#ifndef _H8300_BITOPS_H
#define _H8300_BITOPS_H
/*
* Copyright 1992, Linus Torvalds.
* Copyright 2002, Yoshinori Sato
*/
#include <linux/kernel.h>
#include <linux/config.h>
#include <linux/compiler.h>
#include <asm/byteorder.h> /* swab32 */
#include <asm/system.h>
#ifdef __KERNEL__
/*
* Function prototypes to keep gcc -Wall happy
*/
/*
* ffz = Find First Zero in word. Undefined if no zero exists,
* so code should check against ~0UL first..
*/
static __inline__ unsigned long ffz(unsigned long word)
{
register unsigned long result asm("er0");
register unsigned long _word asm("er1");
_word = word;
__asm__("sub.l %0,%0\n\t"
"dec.l #1,%0\n"
"1:\n\t"
"shlr.l %1\n\t"
"adds #1,%0\n\t"
"bcs 1b"
: "=r" (result) : "r" (_word));
return result;
}
static __inline__ void set_bit(int nr, volatile unsigned long* addr)
{
volatile unsigned char *b_addr;
b_addr = &(((volatile unsigned char *) addr)
[((nr >> 3) & ~3) + 3 - ((nr >> 3) & 3)]);
__asm__("mov.l %1,er0\n\t"
"bset r0l,%0"
:"+m"(*b_addr)
:"g"(nr & 7),"m"(*b_addr)
:"er0");
}
/* Bigendian is complexed... */
#define __set_bit(nr, addr) set_bit((nr), (addr))
/*
* clear_bit() doesn't provide any barrier for the compiler.
*/
#define smp_mb__before_clear_bit() barrier()
#define smp_mb__after_clear_bit() barrier()
static __inline__ void clear_bit(int nr, volatile unsigned long* addr)
{
volatile unsigned char *b_addr;
b_addr = &(((volatile unsigned char *) addr)
[((nr >> 3) & ~3) + 3 - ((nr >> 3) & 3)]);
__asm__("mov.l %1,er0\n\t"
"bclr r0l,%0"
:"+m"(*b_addr)
:"g"(nr & 7),"m"(*b_addr)
:"er0");
}
#define __clear_bit(nr, addr) clear_bit((nr), (addr))
static __inline__ void change_bit(int nr, volatile unsigned long* addr)
{
volatile unsigned char *b_addr;
b_addr = &(((volatile unsigned char *) addr)
[((nr >> 3) & ~3) + 3 - ((nr >> 3) & 3)]);
__asm__("mov.l %1,er0\n\t"
"bnot r0l,%0"
:"+m"(*b_addr)
:"g"(nr & 7),"m"(*b_addr)
:"er0");
}
#define __change_bit(nr, addr) change_bit((nr), (addr))
static __inline__ int test_bit(int nr, const unsigned long* addr)
{
return ((1UL << (nr & 7)) &
(((const volatile unsigned char *) addr)
[((nr >> 3) & ~3) + 3 - ((nr >> 3) & 3)])) != 0;
}
#define __test_bit(nr, addr) test_bit(nr, addr)
static __inline__ int test_and_set_bit(int nr, volatile unsigned long* addr)
{
register int retval __asm__("er0");
volatile unsigned char *a;
a = (volatile unsigned char *)addr;
a += ((nr >> 3) & ~3) + (3 - ((nr >> 3) & 3));
__asm__("mov.l %2,er3\n\t"
"sub.l %0,%0\n\t"
"stc ccr,r3h\n\t"
"orc #0x80,ccr\n\t"
"btst r3l,%1\n\t"
"bset r3l,%1\n\t"
"beq 1f\n\t"
"inc.l #1,%0\n\t"
"1:"
"ldc r3h,ccr"
: "=r"(retval),"+m"(*a) :"g"(nr & 7):"er3","memory");
return retval;
}
static __inline__ int __test_and_set_bit(int nr, volatile unsigned long* addr)
{
register int retval __asm__("er0");
volatile unsigned char *a;
a = (volatile unsigned char *)addr;
a += ((nr >> 3) & ~3) + (3 - ((nr >> 3) & 3));
__asm__("mov.l %2,er3\n\t"
"sub.l %0,%0\n\t"
"btst r3l,%1\n\t"
