/*
* Copyright (c) by Jaroslav Kysela <perex@suse.cz>
* Takashi Iwai <tiwai@suse.de>
*
* Generic memory allocators
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/proc_fs.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/dma-mapping.h>
#include <linux/moduleparam.h>
#include <asm/semaphore.h>
#include <sound/memalloc.h>
#ifdef CONFIG_SBUS
#include <asm/sbus.h>
#endif
MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>, Jaroslav Kysela <perex@suse.cz>");
MODULE_DESCRIPTION("Memory allocator for ALSA system.");
MODULE_LICENSE("GPL");
#ifndef SNDRV_CARDS
#define SNDRV_CARDS 8
#endif
static int enable[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)] = 1};
static int boot_devs;
module_param_array(enable, bool, boot_devs, 0444);
MODULE_PARM_DESC(enable, "Enable cards to allocate buffers.");
/*
*/
void *snd_malloc_sgbuf_pages(const struct snd_dma_device *dev,
size_t size, struct snd_dma_buffer *dmab,
size_t *res_size);
int snd_free_sgbuf_pages(struct snd_dma_buffer *dmab);
/*
*/
static DECLARE_MUTEX(list_mutex);
static LIST_HEAD(mem_list_head);
/* buffer preservation list */
struct snd_mem_list {
struct snd_dma_device dev;
struct snd_dma_buffer buffer;
int used;
struct list_head list;
};
/* id for pre-allocated buffers */
#define SNDRV_DMA_DEVICE_UNUSED (unsigned int)-1
#ifdef CONFIG_SND_DEBUG
#define __ASTRING__(x) #x
#define snd_assert(expr, args...) do {\
if (!(expr)) {\
printk(KERN_ERR "snd-malloc: BUG? (%s) (called from %p)\n", __ASTRING__(expr), __builtin_return_address(0));\
args;\
}\
} while (0)
#else
#define snd_assert(expr, args...) /**/
#endif
/*
* Hacks
*/
#if defined(__i386__) || defined(__ppc__) || defined(__x86_64__)
/*
* A hack to allocate large buffers via dma_alloc_coherent()
*
* since dma_alloc_coherent always tries GFP_DMA when the requested
* pci memory region is below 32bit, it happens quite often that even
* 2 order of pages cannot be allocated.
*
* so in the following, we allocate at first without dma_mask, so that
* allocation will be done without GFP_DMA. if the area doesn't match
* with the requested region, then realloate with the original dma_mask
* again.
*
* Really, we want to move this type of thing into dma_alloc_coherent()
* so dma_mask doesn't have to be messed with.
*/
static void *snd_dma_hack_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, int flags)
{
void *ret;
u64 dma_mask, coherent_dma_mask;
if (dev == NULL || !dev->dma_mask)
return dma_alloc_coherent(dev, size, dma_handle, flags);
dma_mask = *dev->dma_mask;
coherent_dma_mask = dev->coherent_dma_mask;
*dev->dma_mask = 0xffffffff; /* do without masking */
dev->coherent_dma_mask = 0xffffffff; /* do without masking */
ret = dma_alloc_coherent(dev, size, dma_handle, flags);
*dev->dma_mask = dma_mask; /* restore */
dev->coherent_dma_mask = coherent_dma_mask; /* restore */
if (ret) {
/* obtained address is out of range? */
if (((unsigned long)*dma_handle + size - 1) & ~dma_mask) {
/* reallocate with the proper mask */
dma_free_coherent(dev, size, ret, *dma_handle);
ret = dma_alloc_coherent(dev, size, dma_handle, flags);
}
} else {
/* wish to success now with the proper mask... */
if (dma_mask != 0xffffffffUL) {
/* allocation with GFP_ATOMIC to avoid the long stall */
flags &= ~GFP_KERNEL;
flags |= GFP_ATOMIC;
ret = dma_alloc_coherent(dev, size, dma_handle, flags);
}
}
return ret;
}
/* redefine dma_alloc_coherent for some architectures */
#undef dma_alloc_coherent
#define dma_alloc_coherent snd_dma_hack_alloc_coherent
#endif /* arch */
/*
*
* Generic memory allocators
*
*/
static long snd_allocated_pages; /* holding the number of allocated pages */
static void mark_pages(void *res, int order)
{
struct page *page = virt_to_page(res);
struct page *last_page = page + (1 << order);
while (page < last_page)
SetPageReserved(page++);
snd_allocated_pages += 1 << order;
}
static void unmark_pages(void *res, int order)
{
struct page *page = virt_to_page(res);
struct page *last_page = page + (1 << order);
while (page < last_page)
ClearPageReserved(page++);
snd_allocated_pages -= 1 << order;
}
/**
* snd_malloc_pages - allocate pages with the given size
* @size: the size to allocate in bytes
* @gfp_flags: the allocation conditions, GFP_XXX
*
* Allocates the physically contiguous pages with the given size.
