);
		}
	} else {
		up(&bp->b_iodonesema);
	}
}

void
xfs_buf_ioerror(
	xfs_buf_t		*bp,
	int			error)
{
	ASSERT(error >= 0 && error <= 0xffff);
	bp->b_error = (unsigned short)error;
	XB_TRACE(bp, "ioerror", (unsigned long)error);
}

/*
 *	Initiate I/O on a buffer, based on the flags supplied.
 *	The b_iodone routine in the buffer supplied will only be called
 *	when all of the subsidiary I/O requests, if any, have been completed.
 */
int
xfs_buf_iostart(
	xfs_buf_t		*bp,
	xfs_buf_flags_t		flags)
{
	int			status = 0;

	XB_TRACE(bp, "iostart", (unsigned long)flags);

	if (flags & XBF_DELWRI) {
		bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC);
		bp->b_flags |= flags & (XBF_DELWRI | XBF_ASYNC);
		xfs_buf_delwri_queue(bp, 1);
		return status;
	}

	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
			XBF_READ_AHEAD | _XBF_RUN_QUEUES);
	bp->b_flags |= flags & (XBF_READ | XBF_WRITE | XBF_ASYNC | \
			XBF_READ_AHEAD | _XBF_RUN_QUEUES);

	BUG_ON(bp->b_bn == XFS_BUF_DADDR_NULL);

	/* For writes allow an alternate strategy routine to precede
	 * the actual I/O request (which may not be issued at all in
	 * a shutdown situation, for example).
	 */
	status = (flags & XBF_WRITE) ?
		xfs_buf_iostrategy(bp) : xfs_buf_iorequest(bp);

	/* Wait for I/O if we are not an async request.
	 * Note: async I/O request completion will release the buffer,
	 * and that can already be done by this point.  So using the
	 * buffer pointer from here on, after async I/O, is invalid.
	 */
	if (!status && !(flags & XBF_ASYNC))
		status = xfs_buf_iowait(bp);

	return status;
}

STATIC __inline__ int
_xfs_buf_iolocked(
	xfs_buf_t		*bp)
{
	ASSERT(bp->b_flags & (XBF_READ | XBF_WRITE));
	if (bp->b_target->bt_bsize < PAGE_CACHE_SIZE)
		return bp->b_locked;
	if (bp->b_flags & XBF_READ)
		return bp->b_locked;
	return (bp->b_flags & _XBF_PAGE_CACHE);
}

STATIC void
_xfs_buf_ioend(
	xfs_buf_t		*bp,
	int			schedule)
{
	int			i;

	if (atomic_dec_and_test(&bp->b_io_remaining) != 1)
		return;

	if (_xfs_buf_iolocked(bp))
		for (i = 0; i < bp->b_page_count; i++)
			unlock_page(bp->b_pages[i]);
	bp->b_locked = 0;
	xfs_buf_ioend(bp, (bp->b_flags & XBF_FS_DATAIOD), schedule);
}

STATIC void
_end_io_xfs_buf(
	struct buffer_head	*bh,
	int			uptodate,
	int			fullpage)
{
	struct page		*page = bh->b_page;
	xfs_buf_t		*bp = (xfs_buf_t *)bh->b_private;

	mark_buffer_uptodate(bh, uptodate);
	put_bh(bh);

	if (!uptodate) {
		SetPageError(page);
		bp->b_error = EIO;
	}

	if (fullpage) {
		unlock_buffer(bh);
		_xfs_buf_free_bh(bh);
		if (!PageError(page))
			SetPageUptodate(page);
	} else {
		static spinlock_t page_uptodate_lock = SPIN_LOCK_UNLOCKED;
		struct buffer_head *bp;
		unsigned long flags;

		ASSERT(PageLocked(page));
		spin_lock_irqsave(&page_uptodate_lock, flags);
		clear_buffer_async(bh);
		unlock_buffer(bh);
		for (bp = bh->b_this_page; bp != bh; bp = bp->b_this_page) {
			if (buffer_locked(bp)) {
				if (buffer_async(bp))
					break;
			} else if (!buffer_uptodate(bp))
				break;
		}
		spin_unlock_irqrestore(&page_uptodate_lock, flags);
		if (bp == bh && !PageError(page))
			SetPageUptodate(page);
	}

	_xfs_buf_ioend(bp, 1);
}

STATIC void
_xfs_buf_end_io_complete_pages(
	struct buffer_head	*bh,
	int			uptodate)
{
	_end_io_xfs_buf(bh, uptodate, 1);
}

STATIC void
_xfs_buf_end_io_partial_pages(
	struct buffer_head	*bh,
	int			uptodate)
{
	_end_io_xfs_buf(bh, uptodate, 0);
}