"bset r3l,%1\n\t"
"beq 1f\n\t"
"inc.l #1,%0\n\t"
"1:"
: "=r"(retval),"+m"(*a) :"g"(nr & 7):"er3","memory");
return retval;
}
static __inline__ int test_and_clear_bit(int nr, volatile unsigned long* addr)
{
register int retval __asm__("er0");
volatile unsigned char *a;
a = (volatile unsigned char *)addr;
a += ((nr >> 3) & ~3) + (3 - ((nr >> 3) & 3));
__asm__("mov.l %2,er3\n\t"
"sub.l %0,%0\n\t"
"stc ccr,r3h\n\t"
"orc #0x80,ccr\n\t"
"btst r3l,%1\n\t"
"bclr r3l,%1\n\t"
"beq 1f\n\t"
"inc.l #1,%0\n\t"
"1:"
"ldc r3h,ccr"
: "=r"(retval),"=m"(*a) :"g"(nr & 7):"er3","memory");
return retval;
}
static __inline__ int __test_and_clear_bit(int nr, volatile unsigned long* addr)
{
register int retval __asm__("er0");
volatile unsigned char *a;
a = (volatile unsigned char *)addr;
a += ((nr >> 3) & ~3) + (3 - ((nr >> 3) & 3));
__asm__("mov.l %2,er3\n\t"
"sub.l %0,%0\n\t"
"btst r3l,%1\n\t"
"bclr r3l,%1\n\t"
"beq 1f\n\t"
"inc.l #1,%0\n\t"
"1:"
: "=r"(retval),"+m"(*a) :"g"(nr & 7):"er3","memory");
return retval;
}
static __inline__ int test_and_change_bit(int nr, volatile unsigned long* addr)
{
register int retval __asm__("er0");
volatile unsigned char *a;
a = (volatile unsigned char *)addr;
a += ((nr >> 3) & ~3) + (3 - ((nr >> 3) & 3));
__asm__("mov.l %2,er3\n\t"
"sub.l %0,%0\n\t"
"stc ccr,r3h\n\t"
"orc #0x80,ccr\n\t"
"btst r3l,%1\n\t"
"bnot r3l,%1\n\t"
"beq 1f\n\t"
"inc.l #1,%0\n\t"
"1:"
"ldc r3h,ccr"
: "=r"(retval),"+m"(*a) :"g"(nr & 7):"er3","memory");
return retval;
}
static __inline__ int __test_and_change_bit(int nr, volatile unsigned long* addr)
{
register int retval __asm__("er0");
volatile unsigned char *a;
a = (volatile unsigned char *)addr;
a += ((nr >> 3) & ~3) + (3 - ((nr >> 3) & 3));
__asm__("mov.l %2,er3\n\t"
"sub.l %0,%0\n\t"
"btst r3l,%1\n\t"
"bnot r3l,%1\n\t"
"beq 1f\n\t"
"inc.l #1,%0\n\t"
"1:"
: "=r"(retval),"+m"(*a) :"g"(nr & 7):"er3","memory");
return retval;
}
#define find_first_zero_bit(addr, size) \
find_next_zero_bit((addr), (size), 0)
static __inline__ int find_next_zero_bit (void * addr, int size, int offset)
{
unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
unsigned long result = offset & ~31UL;
unsigned long tmp;
if (offset >= size)
return size;
size -= result;
offset &= 31UL;
if (offset) {
tmp = *(p++);
tmp |= ~0UL >> (32-offset);
if (size < 32)
goto found_first;
if (~tmp)
goto found_middle;
size -= 32;
result += 32;
}
while (size & ~31UL) {
if (~(tmp = *(p++)))
goto found_middle;
result += 32;
size -= 32;
}
if (!size)
return result;
tmp = *p;
found_first:
tmp |= ~0UL >> size;
found_middle:
return result + ffz(tmp);
}
static __inline__ unsigned long ffs(unsigned long word)
{
register unsigned long result asm("er0");
register unsigned long _word asm("er1");
_word = word;
__asm__("sub.l %0,%0\n\t"
"dec.l #1,%0\n"
"1:\n\t"
"shlr.l %1\n\t"
"adds #1,%0\n\t"
"bcc 1b"
: "=r" (result) : "r"(_word));
return result;
}
#define __ffs(x) ffs(x)
/*
* fls: find last bit set.
