[BACK]Return to glMultMatrix.xml CVS log [TXT][DIR] Up to [Development] / projects / ogl-sample / main / doc / gles / xml

File: [Development] / projects / ogl-sample / main / doc / gles / xml / glMultMatrix.xml (download)

Revision 1.1, Wed Oct 8 06:06:18 2003 UTC (14 years ago) by ljp
Branch: MAIN
CVS Tags: HEAD


OpenGL ES 1.0 and EGL 1.0 reference manual and man pages (written by
Claude Knaus, based on OpenGL SI man pages).

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE refentry PUBLIC "-//OASIS//DTD DocBook V4.2//EN" "DTD/docbook/docbookx.dtd">

<!--
  License Applicability. Except to the extent portions of this file are
  made subject to an alternative license as permitted in the SGI Free
  Software License B, Version 1.1 (the "License"), the contents of this
  file are subject only to the provisions of the License. You may not use
  this file except in compliance with the License. You may obtain a copy
  of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
  Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:

  http://oss.sgi.com/projects/FreeB

  Note that, as provided in the License, the Software is distributed on an
  "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
  DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
  CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
  PARTICULAR PURPOSE, AND NON-INFRINGEMENT.

  Original Code. The Original Code is: OpenGL ES Reference Manual,
  Version 1.0, released September 2003, developed by Silicon Graphics,
  Inc.  The Original Code is Copyright (c) 2003 Silicon Graphics, Inc.
  Copyright in any portions created by third parties is as indicated
  elsewhere herein.  All Rights Reserved.
-->

<refentry id="glMultMatrix">
  <refmeta>
    <refentrytitle>glMultMatrix</refentrytitle>
    <manvolnum>3G</manvolnum>
  </refmeta>

  <refnamediv>
    <refdescriptor>glMultMatrix</refdescriptor>
    <refname>glMultMatrixf</refname>
    <refname>glMultMatrixx</refname>
    <refpurpose>multiply the current matrix with the specified
    matrix</refpurpose>
  </refnamediv>

  <refsynopsisdiv>
    <title>C Specification</title>

    <funcsynopsis>
      <funcprototype>
        <funcdef>void <function>glMultMatrixf</function></funcdef>
        <paramdef>const GLfloat * <parameter>m</parameter></paramdef>
      </funcprototype>
      <funcprototype>
        <funcdef>void <function>glMultMatrixx</function></funcdef>
        <paramdef>const GLfixed * <parameter>m</parameter></paramdef>
      </funcprototype>
    </funcsynopsis>
  </refsynopsisdiv>

  <refsect1>
    <title>Parameters</title>

    <variablelist>
      <varlistentry>
        <term>
          <parameter>m</parameter>
        </term>

        <listitem>
          <para>Points to 16 consecutive values that are used as
          the elements of a 
          <inlineequation><math>
            <mn>4</mn><mo>x</mo><mn>4</mn>
          </math></inlineequation>
          column-major matrix.</para>
        </listitem>
      </varlistentry>
    </variablelist>
  </refsect1>

  <refsect1>
    <title>Description</title>

    <para><function>glMultMatrix</function>
    multiplies the current matrix with the one specified using 
    <parameter>m</parameter>,
    and replaces the current matrix with the product.</para>

    <para>The current matrix is determined by the current matrix mode (see 
    <citerefentry><refentrytitle>glMatrixMode</refentrytitle></citerefentry>).
    It is either the projection matrix, modelview matrix, or the
    texture matrix.</para>
  </refsect1>

  <refsect1>
    <title>Examples</title>

    <para>If the current matrix is <replaceable>C</replaceable>,
    and the coordinates to be transformed are, 
    <inlineequation><math>
      <mi>v</mi><mo>=</mo>
      <mfenced>
        <mrow><mi>v</mi><mo>[</mo><mn>0</mn><mo>]</mo></mrow>
        <mrow><mi>v</mi><mo>[</mo><mn>1</mn><mo>]</mo></mrow>
        <mrow><mi>v</mi><mo>[</mo><mn>2</mn><mo>]</mo></mrow>
        <mrow><mi>v</mi><mo>[</mo><mn>3</mn><mo>]</mo></mrow>
      </mfenced>
    </math></inlineequation>,
    then the current transformation is 
    <inlineequation><math>
      <mi>C</mi><mo>x</mo><mi>v</mi>
    </math></inlineequation>, or
    </para>