/*
 *	Handling of buftargs.
 */

/*
 *	Wait for any bufs with callbacks that have been submitted but
 *	have not yet returned... walk the hash list for the target.
 */
void
xfs_wait_buftarg(
	xfs_buftarg_t	*btp)
{
	xfs_buf_t	*bp, *n;
	xfs_bufhash_t	*hash;
	uint		i;

	for (i = 0; i < (1 << btp->bt_hashshift); i++) {
		hash = &btp->bt_hash[i];
again:
		spin_lock(&hash->bh_lock);
		list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
			ASSERT(btp == bp->b_target);
			if (!(bp->b_flags & XBF_FS_MANAGED)) {
				spin_unlock(&hash->bh_lock);
				/*
				 * Catch superblock reference count leaks
				 * immediately
				 */
				BUG_ON(bp->b_bn == 0);
				delay(100);
				goto again;
			}
		}
		spin_unlock(&hash->bh_lock);
	}
}

/*
 *	Allocate buffer hash table for a given target.
 *	For devices containing metadata (i.e. not the log/realtime devices)
 *	we need to allocate a much larger hash table.
 */
STATIC void
xfs_alloc_bufhash(
	xfs_buftarg_t		*btp,
	int			external)
{
	unsigned int		i;

	btp->bt_hashshift = external ? 3 : 8;	/* 8 or 256 buckets */
	btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
	btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
					sizeof(xfs_bufhash_t), KM_SLEEP);
	for (i = 0; i < (1 << btp->bt_hashshift); i++) {
		spin_lock_init(&btp->bt_hash[i].bh_lock);
		INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
	}
}

STATIC void
xfs_free_bufhash(
	xfs_buftarg_t		*btp)
{
	kmem_free(btp->bt_hash,
			(1 << btp->bt_hashshift) * sizeof(xfs_bufhash_t));
	btp->bt_hash = NULL;
}

/*
 *	buftarg list for delwrite queue processing
 */
STATIC LIST_HEAD(xfs_buftarg_list);
STATIC DEFINE_SPINLOCK(xfs_buftarg_lock);

STATIC void
xfs_register_buftarg(
	xfs_buftarg_t           *btp)
{
	spin_lock(&xfs_buftarg_lock);
	list_add(&btp->bt_list, &xfs_buftarg_list);
	spin_unlock(&xfs_buftarg_lock);
}

STATIC void
xfs_unregister_buftarg(
	xfs_buftarg_t           *btp)
{
	spin_lock(&xfs_buftarg_lock);
	list_del(&btp->bt_list);
	spin_unlock(&xfs_buftarg_lock);
}

void
xfs_free_buftarg(
	xfs_buftarg_t		*btp,
	int			external)
{
	xfs_flush_buftarg(btp, 1);
	if (external)
		xfs_blkdev_put(btp->bt_bdev);
	xfs_free_bufhash(btp);
	iput(btp->bt_mapping->host);

	/* unregister the buftarg first so that we don't get a
	 * wakeup finding a non-existent task */
	xfs_unregister_buftarg(btp);
	clear_bit(XBT_ACTIVE, &btp->bt_flags);
	barrier();
	wait_for_completion(&btp->bt_done);

	kmem_free(btp, sizeof(*btp));
}

int
xfs_setsize_buftarg(
	xfs_buftarg_t		*btp,
	unsigned int		blocksize,
	unsigned int		sectorsize)
{
	btp->bt_bsize = blocksize;
	btp->bt_sshift = ffs(sectorsize) - 1;
	btp->bt_smask = sectorsize - 1;

	if (set_blocksize(btp->bt_kdev, sectorsize)) {
		printk(KERN_WARNING
			"XFS: Cannot set_blocksize to %u on device 0x%x\n",
			sectorsize, kdev_t_to_nr(btp->bt_kdev));
		return EINVAL;
	}
	return 0;
}

STATIC int
xfs_mapping_buftarg(
	xfs_buftarg_t		*btp,
	struct block_device	*bdev)
{
	kdev_t			kdev;
	struct inode		*inode;
	struct address_space	*mapping;
	static struct address_space_operations mapping_aops = {
		.sync_page = block_sync_page,
	};

	kdev = to_kdev_t(bdev->bd_dev);
	inode = new_inode(bdev->bd_inode->i_sb);
	if (!inode) {
		printk(KERN_WARNING
			"XFS: Cannot allocate mapping inode for device %s\n",
			XFS_BUFTARG_NAME(btp));
		return ENOMEM;
	}
	inode->i_mode = S_IFBLK;
	inode->i_dev  = kdev;
	inode->i_rdev = kdev;
	inode->i_bdev = bdev;
	mapping = &inode->i_data;
	mapping->a_ops = &mapping_aops;
	mapping->gfp_mask = GFP_NOFS;
	btp->bt_mapping = mapping;
	return 0;
}

