/*
* Read-Copy Update mechanism for mutual exclusion
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright (C) IBM Corporation, 2001
*
* Author: Dipankar Sarma <dipankar@in.ibm.com>
*
* Based on the original work by Paul McKenney <paul.mckenney@us.ibm.com>
* and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
* Papers:
* http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
* http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
*
* For detailed explanation of Read-Copy Update mechanism see -
* http://lse.sourceforge.net/locking/rcupdate.html
*
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <asm/atomic.h>
#include <asm/bitops.h>
#include <linux/module.h>
#include <linux/completion.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
/* Definition for rcupdate control block. */
struct rcu_ctrlblk rcu_ctrlblk =
{ .cur = -300, .completed = -300 , .lock = SEQCNT_ZERO };
/* Bookkeeping of the progress of the grace period */
struct {
spinlock_t mutex; /* Guard this struct and writes to rcu_ctrlblk */
cpumask_t rcu_cpu_mask; /* CPUs that need to switch in order */
/* for current batch to proceed. */
} rcu_state ____cacheline_maxaligned_in_smp =
{.mutex = SPIN_LOCK_UNLOCKED, .rcu_cpu_mask = CPU_MASK_NONE };
DEFINE_PER_CPU(struct rcu_data, rcu_data) = { 0L };
/* Fake initialization required by compiler */
static DEFINE_PER_CPU(struct tasklet_struct, rcu_tasklet) = {NULL};
#define RCU_tasklet(cpu) (per_cpu(rcu_tasklet, cpu))
/**
* call_rcu - Queue an RCU update request.
* @head: structure to be used for queueing the RCU updates.
* @func: actual update function to be invoked after the grace period
*
* The update function will be invoked as soon as all CPUs have performed
* a context switch or been seen in the idle loop or in a user process.
* The read-side of critical section that use call_rcu() for updation must
* be protected by rcu_read_lock()/rcu_read_unlock().
*/
void fastcall call_rcu(struct rcu_head *head,
void (*func)(struct rcu_head *rcu))
{
int cpu;
unsigned long flags;
head->func = func;
head->next = NULL;
local_irq_save(flags);
cpu = smp_processor_id();
*RCU_nxttail(cpu) = head;
RCU_nxttail(cpu) = &head->next;
local_irq_restore(flags);
}
/*
* Invoke the completed RCU callbacks. They are expected to be in
* a per-cpu list.
*/
static void rcu_do_batch(struct rcu_head *list)
{
struct rcu_head *next;
while (list) {
next = list->next;
list->func(list);
list = next;
}
}
/*
* Grace period handling:
* The grace period handling consists out of two steps:
* - A new grace period is started.
* This is done by rcu_start_batch. The start is not broadcasted to
* all cpus, they must pick this up by comparing rcu_ctrlblk.cur with
* RCU_quiescbatch(cpu). All cpus are recorded in the
* rcu_state.rcu_cpu_mask bitmap.
* - All cpus must go through a quiescent state.
* Since the start of the grace period is not broadcasted, at least two
* calls to rcu_check_quiescent_state are required:
* The first call just notices that a new grace period is running. The
* following calls check if there was a quiescent state since the beginning
* of the grace period. If so, it updates rcu_state.rcu_cpu_mask. If
* the bitmap is empty, then the grace period is completed.
* rcu_check_quiescent_state calls rcu_start_batch(0) to start the next grace
* period (if necessary).
*/
/*
* Register a new batch of callbacks, and start it up if there is currently no
* active batch and the batch to be registered has not already occurred.
* Caller must hold rcu_state.mutex.