*
* Returns the pointer of the buffer, or NULL if no enoguh memory.
*/
void *snd_malloc_pages(size_t size, unsigned int gfp_flags)
{
int pg;
void *res;
snd_assert(size > 0, return NULL);
snd_assert(gfp_flags != 0, return NULL);
for (pg = 0; PAGE_SIZE * (1 << pg) < size; pg++);
if ((res = (void *) __get_free_pages(gfp_flags, pg)) != NULL) {
mark_pages(res, pg);
}
return res;
}
/**
* snd_malloc_pages_fallback - allocate pages with the given size with fallback
* @size: the requested size to allocate in bytes
* @gfp_flags: the allocation conditions, GFP_XXX
* @res_size: the pointer to store the size of buffer actually allocated
*
* Allocates the physically contiguous pages with the given request
* size. When no space is left, this function reduces the size and
* tries to allocate again. The size actually allocated is stored in
* res_size argument.
*
* Returns the pointer of the buffer, or NULL if no enoguh memory.
*/
void *snd_malloc_pages_fallback(size_t size, unsigned int gfp_flags, size_t *res_size)
{
void *res;
snd_assert(size > 0, return NULL);
snd_assert(res_size != NULL, return NULL);
do {
if ((res = snd_malloc_pages(size, gfp_flags)) != NULL) {
*res_size = size;
return res;
}
size >>= 1;
} while (size >= PAGE_SIZE);
return NULL;
}
/**
* snd_free_pages - release the pages
* @ptr: the buffer pointer to release
* @size: the allocated buffer size
*
* Releases the buffer allocated via snd_malloc_pages().
*/
void snd_free_pages(void *ptr, size_t size)
{
int pg;
if (ptr == NULL)
return;
for (pg = 0; PAGE_SIZE * (1 << pg) < size; pg++);
unmark_pages(ptr, pg);
free_pages((unsigned long) ptr, pg);
}
/*
*
* Bus-specific memory allocators
*
*/
static void *snd_malloc_dev_pages(struct device *dev, size_t size, dma_addr_t *dma)
{
int pg;
void *res;
unsigned int gfp_flags;
snd_assert(size > 0, return NULL);
snd_assert(dma != NULL, return NULL);
pg = get_order(size);
gfp_flags = GFP_KERNEL;
if (pg > 0)
gfp_flags |= __GFP_NOWARN;
res = dma_alloc_coherent(dev, PAGE_SIZE << pg, dma, gfp_flags);
if (res != NULL)
mark_pages(res, pg);
return res;
}
static void *snd_malloc_dev_pages_fallback(struct device *dev, size_t size,
dma_addr_t *dma, size_t *res_size)
{
void *res;
snd_assert(res_size != NULL, return NULL);
do {
if ((res = snd_malloc_dev_pages(dev, size, dma)) != NULL) {
*res_size = size;
return res;
}
size >>= 1;
} while (size >= PAGE_SIZE);
return NULL;
}
static void snd_free_dev_pages(struct device *dev, size_t size, void *ptr,
dma_addr_t dma)
{
int pg;
if (ptr == NULL)
return;
pg = get_order(size);
unmark_pages(ptr, pg);
dma_free_coherent(dev, PAGE_SIZE << pg, ptr, dma);
}
#ifdef CONFIG_SBUS
static void *snd_malloc_sbus_pages(struct device *dev, size_t size,
dma_addr_t *dma_addr)
{
struct sbus_dev *sdev = (struct sbus_dev *)dev;
int pg;
void *res;
snd_assert(size > 0, return NULL);
snd_assert(dma_addr != NULL, return NULL);
for (pg = 0; PAGE_SIZE * (1 << pg) < size; pg++);
res = sbus_alloc_consistent(sdev, PAGE_SIZE * (1 << pg), dma_addr);