STATIC int
xfs_alloc_delwrite_queue(
	xfs_buftarg_t		*btp)
{
	int	error = 0;

	INIT_LIST_HEAD(&btp->bt_list);
	INIT_LIST_HEAD(&btp->bt_delwrite_queue);
	spinlock_init(&btp->bt_delwrite_lock, "delwri_lock");
	init_completion(&btp->bt_done);
	btp->bt_flags = 0;
	error = kernel_thread(xfs_buf_daemon, btp, CLONE_FS|CLONE_FILES|CLONE_VM);
	if (error < 0)
		goto out_error;
	xfs_register_buftarg(btp);
	return 0;
out_error:
	return error;
}

xfs_buftarg_t *
xfs_alloc_buftarg(
	struct block_device	*bdev,
	int			external)
{
	xfs_buftarg_t		*btp;
	kdev_t			kdev;

	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);

	kdev = to_kdev_t(bdev->bd_dev);
	btp->bt_dev =  bdev->bd_dev;
	btp->bt_kdev = kdev;
	btp->bt_bdev = bdev;
	switch (MAJOR(btp->bt_dev)) {
	case MD_MAJOR:
	case EVMS_MAJOR:
		btp->bt_ioflags = XBIO_ALIGNED_ONLY;
		break;
	case LOOP_MAJOR:
	case LVM_BLK_MAJOR:
		btp->bt_ioflags = XBIO_SECTOR_ONLY;
		break;
	}
	if (xfs_setsize_buftarg(btp, PAGE_CACHE_SIZE, get_hardsect_size(kdev)))
		goto error;
	if (xfs_mapping_buftarg(btp, bdev))
		goto error;
	if (xfs_alloc_delwrite_queue(btp))
		goto error;
	xfs_alloc_bufhash(btp, external);
	return btp;

error:
	kmem_free(btp, sizeof(*btp));
	return NULL;
}

/*
 *	Initiate I/O on part of a page we are interested in
 */
STATIC int
_xfs_buf_page_io(
	struct page		*page,	/* Page structure we are dealing with */
	xfs_buftarg_t		*btp,	/* device parameters (bsz, ssz, dev) */
	xfs_buf_t		*bp,	/* xfs_buf holding it, can be NULL */
	xfs_daddr_t		bn,	/* starting block number */
	size_t			pg_offset,	/* starting offset in page */
	size_t			pg_length,	/* count of data to process */
	int			rw,	/* read/write operation */
	int			flush)
{
	size_t			sector;
	size_t			blk_length = 0;
	struct buffer_head	*bh, *head, *bufferlist[MAX_BUF_PER_PAGE];
	int			sector_shift = btp->bt_sshift;
	int			i = 0, cnt = 0;
	int			public_bh = 0;
	int			multi_ok;

	if ((btp->bt_bsize < PAGE_CACHE_SIZE) &&
	    !(bp->b_flags & _XBF_PRIVATE_BH)) {
		int		cache_ok;

		cache_ok = !((bp->b_flags & XBF_FORCEIO) || (rw == WRITE));
		public_bh = multi_ok = 1;
		sector = 1 << sector_shift;

		ASSERT(PageLocked(page));
		if (!page_has_buffers(page))
			create_empty_buffers(page, btp->bt_kdev, sector);

		i = sector >> BBSHIFT;
		bn -= (pg_offset >> BBSHIFT);

		/* Find buffer_heads belonging to just this xfs_buf */
		bh = head = page_buffers(page);
		do {
			if (buffer_uptodate(bh) && cache_ok)
				continue;
			if (blk_length < pg_offset)
				continue;
			if (blk_length >= pg_offset + pg_length)
				break;

			lock_buffer(bh);
			get_bh(bh);
			bh->b_size = sector;
			bh->b_blocknr = bn;
			bufferlist[cnt++] = bh;

		} while ((bn += i),
			 (blk_length += sector),
			  (bh = bh->b_this_page) != head);

		goto request;
	}

	/* Calculate the block offsets and length we will be using */
	if (pg_offset) {
		size_t		block_offset;

		block_offset = pg_offset >> sector_shift;
		block_offset = pg_offset - (block_offset << sector_shift);
		blk_length = (pg_length + block_offset + btp->bt_smask) >>
								sector_shift;
	} else {
		blk_length = (pg_length + btp->bt_smask) >> sector_shift;
	}