*/
static void rcu_start_batch(int next_pending)
{
if (next_pending)
rcu_ctrlblk.next_pending = 1;
if (rcu_ctrlblk.next_pending &&
rcu_ctrlblk.completed == rcu_ctrlblk.cur) {
/* Can't change, since spin lock held. */
cpus_andnot(rcu_state.rcu_cpu_mask, cpu_online_map,
nohz_cpu_mask);
write_seqcount_begin(&rcu_ctrlblk.lock);
rcu_ctrlblk.next_pending = 0;
rcu_ctrlblk.cur++;
write_seqcount_end(&rcu_ctrlblk.lock);
}
}
/*
* cpu went through a quiescent state since the beginning of the grace period.
* Clear it from the cpu mask and complete the grace period if it was the last
* cpu. Start another grace period if someone has further entries pending
*/
static void cpu_quiet(int cpu)
{
cpu_clear(cpu, rcu_state.rcu_cpu_mask);
if (cpus_empty(rcu_state.rcu_cpu_mask)) {
/* batch completed ! */
rcu_ctrlblk.completed = rcu_ctrlblk.cur;
rcu_start_batch(0);
}
}
/*
* Check if the cpu has gone through a quiescent state (say context
* switch). If so and if it already hasn't done so in this RCU
* quiescent cycle, then indicate that it has done so.
*/
static void rcu_check_quiescent_state(void)
{
int cpu = smp_processor_id();
if (RCU_quiescbatch(cpu) != rcu_ctrlblk.cur) {
/* new grace period: record qsctr value. */
RCU_qs_pending(cpu) = 1;
RCU_last_qsctr(cpu) = RCU_qsctr(cpu);
RCU_quiescbatch(cpu) = rcu_ctrlblk.cur;
return;
}
/* Grace period already completed for this cpu?
* qs_pending is checked instead of the actual bitmap to avoid
* cacheline trashing.
*/
if (!RCU_qs_pending(cpu))
return;
/*
* Races with local timer interrupt - in the worst case
* we may miss one quiescent state of that CPU. That is
* tolerable. So no need to disable interrupts.
*/
if (RCU_qsctr(cpu) == RCU_last_qsctr(cpu))
return;
RCU_qs_pending(cpu) = 0;
spin_lock(&rcu_state.mutex);
/*
* RCU_quiescbatch/batch.cur and the cpu bitmap can come out of sync
* during cpu startup. Ignore the quiescent state.
*/
if (likely(RCU_quiescbatch(cpu) == rcu_ctrlblk.cur))
cpu_quiet(cpu);
spin_unlock(&rcu_state.mutex);
}
#ifdef CONFIG_HOTPLUG_CPU
/* warning! helper for rcu_offline_cpu. do not use elsewhere without reviewing
* locking requirements, the list it's pulling from has to belong to a cpu
* which is dead and hence not processing interrupts.
*/
static void rcu_move_batch(struct rcu_head *list)
{
int cpu;
local_irq_disable();
cpu = smp_processor_id();
while (list != NULL) {
*RCU_nxttail(cpu) = list;
RCU_nxttail(cpu) = &list->next;
list = list->next;
}
local_irq_enable();
}
static void rcu_offline_cpu(int cpu)
{
/* if the cpu going offline owns the grace period
* we can block indefinitely waiting for it, so flush
* it here
*/
spin_lock_bh(&rcu_state.mutex);
if (rcu_ctrlblk.cur != rcu_ctrlblk.completed)
cpu_quiet(cpu);
spin_unlock_bh(&rcu_state.mutex);
rcu_move_batch(RCU_curlist(cpu));
rcu_move_batch(RCU_nxtlist(cpu));
tasklet_kill_immediate(&RCU_tasklet(cpu), cpu);
}
#endif
void rcu_restart_cpu(int cpu)
{
spin_lock_bh(&rcu_state.mutex);
RCU_quiescbatch(cpu) = rcu_ctrlblk.completed;
RCU_qs_pending(cpu) = 0;
spin_unlock_bh(&rcu_state.mutex);
}
/*
* This does the RCU processing work from tasklet context.
