/*
* linux/include/asm-arm/arch-omap/time.h
*
* 32kHz timer definition
*
* Copyright (C) 2000 RidgeRun, Inc.
* Author: Greg Lonnon <glonnon@ridgerun.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#if !defined(__ASM_ARCH_OMAP_TIME_H)
#define __ASM_ARCH_OMAP_TIME_H
#include <linux/config.h>
#include <linux/delay.h>
#include <asm/system.h>
#include <asm/hardware.h>
#include <asm/io.h>
#include <asm/leds.h>
#include <asm/irq.h>
#include <asm/mach/irq.h>
#include <asm/arch/clocks.h>
#ifndef __instrument
#define __instrument
#define __noinstrument __attribute__ ((no_instrument_function))
#endif
typedef struct {
u32 cntl; /* CNTL_TIMER, R/W */
u32 load_tim; /* LOAD_TIM, W */
u32 read_tim; /* READ_TIM, R */
} mputimer_regs_t;
#define mputimer_base(n) \
((volatile mputimer_regs_t*)IO_ADDRESS(OMAP_MPUTIMER_BASE + \
(n)*OMAP_MPUTIMER_OFFSET))
static inline unsigned long timer32k_read(int reg) {
unsigned long val;
val = omap_readw(reg + OMAP_32kHz_TIMER_BASE);
return val;
}
static inline void timer32k_write(int reg,int val) {
omap_writew(val, reg + OMAP_32kHz_TIMER_BASE);
}
/*
* How long is the timer interval? 100 HZ, right...
* IRQ rate = (TVR + 1) / 32768 seconds
* TVR = 32768 * IRQ_RATE -1
* IRQ_RATE = 1/100
* TVR = 326
*/
#define TIMER32k_PERIOD 326
//#define TIMER32k_PERIOD 0x7ff
static inline void start_timer32k(void) {
timer32k_write(TIMER32k_CR,
TIMER32k_TSS | TIMER32k_TRB |
TIMER32k_INT | TIMER32k_ARL);
}
#ifdef CONFIG_MACH_OMAP_PERSEUS2
/*
* After programming PTV with 0 and setting the MPUTIM_CLOCK_ENABLE
* (external clock enable) bit, the timer count rate is 6.5 MHz (13
* MHZ input/2). !! The divider by 2 is undocumented !!
*/
#define MPUTICKS_PER_SEC (13000000/2)
#else
/*
* After programming PTV with 0, the timer count rate is 6 MHz.
* WARNING! this must be an even number, or machinecycles_to_usecs
* below will break.
*/
#define MPUTICKS_PER_SEC (12000000/2)
#endif
static int mputimer_started[3] = {0,0,0};
static inline void __noinstrument start_mputimer(int n,
unsigned long load_val)
{
volatile mputimer_regs_t* timer = mputimer_base(n);
mputimer_started[n] = 0;
timer->cntl = MPUTIM_CLOCK_ENABLE;
udelay(1);
timer->load_tim = load_val;
udelay(1);
timer->cntl = (MPUTIM_CLOCK_ENABLE | MPUTIM_AR | MPUTIM_ST);
mputimer_started[n] = 1;
}
static inline unsigned long __noinstrument
read_mputimer(int n)
{
volatile mputimer_regs_t* timer = mputimer_base(n);
return (mputimer_started[n] ? timer->read_tim : 0);
}
void __noinstrument start_mputimer1(unsigned long load_val)
{
start_mputimer(0, load_val);
}
void __noinstrument start_mputimer2(unsigned long load_val)
{
start_mputimer(1, load_val);
}
void __noinstrument start_mputimer3(unsigned long load_val)
{
start_mputimer(2, load_val);
}
unsigned long __noinstrument read_mputimer1(void)
{
return read_mputimer(0);
}
unsigned long __noinstrument read_mputimer2(void)
{
return read_mputimer(1);
}
unsigned long __noinstrument read_mputimer3(void)
{
return read_mputimer(2);
}
unsigned long __noinstrument do_getmachinecycles(void)
{
return 0 - read_mputimer(0);
}
unsigned long __noinstrument machinecycles_to_usecs(unsigned long mputicks)
{
/* Round up to nearest usec */
return ((mputicks * 1000) / (MPUTICKS_PER_SEC / 2 / 1000) + 1) >> 1;
}
/*
* This marks the time of the last system timer interrupt
* that was *processed by the ISR* (timer 2).
*/
static unsigned long systimer_mark;
static unsigned long omap1510_gettimeoffset(void)
{
/* Return elapsed usecs since last system timer ISR */
return machinecycles_to_usecs(do_getmachinecycles() - systimer_mark);
}
static irqreturn_t
omap1510_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
unsigned long now, ilatency;
/*
* Mark the time at which the timer interrupt ocurred using
* timer1. We need to remove interrupt latency, which we can
* retrieve from the current system timer2 counter. Both the
* offset timer1 and the system timer2 are counting at 6MHz,
* so we're ok.
*/
now = 0 - read_mputimer1();
ilatency = MPUTICKS_PER_SEC / 100 - read_mputimer2();
systimer_mark = now - ilatency;
do_leds();
do_timer(regs);
do_profile(regs);
return IRQ_HANDLED;
}
void __init time_init(void)
{
/* Since we don't call request_irq, we must init the structure */
gettimeoffset = omap1510_gettimeoffset;
timer_irq.handler = omap1510_timer_interrupt;
timer_irq.flags = SA_INTERRUPT;
#ifdef OMAP1510_USE_32KHZ_TIMER
timer32k_write(TIMER32k_CR, 0x0);
timer32k_write(TIMER32k_TVR,TIMER32k_PERIOD);
setup_irq(INT_OS_32kHz_TIMER, &timer_irq);
start_timer32k();
#else
setup_irq(INT_TIMER2, &timer_irq);
start_mputimer2(MPUTICKS_PER_SEC / 100 - 1);
#endif
}
#endif