	/* This will attempt to make a request bigger than the sector
	 * size if we are well aligned.
	 */
	switch (bp->b_target->bt_ioflags) {
	case 0:
		sector = blk_length << sector_shift;
		blk_length = 1;
		break;
	case XBIO_ALIGNED_ONLY:
		if ((pg_offset == 0) && (pg_length == PAGE_CACHE_SIZE) &&
		    (((unsigned int) bn) & BN_ALIGN_MASK) == 0) {
			sector = blk_length << sector_shift;
			blk_length = 1;
			break;
		}
	case XBIO_SECTOR_ONLY:
		/* Fallthrough, same as default */
	default:
		sector = 1 << sector_shift;
	}

	/* If we are doing I/O larger than the bh->b_size field then
	 * we need to split this request up.
	 */
	while (sector > ((1ULL << NBBY * sizeof(bh->b_size)) - 1)) {
		sector >>= 1;
		blk_length++;
	}

	multi_ok = (blk_length != 1);
	i = sector >> BBSHIFT;

	for (; blk_length > 0; bn += i, blk_length--, pg_offset += sector) {
		bh = kmem_cache_alloc(bh_cachep, SLAB_NOFS);
		if (!bh)
			bh = _xfs_buf_get_prealloc_bh();
		memset(bh, 0, sizeof(*bh));
		bh->b_blocknr = bn;
		bh->b_size = sector;
		bh->b_dev = btp->bt_kdev;
		set_buffer_locked(bh);
		set_bh_page(bh, page, pg_offset);
		init_waitqueue_head(&bh->b_wait);
		atomic_set(&bh->b_count, 1);
		bufferlist[cnt++] = bh;
	}

request:
	if (cnt) {
		void	(*callback)(struct buffer_head *, int);

		callback = (multi_ok && public_bh) ?
				_xfs_buf_end_io_partial_pages :
				_xfs_buf_end_io_complete_pages;

		/* Account for additional buffers in progress */
		atomic_add(cnt, &bp->b_io_remaining);

#ifdef RQ_WRITE_ORDERED
		if (flush)
			set_bit(BH_Ordered_Flush, &bufferlist[cnt-1]->b_state);
#endif

		for (i = 0; i < cnt; i++) {
			bh = bufferlist[i];
			init_buffer(bh, callback, bp);
			bh->b_rdev = bh->b_dev;
			bh->b_rsector = bh->b_blocknr;
			set_buffer_mapped(bh);
			set_buffer_async(bh);
			set_buffer_req(bh);
			if (rw == WRITE)
				set_buffer_uptodate(bh);
			generic_make_request(rw, bh);
		}
		return 0;
	}

	/*
	 * We have no I/O to submit, let the caller know that
	 * we have skipped over this page entirely.
	 */
	return 1;
}

STATIC void
_xfs_buf_page_apply(
	xfs_buf_t		*bp,
	xfs_off_t		offset,
	struct page		*page,
	size_t			pg_offset,
	size_t			pg_length,
	int			last)
{
	xfs_daddr_t		bn = bp->b_bn;
	xfs_buftarg_t		*btp = bp->b_target;
	xfs_off_t		bp_offset;
	int			status, locking;

	ASSERT(page);
	ASSERT(bp->b_flags & (XBF_READ|XBF_WRITE));

	if ((btp->bt_bsize == PAGE_CACHE_SIZE) &&
	    (bp->b_buffer_length < PAGE_CACHE_SIZE) &&
	    (bp->b_flags & XBF_READ) && bp->b_locked) {
		bn -= (bp->b_offset >> BBSHIFT);
		pg_offset = 0;
		pg_length = PAGE_CACHE_SIZE;
	} else {
		bp_offset = offset - bp->b_file_offset;
		if (bp_offset) {
			bn += (bp_offset + BBMASK) >> BBSHIFT;
		}
	}

	locking = _xfs_buf_iolocked(bp);
	if (bp->b_flags & XBF_WRITE) {
		if (locking && !bp->b_locked)
			lock_page(page);
		status = _xfs_buf_page_io(page, btp, bp, bn,
				pg_offset, pg_length, WRITE,
				last && (bp->b_flags & XBF_ORDERED));
	} else {
		status = _xfs_buf_page_io(page, btp, bp, bn,
				pg_offset, pg_length, READ, 0);
	}
	if (status && locking && !(bp->b_target->bt_bsize < PAGE_CACHE_SIZE))
		unlock_page(page);
}

/*
 *	xfs_buf_iorequest -- the core I/O request routine.
 */
int
xfs_buf_iorequest(			/* start real I/O		*/
	xfs_buf_t		*bp)	/* buffer to convey to device	*/
{
	XB_TRACE(bp, "iorequest", 0);

	if (bp->b_flags & XBF_DELWRI) {
		xfs_buf_delwri_queue(bp, 1);
		return 0;
	}

	if (bp->b_flags & XBF_WRITE) {
		xfs_buf_wait_unpin(bp);
	}

	xfs_buf_hold(bp);