if (res != NULL) {
mark_pages(res, pg);
}
return res;
}
static void *snd_malloc_sbus_pages_fallback(struct device *dev, size_t size,
dma_addr_t *dma_addr, size_t *res_size)
{
void *res;
snd_assert(res_size != NULL, return NULL);
do {
if ((res = snd_malloc_sbus_pages(dev, size, dma_addr)) != NULL) {
*res_size = size;
return res;
}
size >>= 1;
} while (size >= PAGE_SIZE);
return NULL;
}
static void snd_free_sbus_pages(struct device *dev, size_t size,
void *ptr, dma_addr_t dma_addr)
{
struct sbus_dev *sdev = (struct sbus_dev *)dev;
int pg;
if (ptr == NULL)
return;
for (pg = 0; PAGE_SIZE * (1 << pg) < size; pg++);
unmark_pages(ptr, pg);
sbus_free_consistent(sdev, PAGE_SIZE * (1 << pg), ptr, dma_addr);
}
#endif /* CONFIG_SBUS */
/*
*
* ALSA generic memory management
*
*/
/*
* compare the two devices
* returns non-zero if matched.
*/
static int compare_device(const struct snd_dma_device *a, const struct snd_dma_device *b, int allow_unused)
{
if (a->type != b->type)
return 0;
if (a->id != b->id) {
if (! allow_unused || (a->id != SNDRV_DMA_DEVICE_UNUSED && b->id != SNDRV_DMA_DEVICE_UNUSED))
return 0;
}
return a->dev == b->dev;
}
/**
* snd_dma_alloc_pages - allocate the buffer area according to the given type
* @dev: the buffer device info
* @size: the buffer size to allocate
* @dmab: buffer allocation record to store the allocated data
*
* Calls the memory-allocator function for the corresponding
* buffer type.
*
* Returns zero if the buffer with the given size is allocated successfuly,
* other a negative value at error.
*/
int snd_dma_alloc_pages(const struct snd_dma_device *dev, size_t size,
struct snd_dma_buffer *dmab)
{
snd_assert(dev != NULL, return -ENXIO);
snd_assert(size > 0, return -ENXIO);
snd_assert(dmab != NULL, return -ENXIO);
dmab->bytes = 0;
switch (dev->type) {
case SNDRV_DMA_TYPE_CONTINUOUS:
dmab->area = snd_malloc_pages(size, (unsigned long)dev->dev);
dmab->addr = 0;
break;
#ifdef CONFIG_SBUS
case SNDRV_DMA_TYPE_SBUS:
dmab->area = snd_malloc_sbus_pages(dev->dev, size, &dmab->addr);
break;
#endif
case SNDRV_DMA_TYPE_DEV:
dmab->area = snd_malloc_dev_pages(dev->dev, size, &dmab->addr);
break;
case SNDRV_DMA_TYPE_DEV_SG:
snd_malloc_sgbuf_pages(dev, size, dmab, NULL);
break;
default:
printk(KERN_ERR "snd-malloc: invalid device type %d\n", dev->type);
dmab->area = NULL;
dmab->addr = 0;
return -ENXIO;
}
if (! dmab->area)
return -ENOMEM;
dmab->bytes = size;
return 0;
}
/**
* snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback
* @dev: the buffer device info
* @size: the buffer size to allocate
* @dmab: buffer allocation record to store the allocated data
*
* Calls the memory-allocator function for the corresponding
* buffer type. When no space is left, this function reduces the size and
* tries to allocate again. The size actually allocated is stored in
* res_size argument.
*
* Returns zero if the buffer with the given size is allocated successfuly,
* other a negative value at error.