    <informalequation><math><mrow>
      <mo>(</mo>
      <mtable class="matrix">
        <mtr>
          <mtd><mi>c</mi><mo>[</mo><mn>0</mn><mo>]</mo></mtd>
          <mtd><mi>c</mi><mo>[</mo><mn>4</mn><mo>]</mo></mtd>
          <mtd><mi>c</mi><mo>[</mo><mn>8</mn><mo>]</mo></mtd>
          <mtd><mi>c</mi><mo>[</mo><mn>12</mn><mo>]</mo></mtd>
        </mtr>
        <mtr>
          <mtd><mi>c</mi><mo>[</mo><mn>1</mn><mo>]</mo></mtd>
          <mtd><mi>c</mi><mo>[</mo><mn>5</mn><mo>]</mo></mtd>
          <mtd><mi>c</mi><mo>[</mo><mn>9</mn><mo>]</mo></mtd>
          <mtd><mi>c</mi><mo>[</mo><mn>13</mn><mo>]</mo></mtd>
        </mtr>
        <mtr>
          <mtd><mi>c</mi><mo>[</mo><mn>2</mn><mo>]</mo></mtd>
          <mtd><mi>c</mi><mo>[</mo><mn>6</mn><mo>]</mo></mtd>
          <mtd><mi>c</mi><mo>[</mo><mn>10</mn><mo>]</mo></mtd>
          <mtd><mi>c</mi><mo>[</mo><mn>14</mn><mo>]</mo></mtd>
        </mtr>
        <mtr>
          <mtd><mi>c</mi><mo>[</mo><mn>3</mn><mo>]</mo></mtd>
          <mtd><mi>c</mi><mo>[</mo><mn>7</mn><mo>]</mo></mtd>
          <mtd><mi>c</mi><mo>[</mo><mn>11</mn><mo>]</mo></mtd>
          <mtd><mi>c</mi><mo>[</mo><mn>15</mn><mo>]</mo></mtd>
        </mtr>
      </mtable>
      <mo>)</mo>
      <mo>x</mo>
      <mo>(</mo>
      <mtable class="vector">
        <mtr><mtd><mi>v</mi><mo>[</mo><mn>0</mn><mo>]</mo></mtd></mtr>
        <mtr><mtd><mi>v</mi><mo>[</mo><mn>1</mn><mo>]</mo></mtd></mtr>
        <mtr><mtd><mi>v</mi><mo>[</mo><mn>2</mn><mo>]</mo></mtd></mtr>
        <mtr><mtd><mi>v</mi><mo>[</mo><mn>3</mn><mo>]</mo></mtd></mtr>
      </mtable>
      <mo>)</mo>
    </mrow></math></informalequation>

    <para>Calling 
    <function>glMultMatrix</function>
    with an argument of 
    <inlineequation><math>
      <mrow>
        <mi>m</mi><mo>=</mo>
        <mi>m</mi><mo>[</mo><mn>0</mn><mo>]</mo>,
        <mi>m</mi><mo>[</mo><mn>1</mn><mo>]</mo>,
        <mo>...</mo>
        <mi>m</mi><mo>[</mo><mn>15</mn><mo>]</mo>
      </mrow>
    </math></inlineequation>
    replaces the current transformation with 
    <inlineequation><math>
      <mfenced><mrow><mi>C</mi><mo>x</mo><mi>M</mi></mrow></mfenced>
      <mo>x</mo><mi>v</mi>
    </math></inlineequation>, or</para>