	/* Set the count to 1 initially, this will stop an I/O
	 * completion callout which happens before we have started
	 * all the I/O from calling xfs_buf_ioend too early.
	 */
	atomic_set(&bp->b_io_remaining, 1);

	if (xfs_io_bypass && (bp->b_flags & XBF_DIRECTIO)) {
        	request_queue_t	*q;
		io_private_t	*iop;
		int		error = 0;

		q = blk_get_queue(bp->b_target->bt_dev);
	    	if (q && q->queuedata &&
		    XIO_MAGIC == (*(unsigned int *)q->queuedata)) {
			iop = (io_private_t *)q->queuedata;
			if (iop->map_io_request) {
				int index;

				int locking = _xfs_buf_iolocked(bp);
				if (bp->b_flags & XBF_WRITE)
					if (locking && !bp->b_locked) {
						for (index = 0; index < bp->b_page_count; index++)
							lock_page(bp->b_pages[index]);
						bp->b_locked = 1;
					}
				error = iop->map_io_request((void *)bp);
				if (error)
					xfs_buf_ioerror(bp, error);
				bp->b_flags &= ~XBF_DIRECTIO;
				_xfs_buf_ioend(bp, 0);
				xfs_buf_rele(bp);
				return 0;
			}
		}
	}

	_xfs_buf_ioapply(bp);
	_xfs_buf_ioend(bp, 0);

	xfs_buf_rele(bp);
	return 0;
}

/*
 *	Waits for I/O to complete on the buffer supplied.
 *	It returns immediately if no I/O is pending.
 *	It returns the I/O error code, if any, or 0 if there was no error.
 */
int
xfs_buf_iowait(
	xfs_buf_t		*bp)
{
	XB_TRACE(bp, "iowait", 0);
	if (atomic_read(&bp->b_io_remaining))
		run_task_queue(&tq_disk);
	if ((bp->b_flags & XBF_FS_DATAIOD))
		xfs_buf_runall_queues(xfs_buf_dataiodone_tq);
	down(&bp->b_iodonesema);
	XB_TRACE(bp, "iowaited", (long)bp->b_error);
	return bp->b_error;
}

xfs_caddr_t
xfs_buf_offset(
	xfs_buf_t		*bp,
	size_t			offset)
{
	struct page		*page;

	if (bp->b_flags & XBF_MAPPED)
		return XFS_BUF_PTR(bp) + offset;

	offset += bp->b_offset;
	page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
	return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
}

/*
 *	Move data into or out of a buffer.
 */
void
xfs_buf_iomove(
	xfs_buf_t		*bp,	/* buffer to process		*/
	size_t			boff,	/* starting buffer offset	*/
	size_t			bsize,	/* length to copy		*/
	caddr_t			data,	/* data address			*/
	xfs_buf_rw_t		mode)	/* read/write/zero flag		*/
{
	size_t			bend, cpoff, csize;
	struct page		*page;

	bend = boff + bsize;
	while (boff < bend) {
		page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
		cpoff = xfs_buf_poff(boff + bp->b_offset);
		csize = min_t(size_t,
			      PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);

		ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));

		switch (mode) {
		case XBRW_ZERO:
			memset(page_address(page) + cpoff, 0, csize);
			break;
		case XBRW_READ:
			memcpy(data, page_address(page) + cpoff, csize);
			break;
		case XBRW_WRITE:
			memcpy(page_address(page) + cpoff, data, csize);
		}

		boff += csize;
		data += csize;
	}
}

/*
 *	Applies _xfs_buf_page_apply to each page of the xfs_buf_t.
 */
STATIC void
_xfs_buf_ioapply(			/* apply function to pages	*/
	xfs_buf_t		*bp)	/* buffer to examine		*/
{
	int			index;
	xfs_off_t		buffer_offset = bp->b_file_offset;
	size_t			buffer_len = bp->b_count_desired;
	size_t			page_offset, len;
	size_t			cur_offset, cur_len;

	cur_offset = bp->b_offset;
	cur_len = buffer_len;

	if (!bp->b_locked && !(bp->b_flags & XBF_DIRECTIO) &&
	    (bp->b_target->bt_bsize < PAGE_CACHE_SIZE)) {
		for (index = 0; index < bp->b_page_count; index++)
			lock_page(bp->b_pages[index]);
		bp->b_locked = 1;
	}

	for (index = 0; index < bp->b_page_count; index++) {
		if (cur_len == 0)
			break;
		if (cur_offset >= PAGE_CACHE_SIZE) {
			cur_offset -= PAGE_CACHE_SIZE;
			continue;
		}

		page_offset = cur_offset;
		cur_offset = 0;

		len = PAGE_CACHE_SIZE - page_offset;
		if (len > cur_len)
			len = cur_len;
		cur_len -= len;