*/
int snd_dma_alloc_pages_fallback(const struct snd_dma_device *dev, size_t size,
struct snd_dma_buffer *dmab)
{
snd_assert(dev != NULL, return -ENXIO);
snd_assert(size > 0, return -ENXIO);
snd_assert(dmab != NULL, return -ENXIO);
dmab->bytes = 0;
switch (dev->type) {
case SNDRV_DMA_TYPE_CONTINUOUS:
dmab->area = snd_malloc_pages_fallback(size, (unsigned long)dev->dev, &dmab->bytes);
dmab->addr = 0;
break;
#ifdef CONFIG_SBUS
case SNDRV_DMA_TYPE_SBUS:
dmab->area = snd_malloc_sbus_pages_fallback(dev->dev, size, &dmab->addr, &dmab->bytes);
break;
#endif
case SNDRV_DMA_TYPE_DEV:
dmab->area = snd_malloc_dev_pages_fallback(dev->dev, size, &dmab->addr, &dmab->bytes);
break;
case SNDRV_DMA_TYPE_DEV_SG:
snd_malloc_sgbuf_pages(dev, size, dmab, &dmab->bytes);
break;
default:
printk(KERN_ERR "snd-malloc: invalid device type %d\n", dev->type);
dmab->area = NULL;
dmab->addr = 0;
return -ENXIO;
}
if (! dmab->area)
return -ENOMEM;
return 0;
}
/**
* snd_dma_free_pages - release the allocated buffer
* @dev: the buffer device info
* @dmbab: the buffer allocation record to release
*
* Releases the allocated buffer via snd_dma_alloc_pages().
*/
void snd_dma_free_pages(const struct snd_dma_device *dev, struct snd_dma_buffer *dmab)
{
switch (dev->type) {
case SNDRV_DMA_TYPE_CONTINUOUS:
snd_free_pages(dmab->area, dmab->bytes);
break;
#ifdef CONFIG_SBUS
case SNDRV_DMA_TYPE_SBUS:
snd_free_sbus_pages(dev->dev, dmab->bytes, dmab->area, dmab->addr);
break;
#endif
case SNDRV_DMA_TYPE_DEV:
snd_free_dev_pages(dev->dev, dmab->bytes, dmab->area, dmab->addr);
break;
case SNDRV_DMA_TYPE_DEV_SG:
snd_free_sgbuf_pages(dmab);
break;
default:
printk(KERN_ERR "snd-malloc: invalid device type %d\n", dev->type);
}
}
/*
* search for the device
*/
static struct snd_mem_list *mem_list_find(const struct snd_dma_device *dev, int search_empty)
{
struct list_head *p;
struct snd_mem_list *mem;
list_for_each(p, &mem_list_head) {
mem = list_entry(p, struct snd_mem_list, list);
if (mem->used && search_empty)
continue;
if (compare_device(&mem->dev, dev, search_empty))
return mem;
}
return NULL;
}
/**
* snd_dma_get_reserved - get the reserved buffer for the given device
* @dev: the buffer device info
* @dmab: the buffer allocation record to store
*
* Looks for the reserved-buffer list and re-uses if the same buffer
* is found in the list. When the buffer is found, it's marked as used.
* For unmarking the buffer, call snd_dma_free_reserved().
*
* Returns the size of buffer if the buffer is found, or zero if not found.
*/
size_t snd_dma_get_reserved(const struct snd_dma_device *dev, struct snd_dma_buffer *dmab)
{
struct snd_mem_list *mem;
snd_assert(dev && dmab, return 0);
down(&list_mutex);
mem = mem_list_find(dev, 1);
if (mem) {
mem->used = 1;
mem->dev = *dev;
*dmab = mem->buffer;
up(&list_mutex);
return dmab->bytes;
}
up(&list_mutex);
return 0;
}
/**
* snd_dma_free_reserved - unmark the reserved buffer
* @dev: the buffer device info
*
* Looks for the matching reserved buffer and erases the mark on it
* if found.
*
* Returns zero.
*/
int snd_dma_free_reserved(const struct snd_dma_device *dev)
{
struct snd_mem_list *mem;
snd_assert(dev, return -EINVAL);
down(&list_mutex);
mem = mem_list_find(dev, 0);
if (mem)
mem->used = 0;
up(&list_mutex);
return 0;
}
/**
* snd_dma_set_reserved - reserve the buffer
* @dev: the buffer device info
* @dmab: the buffer to reserve
*
* Reserves the given buffer as a reserved buffer.