    <informalequation><math><mrow>
      <mo>(</mo>
      <mtable class="matrix">
        <mtr>
          <mtd><mi>c</mi><mo>[</mo><mn>0</mn><mo>]</mo></mtd>
          <mtd><mi>c</mi><mo>[</mo><mn>4</mn><mo>]</mo></mtd>
          <mtd><mi>c</mi><mo>[</mo><mn>8</mn><mo>]</mo></mtd>
          <mtd><mi>c</mi><mo>[</mo><mn>12</mn><mo>]</mo></mtd>
        </mtr>
        <mtr>
          <mtd><mi>c</mi><mo>[</mo><mn>1</mn><mo>]</mo></mtd>
          <mtd><mi>c</mi><mo>[</mo><mn>5</mn><mo>]</mo></mtd>
          <mtd><mi>c</mi><mo>[</mo><mn>9</mn><mo>]</mo></mtd>
          <mtd><mi>c</mi><mo>[</mo><mn>13</mn><mo>]</mo></mtd>
        </mtr>
        <mtr>
          <mtd><mi>c</mi><mo>[</mo><mn>2</mn><mo>]</mo></mtd>
          <mtd><mi>c</mi><mo>[</mo><mn>6</mn><mo>]</mo></mtd>
          <mtd><mi>c</mi><mo>[</mo><mn>10</mn><mo>]</mo></mtd>
          <mtd><mi>c</mi><mo>[</mo><mn>14</mn><mo>]</mo></mtd>
        </mtr>
        <mtr>
          <mtd><mi>c</mi><mo>[</mo><mn>3</mn><mo>]</mo></mtd>
          <mtd><mi>c</mi><mo>[</mo><mn>7</mn><mo>]</mo></mtd>
          <mtd><mi>c</mi><mo>[</mo><mn>11</mn><mo>]</mo></mtd>
          <mtd><mi>c</mi><mo>[</mo><mn>15</mn><mo>]</mo></mtd>
        </mtr>
      </mtable>
      <mo>)</mo>
      <mo>x</mo>
      <mo>(</mo>
      <mtable class="matrix">
        <mtr>
          <mtd><mi>m</mi><mo>[</mo><mn>0</mn><mo>]</mo></mtd>
          <mtd><mi>m</mi><mo>[</mo><mn>4</mn><mo>]</mo></mtd>
          <mtd><mi>m</mi><mo>[</mo><mn>8</mn><mo>]</mo></mtd>
          <mtd><mi>m</mi><mo>[</mo><mn>12</mn><mo>]</mo></mtd>
        </mtr>
        <mtr>
          <mtd><mi>m</mi><mo>[</mo><mn>1</mn><mo>]</mo></mtd>
          <mtd><mi>m</mi><mo>[</mo><mn>5</mn><mo>]</mo></mtd>
          <mtd><mi>m</mi><mo>[</mo><mn>9</mn><mo>]</mo></mtd>
          <mtd><mi>m</mi><mo>[</mo><mn>13</mn><mo>]</mo></mtd>
        </mtr>
        <mtr>
          <mtd><mi>m</mi><mo>[</mo><mn>2</mn><mo>]</mo></mtd>
          <mtd><mi>m</mi><mo>[</mo><mn>6</mn><mo>]</mo></mtd>
          <mtd><mi>m</mi><mo>[</mo><mn>10</mn><mo>]</mo></mtd>
          <mtd><mi>m</mi><mo>[</mo><mn>14</mn><mo>]</mo></mtd>
        </mtr>
        <mtr>
          <mtd><mi>m</mi><mo>[</mo><mn>3</mn><mo>]</mo></mtd>
          <mtd><mi>m</mi><mo>[</mo><mn>7</mn><mo>]</mo></mtd>
          <mtd><mi>m</mi><mo>[</mo><mn>11</mn><mo>]</mo></mtd>
          <mtd><mi>m</mi><mo>[</mo><mn>15</mn><mo>]</mo></mtd>
        </mtr>
      </mtable>
      <mo>)</mo>
      <mo>x</mo>
      <mo>(</mo>
      <mtable class="vector">
        <mtr><mtd><mi>v</mi><mo>[</mo><mn>0</mn><mo>]</mo></mtd></mtr>
        <mtr><mtd><mi>v</mi><mo>[</mo><mn>1</mn><mo>]</mo></mtd></mtr>
        <mtr><mtd><mi>v</mi><mo>[</mo><mn>2</mn><mo>]</mo></mtd></mtr>
        <mtr><mtd><mi>v</mi><mo>[</mo><mn>3</mn><mo>]</mo></mtd></mtr>
      </mtable>
      <mo>)</mo>
    </mrow></math></informalequation>

   <para>Where
    ``<inlineequation><math><mo>x</mo></math></inlineequation>''
    denotes matrix multiplication, and
    <replaceable>v</replaceable>
    is represented as a 
    <inlineequation><math>
      <mn>4</mn><mo>x</mo><mn>1</mn>
    </math></inlineequation>
    matrix.</para>
  </refsect1>

  <refsect1>
    <title>Notes</title>

    <para>While the elements of the matrix may be specified with
    single or double precision, the GL may store or operate on
    these values in less than single precision.</para>

    <para>In many computer languages 
    <inlineequation><math>
      <mn>4</mn><mo>x</mo><mn>4</mn>
    </math></inlineequation>
    arrays are represented in row-major order. The transformations
    just described represent these matrices in column-major order.
    The order of the multiplication is important. For example, if
    the current transformation is a rotation, and 
    <function>glMultMatrix</function>
    is called with a translation matrix, the translation is done
    directly on the coordinates to be transformed, while the
    rotation is done on the results of that translation.</para>
  </refsect1>

  <refsect1>
    <title>See Also</title>

    <para>
    <citerefentry><refentrytitle>glLoadIdentity</refentrytitle></citerefentry>, 
    <citerefentry><refentrytitle>glLoadMatrix</refentrytitle></citerefentry>, 
    <citerefentry><refentrytitle>glMatrixMode</refentrytitle></citerefentry>, 
    <citerefentry><refentrytitle>glPushMatrix</refentrytitle></citerefentry>
    </para>
  </refsect1>
</refentry>