		_xfs_buf_page_apply(bp, buffer_offset,
				bp->b_pages[index], page_offset, len,
				index + 1 == bp->b_page_count);
		buffer_offset += len;
		buffer_len -= len;
	}

	/*
	 * Run the block device task queue here, while we have
	 * a hold on the xfs_buf (important to have that hold).
	 */
	if (bp->b_flags & _XBF_RUN_QUEUES) {
		bp->b_flags &= ~_XBF_RUN_QUEUES;
		if (atomic_read(&bp->b_io_remaining) > 1)
			run_task_queue(&tq_disk);
	}
}


/*
 *	Delayed write buffer list handling
 */
STATIC void
xfs_buf_delwri_queue(
	xfs_buf_t		*bp,
	int			unlock)
{
	struct list_head	*dwq = &bp->b_target->bt_delwrite_queue;
	spinlock_t		*dwlk = &bp->b_target->bt_delwrite_lock;

	XB_TRACE(bp, "delwri_q", (long)unlock);
	ASSERT((bp->b_flags & (XBF_DELWRI|XBF_ASYNC)) ==
					(XBF_DELWRI|XBF_ASYNC));

	spin_lock(dwlk);
	/* If already in the queue, dequeue and place at tail */
	if (!list_empty(&bp->b_list)) {
		ASSERT(bp->b_flags & _XBF_DELWRI_Q);
		if (unlock)
			atomic_dec(&bp->b_hold);
		list_del(&bp->b_list);
	}

	bp->b_flags |= _XBF_DELWRI_Q;
	list_add_tail(&bp->b_list, dwq);
	bp->b_queuetime = jiffies;
	spin_unlock(dwlk);

	if (unlock)
		xfs_buf_unlock(bp);
}

void
xfs_buf_delwri_dequeue(
	xfs_buf_t		*bp)
{
	spinlock_t		*dwlk = &bp->b_target->bt_delwrite_lock;
	int			dequeued = 0;

	spin_lock(dwlk);
	if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
		ASSERT(bp->b_flags & _XBF_DELWRI_Q);
		list_del_init(&bp->b_list);
		dequeued = 1;
	}
	bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
	spin_unlock(dwlk);

	if (dequeued)
		xfs_buf_rele(bp);

	XB_TRACE(bp, "delwri_dq", (long)dequeued);
}


/*
 *	The xfs_buf iodone daemons
 */

STATIC int
xfs_buf_iodone_daemon(
	void			*__bind_cpu,
	const char		*name,
	int			xfs_buf_daemons[],
	struct list_head	xfs_buf_iodone_tq[],
	wait_queue_head_t	xfs_buf_iodone_wait[])
{
	int			bind_cpu, cpu;
	DECLARE_WAITQUEUE	(wait, current);

	bind_cpu = (int) (long)__bind_cpu;
	cpu = CPU_TO_DAEMON(cpu_logical_map(bind_cpu));

	/*  Set up the thread  */
	daemonize();

	/* Avoid signals */
	sigmask_lock();
	sigfillset(&current->blocked);
	__recalc_sigpending(current);
	sigmask_unlock();

	/* Migrate to the right CPU */
	migrate_to_cpu(cpu);
#ifdef __HAVE_NEW_SCHEDULER
	if (smp_processor_id() != cpu)
		BUG();
#else
	while (smp_processor_id() != cpu)
		schedule();
#endif

	sprintf(current->comm, "%s/%d", name, bind_cpu);
	INIT_LIST_HEAD(&xfs_buf_iodone_tq[cpu]);
	init_waitqueue_head(&xfs_buf_iodone_wait[cpu]);
	__set_current_state(TASK_INTERRUPTIBLE);
	mb();

	xfs_buf_daemons[cpu] = 1;

	for (;;) {
		add_wait_queue(&xfs_buf_iodone_wait[cpu], &wait);

		if (TQ_ACTIVE(xfs_buf_iodone_tq[cpu]))
			__set_task_state(current, TASK_RUNNING);
		schedule();
		remove_wait_queue(&xfs_buf_iodone_wait[cpu], &wait);
		run_task_queue(&xfs_buf_iodone_tq[cpu]);
		if (xfs_buf_daemons[cpu] == 0)
			break;
		__set_current_state(TASK_INTERRUPTIBLE);
	}

	xfs_buf_daemons[cpu] = -1;
	wake_up_interruptible(&xfs_buf_iodone_wait[cpu]);
	return 0;
}

