/*
* Kernel Debugger Architecture Independent Stack Traceback
*
* Copyright (C) 1999-2003 Silicon Graphics, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
* Further, this software is distributed without any warranty that it is
* free of the rightful claim of any third person regarding infringement
* or the like. Any license provided herein, whether implied or
* otherwise, applies only to this software file. Patent licenses, if
* any, provided herein do not apply to combinations of this program with
* other software, or any other product whatsoever.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
*
* Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
* Mountain View, CA 94043, or:
*
* http://www.sgi.com
*
* For further information regarding this notice, see:
*
* http://oss.sgi.com/projects/GenInfo/NoticeExplan
*/
#include <linux/ctype.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/kdb.h>
#include <linux/kdbprivate.h>
#include <linux/nmi.h>
#include <asm/system.h>
/*
* kdb_bt
*
* This function implements the 'bt' command. Print a stack
* traceback.
*
* bt [<address-expression>] (addr-exp is for alternate stacks)
* btp <pid> Kernel stack for <pid>
* btt <address-expression> Kernel stack for task structure at <address-expression>
* bta [DRSTZU] All processes, optionally filtered by state
* btc [<cpu>] The current process on one cpu, default is all cpus
*
* address expression refers to a return address on the stack. It
* is expected to be preceeded by a frame pointer.
*
* Inputs:
* argc argument count
* argv argument vector
* envp environment vector
* regs registers at time kdb was entered.
* Outputs:
* None.
* Returns:
* zero for success, a kdb diagnostic if error
* Locking:
* none.
* Remarks:
* Backtrack works best when the code uses frame pointers. But
* even without frame pointers we should get a reasonable trace.
*
* mds comes in handy when examining the stack to do a manual
* traceback.
*/
static int
kdb_bt1(struct task_struct *p, unsigned long mask, int argcount, int btaprompt)
{
int diag;
char buffer[2];
if (kdb_getarea(buffer[0], (unsigned long)p) ||
kdb_getarea(buffer[0], (unsigned long)(p+1)-1))
return KDB_BADADDR;
if (!kdb_task_state(p, mask))
return 0;
kdb_printf("Stack traceback for pid %d\n", p->pid);
kdb_ps1(p);
diag = kdba_bt_process(p, argcount);
if (btaprompt) {
kdb_getstr(buffer, sizeof(buffer), "Enter <q> to end, <cr> to continue:");
if (buffer[0] == 'q') {
kdb_printf("\n");
return 1;
}
}
touch_nmi_watchdog();
return 0;
}
int
kdb_bt(int argc, const char **argv, const char **envp, struct pt_regs *regs)
{
int diag;
int argcount = 5;
int btaprompt = 1;
int nextarg;
unsigned long addr;
long offset;
kdbgetintenv("BTARGS", &argcount); /* Arguments to print */
kdbgetintenv("BTAPROMPT", &btaprompt); /* Prompt after each proc in bta */
if (strcmp(argv[0], "bta") == 0) {
struct task_struct *g, *p;
unsigned long cpu;
unsigned long mask = kdb_task_state_string(argc, argv, envp);
/* Run the active tasks first */
for (cpu = 0; cpu < NR_CPUS; ++cpu) {
if (!cpu_online(cpu))
continue;
p = kdb_cpu_curr(cpu);
if (kdb_bt1(p, mask, argcount, btaprompt))
return 0;
}
/* Now the inactive tasks */
kdb_do_each_thread(g, p) {
if (task_curr(p))
continue;
if (kdb_bt1(p, mask, argcount, btaprompt))
return 0;
} kdb_while_each_thread(g, p);
} else if (strcmp(argv[0], "btp") == 0) {
struct task_struct *p;
unsigned long pid;
if (argc != 1)
return KDB_ARGCOUNT;
if ((diag = kdbgetularg((char *)argv[1], &pid)))
return diag;
if ((p = find_task_by_pid(pid)))
return kdb_bt1(p, ~0, argcount, 0);
kdb_printf("No process with pid == %ld found\n", pid);
return 0;
} else if (strcmp(argv[0], "btt") == 0) {
unsigned long addr;
if (argc != 1)
return KDB_ARGCOUNT;
if ((diag = kdbgetularg((char *)argv[1], &addr)))
return diag;
return kdb_bt1((struct task_struct *)addr, ~0, argcount, 0);
} else if (strcmp(argv[0], "btc") == 0) {
unsigned long cpu = ~0;
struct kdb_running_process *krp;
char buf[80];
if (argc > 1)
return KDB_ARGCOUNT;
if (argc == 1 && (diag = kdbgetularg((char *)argv[1], &cpu)))
return diag;
/* Recursive use of kdb_parse, do not use argv after this point */
argv = NULL;
if (cpu != ~0) {
krp = kdb_running_process + cpu;
if (cpu >= NR_CPUS || !krp->seqno) {
kdb_printf("no process for cpu %ld\n", cpu);
return 0;
}
sprintf(buf, "btt 0x%p\n", krp->p);
kdb_parse(buf, regs);
return 0;
}
kdb_printf("btc: cpu status: ");
kdb_parse("cpu\n", regs);
for (cpu = 0, krp = kdb_running_process; cpu < NR_CPUS; ++cpu, ++krp) {
if (!krp->seqno || !cpu_online(cpu))
continue;
sprintf(buf, "btt 0x%p\n", krp->p);
kdb_parse(buf, regs);
touch_nmi_watchdog();
}
return 0;
} else {
if (argc) {
nextarg = 1;
diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
&offset, NULL, regs);
if (diag)
return diag;
return kdba_bt_address(addr, argcount);
} else {
return kdb_bt1(current, ~0, argcount, 0);
}
}
/* NOTREACHED */
return 0;
}