* When an old reserved buffer already exists, the old one is released
* and replaced with the new one.
*
* When NULL buffer pointer or zero buffer size is given, the existing
* buffer is released and the entry is removed.
*
* Returns zero if successful, or a negative code at error.
*/
int snd_dma_set_reserved(const struct snd_dma_device *dev, struct snd_dma_buffer *dmab)
{
struct snd_mem_list *mem;
snd_assert(dev, return -EINVAL);
down(&list_mutex);
mem = mem_list_find(dev, 0);
if (mem) {
if (mem->used)
printk(KERN_WARNING "snd-page-alloc: releasing the used block (type=%d, id=0x%x\n", mem->dev.type, mem->dev.id);
snd_dma_free_pages(dev, &mem->buffer);
if (! dmab || ! dmab->bytes) {
/* remove the entry */
list_del(&mem->list);
kfree(mem);
up(&list_mutex);
return 0;
}
} else {
if (! dmab || ! dmab->bytes) {
up(&list_mutex);
return 0;
}
mem = kmalloc(sizeof(*mem), GFP_KERNEL);
if (! mem) {
up(&list_mutex);
return -ENOMEM;
}
mem->dev = *dev;
list_add_tail(&mem->list, &mem_list_head);
}
/* store the entry */
mem->used = 1;
mem->buffer = *dmab;
up(&list_mutex);
return 0;
}
/*
* purge all reserved buffers
*/
static void free_all_reserved_pages(void)
{
struct list_head *p;
struct snd_mem_list *mem;
down(&list_mutex);
while (! list_empty(&mem_list_head)) {
p = mem_list_head.next;
mem = list_entry(p, struct snd_mem_list, list);
list_del(p);
snd_dma_free_pages(&mem->dev, &mem->buffer);
kfree(mem);
}
up(&list_mutex);
}
/*
* allocation of buffers for pre-defined devices
*/
#ifdef CONFIG_PCI
/* FIXME: for pci only - other bus? */
struct prealloc_dev {
unsigned short vendor;
unsigned short device;
unsigned long dma_mask;
unsigned int size;
unsigned int buffers;
};
#define HAMMERFALL_BUFFER_SIZE (16*1024*4*(26+1))
static struct prealloc_dev prealloc_devices[] __initdata = {
{
/* hammerfall */
.vendor = 0x10ee,
.device = 0x3fc4,
.dma_mask = 0xffffffff,
.size = HAMMERFALL_BUFFER_SIZE,
.buffers = 2
},
{
/* HDSP */
.vendor = 0x10ee,
.device = 0x3fc5,
.dma_mask = 0xffffffff,
.size = HAMMERFALL_BUFFER_SIZE,
.buffers = 2
},
{ }, /* terminator */
};
/*
* compose a snd_dma_device struct for the PCI device
*/
static inline void snd_dma_device_pci(struct snd_dma_device *dev, struct pci_dev *pci, unsigned int id)
{
memset(dev, 0, sizeof(*dev));
dev->type = SNDRV_DMA_TYPE_DEV;
dev->dev = snd_dma_pci_data(pci);
dev->id = id;
}
static void __init preallocate_cards(void)
{
struct pci_dev *pci = NULL;
int card;
card = 0;
while ((pci = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pci)) != NULL) {
struct prealloc_dev *dev;
unsigned int i;
if (card >= SNDRV_CARDS)
break;
for (dev = prealloc_devices; dev->vendor; dev++) {
if (dev->vendor == pci->vendor && dev->device == pci->device)
break;
}
if (! dev->vendor)
continue;
if (! enable[card++]) {
printk(KERN_DEBUG "snd-page-alloc: skipping card %d, device %04x:%04x\n", card, pci->vendor, pci->device);
continue;
}
if (pci_set_dma_mask(pci, dev->dma_mask) < 0 ||
pci_set_consistent_dma_mask(pci, dev->dma_mask) < 0) {
printk(KERN_ERR "snd-page-alloc: cannot set DMA mask %lx for pci %04x:%04x\n", dev->dma_mask, dev->vendor, dev->device);