STATIC void
xfs_buf_runall_queues(
	struct list_head	xfs_buf_iodone_tq[])
{
	int	pcpu, cpu;

	for (cpu = 0; cpu < min(smp_num_cpus, MAX_IO_DAEMONS); cpu++) {
		pcpu = CPU_TO_DAEMON(cpu_logical_map(cpu));

		run_task_queue(&xfs_buf_iodone_tq[pcpu]);
	}
}

STATIC int
xfs_buf_logiodone_daemon(
	void			*__bind_cpu)
{
	return xfs_buf_iodone_daemon(__bind_cpu, "xfslogd", xb_logio_daemons,
			xfs_buf_logiodone_tq, xfs_buf_logiodone_wait);
}

STATIC int
xfs_buf_dataiodone_daemon(
	void			*__bind_cpu)
{
	return xfs_buf_iodone_daemon(__bind_cpu, "xfsdatad", xb_dataio_daemons,
			xfs_buf_dataiodone_tq, xfs_buf_dataiodone_wait);
}


STATIC int
xfs_buf_daemon_wakeup(
	int			priority,
	unsigned int		mask)
{
	xfs_buftarg_t		*btp, *n;

	spin_lock(&xfs_buftarg_lock);
	list_for_each_entry_safe(btp, n, &xfs_buftarg_list, bt_list) {
		set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
		barrier();
		wake_up_process(btp->bt_task);
	}
	spin_unlock(&xfs_buftarg_lock);
	return 0;
}

STATIC int
xfs_buf_daemon(
	void			*data)
{
	struct list_head	tmp;
	unsigned long		age;
	xfs_buf_t		*bp, *n;
	int			count;
	xfs_buftarg_t		*target = (xfs_buftarg_t *)data;
	struct list_head	*dwq = &target->bt_delwrite_queue;
	spinlock_t		*dwlk = &target->bt_delwrite_lock;

	/*  Set up the thread  */
	daemonize();

	/* Mark it active */
	target->bt_task = current;
	set_bit(XBT_ACTIVE, &target->bt_flags);
	barrier();

	/* Avoid signals */
	sigmask_lock();
	sigfillset(&current->blocked);
	__recalc_sigpending(current);
	sigmask_unlock();

	strcpy(current->comm, "xfsbufd");
	current->flags |= PF_MEMALLOC;

	INIT_LIST_HEAD(&tmp);
	do {
		set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout((xfs_buf_timer_centisecs * HZ) / 100);

		count = 0;
		age = (xfs_buf_age_centisecs * HZ) / 100;
		spin_lock(dwlk);
		list_for_each_entry_safe(bp, n, dwq, b_list) {
			XB_TRACE(bp, "walkq1", (long)xfs_buf_ispin(bp));
			ASSERT(bp->b_flags & XBF_DELWRI);

			if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) {
				if (!test_bit(XBT_FORCE_FLUSH,
						&target->bt_flags) &&
				    time_before(jiffies,
						bp->b_queuetime + age)) {
					xfs_buf_unlock(bp);
					break;
				}

				bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
				bp->b_flags |= XBF_WRITE;
				list_move(&bp->b_list, &tmp);
				count++;
			}
		}
		spin_unlock(dwlk);

		while (!list_empty(&tmp)) {
			bp = list_entry(tmp.next, xfs_buf_t, b_list);
			ASSERT(target == bp->b_target);
			list_del_init(&bp->b_list);
			xfs_buf_iostrategy(bp);
		}

		if (as_list_len > 0)
			purge_addresses();
		if (count)
			run_task_queue(&tq_disk);

		clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
	} while (test_bit(XBT_ACTIVE, &target->bt_flags));

	complete_and_exit(&target->bt_done, 0);
}

/*
 *	Go through all incore buffers, and release buffers if they belong
 *	to the given device. This is used in filesystem error handling to
 *	preserve the consistency of its metadata.
 */
int
xfs_flush_buftarg(
	xfs_buftarg_t		*target,
	int			wait)
{
	struct list_head	tmp;
	xfs_buf_t		*bp, *n;
	int			pincount = 0;
	int			flush_cnt = 0;
	struct list_head	*dwq = &target->bt_delwrite_queue;
	spinlock_t		*dwlk = &target->bt_delwrite_lock;

	xfs_buf_runall_queues(xfs_buf_dataiodone_tq);
	xfs_buf_runall_queues(xfs_buf_logiodone_tq);

	INIT_LIST_HEAD(&tmp);
	spin_lock(dwlk);
	list_for_each_entry_safe(bp, n, dwq, b_list) {

		ASSERT(bp->b_target == target);
		ASSERT(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q));
		XB_TRACE(bp, "walkq2", (long)xfs_buf_ispin(bp));
		if (xfs_buf_ispin(bp)) {
			pincount++;
			continue;
		}

		list_move(&bp->b_list, &tmp);
	}
	spin_unlock(dwlk);