*/
static void rcu_process_callbacks(unsigned long unused)
{
int cpu = smp_processor_id();
struct rcu_head *rcu_list = NULL;
if (RCU_curlist(cpu) &&
!rcu_batch_before(rcu_ctrlblk.completed, RCU_batch(cpu))) {
rcu_list = RCU_curlist(cpu);
RCU_curlist(cpu) = NULL;
}
local_irq_disable();
if (RCU_nxtlist(cpu) && !RCU_curlist(cpu)) {
int next_pending, seq;
RCU_curlist(cpu) = RCU_nxtlist(cpu);
RCU_nxtlist(cpu) = NULL;
RCU_nxttail(cpu) = &RCU_nxtlist(cpu);
local_irq_enable();
/*
* start the next batch of callbacks
*/
do {
seq = read_seqcount_begin(&rcu_ctrlblk.lock);
/* determine batch number */
RCU_batch(cpu) = rcu_ctrlblk.cur + 1;
next_pending = rcu_ctrlblk.next_pending;
} while (read_seqcount_retry(&rcu_ctrlblk.lock, seq));
if (!next_pending) {
/* and start it/schedule start if it's a new batch */
spin_lock(&rcu_state.mutex);
rcu_start_batch(1);
spin_unlock(&rcu_state.mutex);
}
} else {
local_irq_enable();
}
rcu_check_quiescent_state();
if (rcu_list)
rcu_do_batch(rcu_list);
}
void rcu_check_callbacks(int cpu, int user)
{
if (user ||
(idle_cpu(cpu) && !in_softirq() &&
hardirq_count() <= (1 << HARDIRQ_SHIFT)))
RCU_qsctr(cpu)++;
tasklet_schedule(&RCU_tasklet(cpu));
}
static void __devinit rcu_online_cpu(int cpu)
{
memset(&per_cpu(rcu_data, cpu), 0, sizeof(struct rcu_data));
tasklet_init(&RCU_tasklet(cpu), rcu_process_callbacks, 0UL);
RCU_nxttail(cpu) = &RCU_nxtlist(cpu);
RCU_quiescbatch(cpu) = rcu_ctrlblk.completed;
RCU_qs_pending(cpu) = 0;
}
static int __devinit rcu_cpu_notify(struct notifier_block *self,
unsigned long action, void *hcpu)
{
long cpu = (long)hcpu;
switch (action) {
case CPU_UP_PREPARE:
rcu_online_cpu(cpu);
break;
#ifdef CONFIG_HOTPLUG_CPU
case CPU_DEAD:
rcu_offline_cpu(cpu);
break;
#endif
default:
break;
}
return NOTIFY_OK;
}
static struct notifier_block __devinitdata rcu_nb = {
.notifier_call = rcu_cpu_notify,
};
/*
* Initializes rcu mechanism. Assumed to be called early.
* That is before local timer(SMP) or jiffie timer (uniproc) is setup.
* Note that rcu_qsctr and friends are implicitly
* initialized due to the choice of ``0'' for RCU_CTR_INVALID.
*/
void __init rcu_init(void)
{
rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE,
(void *)(long)smp_processor_id());
/* Register notifier for non-boot CPUs */
register_cpu_notifier(&rcu_nb);
}
struct rcu_synchronize {
struct rcu_head head;
struct completion completion;
};
/* Because of FASTCALL declaration of complete, we use this wrapper */
static void wakeme_after_rcu(struct rcu_head *head)
{
struct rcu_synchronize *rcu;
rcu = container_of(head, struct rcu_synchronize, head);
complete(&rcu->completion);
}
/**
* synchronize-kernel - wait until all the CPUs have gone
* through a "quiescent" state. It may sleep.
*/
void synchronize_kernel(void)
{
struct rcu_synchronize rcu;
init_completion(&rcu.completion);
/* Will wake me after RCU finished */
call_rcu(&rcu.head, wakeme_after_rcu);
/* Wait for it */
wait_for_completion(&rcu.completion);
}
EXPORT_SYMBOL(call_rcu);
EXPORT_SYMBOL(synchronize_kernel);