continue;
}
for (i = 0; i < dev->buffers; i++) {
struct snd_mem_list *mem;
mem = kmalloc(sizeof(*mem), GFP_KERNEL);
if (! mem) {
printk(KERN_WARNING "snd-page-alloc: can't malloc memlist\n");
break;
}
memset(mem, 0, sizeof(*mem));
snd_dma_device_pci(&mem->dev, pci, SNDRV_DMA_DEVICE_UNUSED);
if (snd_dma_alloc_pages(&mem->dev, dev->size, &mem->buffer) < 0) {
printk(KERN_WARNING "snd-page-alloc: cannot allocate buffer pages (size = %d)\n", dev->size);
kfree(mem);
} else {
down(&list_mutex);
list_add_tail(&mem->list, &mem_list_head);
up(&list_mutex);
}
}
}
}
#else
#define preallocate_cards() /* NOP */
#endif
#ifdef CONFIG_PROC_FS
/*
* proc file interface
*/
static int snd_mem_proc_read(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
int len = 0;
long pages = snd_allocated_pages >> (PAGE_SHIFT-12);
struct list_head *p;
struct snd_mem_list *mem;
int devno;
down(&list_mutex);
len += sprintf(page + len, "pages : %li bytes (%li pages per %likB)\n",
pages * PAGE_SIZE, pages, PAGE_SIZE / 1024);
devno = 0;
list_for_each(p, &mem_list_head) {
mem = list_entry(p, struct snd_mem_list, list);
devno++;
len += sprintf(page + len, "buffer %d : ", devno);
if (mem->dev.id == SNDRV_DMA_DEVICE_UNUSED)
len += sprintf(page + len, "UNUSED");
else
len += sprintf(page + len, "ID %08x", mem->dev.id);
len += sprintf(page + len, " : type ");
switch (mem->dev.type) {
case SNDRV_DMA_TYPE_CONTINUOUS:
len += sprintf(page + len, "CONT [%p]", mem->dev.dev);
break;
#ifdef CONFIG_SBUS
case SNDRV_DMA_TYPE_SBUS:
{
struct sbus_dev *sdev = (struct sbus_dev *)(mem->dev.dev);
len += sprintf(page + len, "SBUS [%x]", sdev->slot);
}
break;
#endif
case SNDRV_DMA_TYPE_DEV:
case SNDRV_DMA_TYPE_DEV_SG:
if (mem->dev.dev) {
len += sprintf(page + len, "%s [%s]",
mem->dev.type == SNDRV_DMA_TYPE_DEV_SG ? "DEV-SG" : "DEV",
mem->dev.dev->bus_id);
} else
len += sprintf(page + len, "ISA");
break;
default:
len += sprintf(page + len, "UNKNOWN");
break;
}
len += sprintf(page + len, "\n addr = 0x%lx, size = %d bytes, used = %s\n",
(unsigned long)mem->buffer.addr, (int)mem->buffer.bytes,
mem->used ? "yes" : "no");
}
up(&list_mutex);
return len;
}
#endif /* CONFIG_PROC_FS */
/*
* module entry
*/
static int __init snd_mem_init(void)
{
#ifdef CONFIG_PROC_FS
create_proc_read_entry("driver/snd-page-alloc", 0, 0, snd_mem_proc_read, NULL);
#endif
preallocate_cards();
return 0;
}
static void __exit snd_mem_exit(void)
{
remove_proc_entry("driver/snd-page-alloc", NULL);
free_all_reserved_pages();
if (snd_allocated_pages > 0)
printk(KERN_ERR "snd-malloc: Memory leak? pages not freed = %li\n", snd_allocated_pages);
}
module_init(snd_mem_init)
module_exit(snd_mem_exit)
/*
* exports
*/
EXPORT_SYMBOL(snd_dma_alloc_pages);
EXPORT_SYMBOL(snd_dma_alloc_pages_fallback);
EXPORT_SYMBOL(snd_dma_free_pages);
EXPORT_SYMBOL(snd_dma_get_reserved);
EXPORT_SYMBOL(snd_dma_free_reserved);
EXPORT_SYMBOL(snd_dma_set_reserved);
EXPORT_SYMBOL(snd_malloc_pages);
EXPORT_SYMBOL(snd_malloc_pages_fallback);
EXPORT_SYMBOL(snd_free_pages);