	/*
	 * Dropped the delayed write list lock, now walk the temporary list
	 */
	list_for_each_entry_safe(bp, n, &tmp, b_list) {
		xfs_buf_lock(bp);
		bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
		bp->b_flags |= XBF_WRITE;
		if (wait)
			bp->b_flags &= ~XBF_ASYNC;
		else
			list_del_init(&bp->b_list);

		xfs_buf_iostrategy(bp);

		if (++flush_cnt > 32) {
			run_task_queue(&tq_disk);
			flush_cnt = 0;
		}
	}

	run_task_queue(&tq_disk);

	/*
	 * Remaining list items must be flushed before returning
	 */
	while (!list_empty(&tmp)) {
		bp = list_entry(tmp.next, xfs_buf_t, b_list);

		list_del_init(&bp->b_list);

		xfs_iowait(bp);
		xfs_buf_relse(bp);
	}

	return pincount;
}

STATIC int
xfs_buf_daemon_start(void)
{
	int		cpu, pcpu;

	for (cpu = 0; cpu < min(smp_num_cpus, MAX_IO_DAEMONS); cpu++) {
		pcpu = CPU_TO_DAEMON(cpu_logical_map(cpu));

		if (kernel_thread(xfs_buf_logiodone_daemon,
				(void *)(long) cpu,
				CLONE_FS|CLONE_FILES|CLONE_VM) < 0) {
			printk("xfs_buf_logiodone daemon failed to start\n");
		} else {
			while (!xb_logio_daemons[pcpu])
				yield();
		}
	}
	for (cpu = 0; cpu < min(smp_num_cpus, MAX_IO_DAEMONS); cpu++) {
		pcpu = CPU_TO_DAEMON(cpu_logical_map(cpu));

		if (kernel_thread(xfs_buf_dataiodone_daemon,
				(void *)(long) cpu,
				CLONE_FS|CLONE_FILES|CLONE_VM) < 0) {
			printk("xfs_buf_dataiodone daemon failed to start\n");
		} else {
			while (!xb_dataio_daemons[pcpu])
				yield();
		}
	}
	return 0;
}

/*
 *	Note: do not mark as __exit, it is called from xfs_buf_terminate.
 */
STATIC void
xfs_buf_daemon_stop(void)
{
	int		cpu, pcpu;

	for (pcpu = 0; pcpu < min(smp_num_cpus, MAX_IO_DAEMONS); pcpu++) {
		cpu = CPU_TO_DAEMON(cpu_logical_map(pcpu));

		xb_logio_daemons[cpu] = 0;
		wake_up(&xfs_buf_logiodone_wait[cpu]);
		wait_event_interruptible(xfs_buf_logiodone_wait[cpu],
				xb_logio_daemons[cpu] == -1);

		xb_dataio_daemons[cpu] = 0;
		wake_up(&xfs_buf_dataiodone_wait[cpu]);
		wait_event_interruptible(xfs_buf_dataiodone_wait[cpu],
				xb_dataio_daemons[cpu] == -1);
	}
}

/*
 *	Initialization and Termination
 */

int __init
xfs_buf_init(void)
{
	xfs_buf_cache = kmem_cache_create("xfs_buf_t", sizeof(xfs_buf_t), 0,
			SLAB_HWCACHE_ALIGN, NULL, NULL);
	if (xfs_buf_cache == NULL) {
		printk("XFS: couldn't init xfs_buf_t cache\n");
		return -ENOMEM;
	}

	if (_xfs_buf_prealloc_bh(NR_RESERVED_BH) < NR_RESERVED_BH) {
		printk("XFS: couldn't allocate %d reserved buffers\n",
			NR_RESERVED_BH);
		kmem_zone_destroy(xfs_buf_cache);
		return -ENOMEM;
	}
	init_waitqueue_head(&xb_resv_bh_wait);

#ifdef XFS_BUF_TRACE
	xfs_buf_trace_buf = ktrace_alloc(XFS_BUF_TRACE_SIZE, KM_SLEEP);
#endif

	xfs_buf_daemon_start();

	xfs_buf_shake = kmem_shake_register(xfs_buf_daemon_wakeup);
	if (xfs_buf_shake == NULL) {
		xfs_buf_terminate();
		return -ENOMEM;
	}

	return 0;
}

/*
 *	Note: do not mark as __exit, this is also called from the __init code.
 */
void
xfs_buf_terminate(void)
{
	xfs_buf_daemon_stop();

#ifdef XFS_BUF_TRACE
	ktrace_free(xfs_buf_trace_buf);
#endif

	kmem_zone_destroy(xfs_buf_cache);
	kmem_shake_deregister(xfs_buf_shake);
}