*/
#define fls(x) generic_fls(x)
/*
* Every architecture must define this function. It's the fastest
* way of searching a 140-bit bitmap where the first 100 bits are
* unlikely to be set. It's guaranteed that at least one of the 140
* bits is cleared.
*/
static inline int sched_find_first_bit(unsigned long *b)
{
if (unlikely(b[0]))
return __ffs(b[0]);
if (unlikely(b[1]))
return __ffs(b[1]) + 32;
if (unlikely(b[2]))
return __ffs(b[2]) + 64;
if (b[3])
return __ffs(b[3]) + 96;
return __ffs(b[4]) + 128;
}
/*
* hweightN: returns the hamming weight (i.e. the number
* of bits set) of a N-bit word
*/
#define hweight32(x) generic_hweight32(x)
#define hweight16(x) generic_hweight16(x)
#define hweight8(x) generic_hweight8(x)
static __inline__ int ext2_set_bit(int nr, volatile void * addr)
{
int mask, retval;
unsigned long flags;
volatile unsigned char *ADDR = (unsigned char *) addr;
ADDR += nr >> 3;
mask = 1 << (nr & 0x07);
local_irq_save(flags);
retval = (mask & *ADDR) != 0;
*ADDR |= mask;
local_irq_restore(flags);
return retval;
}
static __inline__ int ext2_clear_bit(int nr, volatile void * addr)
{
int mask, retval;
unsigned long flags;
volatile unsigned char *ADDR = (unsigned char *) addr;
ADDR += nr >> 3;
mask = 1 << (nr & 0x07);
local_irq_save(flags);
retval = (mask & *ADDR) != 0;
*ADDR &= ~mask;
local_irq_restore(flags);
return retval;
}
static __inline__ int ext2_test_bit(int nr, const volatile void * addr)
{
int mask;
const volatile unsigned char *ADDR = (const unsigned char *) addr;
ADDR += nr >> 3;
mask = 1 << (nr & 0x07);
return ((mask & *ADDR) != 0);
}
#define ext2_find_first_zero_bit(addr, size) \
ext2_find_next_zero_bit((addr), (size), 0)
static __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset)
{
unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
unsigned long result = offset & ~31UL;
unsigned long tmp;
if (offset >= size)
return size;
size -= result;
offset &= 31UL;
if(offset) {
/* We hold the little endian value in tmp, but then the
* shift is illegal. So we could keep a big endian value
* in tmp, like this:
*
* tmp = __swab32(*(p++));
* tmp |= ~0UL >> (32-offset);
*
* but this would decrease performance, so we change the
* shift:
*/
tmp = *(p++);
tmp |= __swab32(~0UL >> (32-offset));
if(size < 32)
goto found_first;
if(~tmp)
goto found_middle;
size -= 32;
result += 32;
}
while(size & ~31UL) {
if(~(tmp = *(p++)))
goto found_middle;
result += 32;
size -= 32;
}
if(!size)
return result;
tmp = *p;
found_first:
/* tmp is little endian, so we would have to swab the shift,
* see above. But then we have to swab tmp below for ffz, so
* we might as well do this here.
*/
return result + ffz(__swab32(tmp) | (~0UL << size));
found_middle:
return result + ffz(__swab32(tmp));
}
/* Bitmap functions for the minix filesystem. */
#define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)
#define minix_set_bit(nr,addr) set_bit(nr,addr)
#define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)
#define minix_test_bit(nr,addr) test_bit(nr,addr)
#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
/**
* hweightN - returns the hamming weight of a N-bit word
* @x: the word to weigh
*
* The Hamming Weight of a number is the total number of bits set in it.
*/
#define hweight32(x) generic_hweight32(x)
#define hweight16(x) generic_hweight16(x)
#define hweight8(x) generic_hweight8(x)
#endif /* __KERNEL__ */
#endif /* _H8300_BITOPS_H */