File: [Development] / linux-2.6-xfs / fs / xfs / xfs_log_recover.c (download)
Revision 1.111, Wed Nov 6 01:47:56 1996 UTC (20 years, 11 months ago) by doucette
Branch: MAIN
Changes since 1.110: +7 -1
lines
Ifdef out for now the call to xfs_dir_shortform_validate_ondisk in
xlog_recover_do_inode_trans: there are transactions where we just log
the new inode core and not the fork data, since the inode is now free,
and these checks will fail if the inode is no longer a directory.
(bug 441063)
|
#ident "$Revision: 1.109 $"
#ifdef SIM
#define _KERNEL 1
#endif
#include <sys/types.h>
#include <sys/param.h>
#include <sys/sysmacros.h>
#include <sys/buf.h>
#include <sys/sema.h>
#include <sys/vnode.h>
#include <sys/debug.h>
#ifdef SIM
#undef _KERNEL
#include <bstring.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#else
#include <sys/systm.h>
#include <sys/conf.h>
#endif
#ifdef DEBUG
#include <limits.h>
#endif
#include <sys/errno.h>
#include <sys/kmem.h>
#include <sys/ktrace.h>
#include <sys/vfs.h>
#include <sys/uuid.h>
#include <stddef.h>
#include <sys/fs/xfs_macros.h>
#include <sys/fs/xfs_types.h>
#include <sys/fs/xfs_inum.h>
#include <sys/fs/xfs_log.h>
#include <sys/fs/xfs_ag.h> /* needed by xfs_sb.h */
#include <sys/fs/xfs_sb.h> /* depends on xfs_types.h, xfs_inum.h */
#include <sys/fs/xfs_trans.h>
#include <sys/fs/xfs_mount.h> /* depends on xfs_trans.h & xfs_sb.h */
#include <sys/fs/xfs_bmap_btree.h>
#include <sys/fs/xfs_alloc.h>
#include <sys/fs/xfs_attr_sf.h>
#include <sys/fs/xfs_dir_sf.h>
#include <sys/fs/xfs_dinode.h>
#include <sys/fs/xfs_imap.h>
#include <sys/fs/xfs_inode_item.h>
#include <sys/fs/xfs_inode.h>
#include <sys/fs/xfs_ialloc_btree.h>
#include <sys/fs/xfs_ialloc.h>
#include <sys/fs/xfs_error.h>
#include <sys/fs/xfs_log_priv.h> /* depends on all above */
#include <sys/fs/xfs_buf_item.h>
#include <sys/fs/xfs_alloc_btree.h>
#include <sys/fs/xfs_log_recover.h>
#include <sys/fs/xfs_extfree_item.h>
#include <sys/fs/xfs_trans_priv.h>
#include <sys/fs/xfs_bit.h>
#include <sys/fs/xfs_quota.h>
#include <sys/fs/xfs_dqblk.h>
#include <sys/fs/xfs_dquot.h>
#include <sys/fs/xfs_qm.h>
#ifdef SIM
#include "sim.h" /* must be last include file */
#endif
STATIC int xlog_find_zeroed(xlog_t *log, daddr_t *blk_no);
STATIC int xlog_clear_stale_blocks(xlog_t *log, xfs_lsn_t tail_lsn);
STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q,
xlog_recover_item_t *item);
#ifndef SIM
STATIC void xlog_recover_insert_item_frontq(xlog_recover_item_t **q,
xlog_recover_item_t *item);
#endif /* !SIM */
#if defined(DEBUG) && !defined(SIM)
STATIC void xlog_recover_check_summary(xlog_t *log);
STATIC void xlog_recover_check_ail(xfs_mount_t *mp, xfs_log_item_t *lip,
int gen);
#else
#define xlog_recover_check_summary(log)
#define xlog_recover_check_ail(mp, lip, gen)
#endif /* DEBUG && !SIM */
buf_t *
xlog_get_bp(int num_bblks)
{
buf_t *bp;
ASSERT(num_bblks > 0);
bp = ngetrbuf(BBTOB(num_bblks));
return bp;
} /* xlog_get_bp */
void
xlog_put_bp(buf_t *bp)
{
nfreerbuf(bp);
} /* xlog_get_bp */
/*
* nbblks should be uint, but oh well. Just want to catch that 32-bit length.
*/
int
xlog_bread(xlog_t *log,
daddr_t blk_no,
int nbblks,
buf_t *bp)
{
struct bdevsw *my_bdevsw;
ASSERT(nbblks > 0);
ASSERT(BBTOB(nbblks) <= bp->b_bufsize);
bp->b_blkno = log->l_logBBstart + blk_no;
bp->b_flags = B_READ|B_BUSY;
bp->b_bcount = BBTOB(nbblks);
bp->b_edev = log->l_dev;
#ifndef SIM
bp_dcache_wbinval(bp);
#endif
my_bdevsw = get_bdevsw(bp->b_edev);
ASSERT(my_bdevsw != NULL);
bdstrat(my_bdevsw, bp);
iowait(bp);
if (bp->b_flags & B_ERROR) {
cmn_err(CE_ALERT, "XFS: error reading log block #%d",
bp->b_blkno);
ASSERT(0);
return bp->b_error;
}
return 0;
} /* xlog_bread */
/*
* Write out the buffer at the given block for the given number of blocks.
* The buffer is kept locked across the write and is returned locked.
* This can only be used for synchronous log writes.
*/
int
xlog_bwrite(
xlog_t *log,
daddr_t blk_no,
int nbblks,
buf_t *bp)
{
ASSERT(nbblks > 0);
ASSERT(BBTOB(nbblks) <= bp->b_bufsize);
bp->b_blkno = log->l_logBBstart + blk_no;
bp->b_flags = B_BUSY | B_HOLD;
bp->b_bcount = BBTOB(nbblks);
bp->b_edev = log->l_dev;
(void) bwrite(bp);
if (bp->b_flags & B_ERROR) {
cmn_err(CE_ALERT, "XFS: error writing log block #%d",
bp->b_blkno);
ASSERT(0);
return bp->b_error;
}
return 0;
} /* xlog_bwrite */
/*
* This routine finds (to an approximation) the first block in the physical
* log which contains the given cycle. It uses a binary search algorithm.
* Note that the algorithm can not be perfect because the disk will not
* necessarily be perfect.
*/
STATIC int
xlog_find_cycle_start(xlog_t *log,
buf_t *bp,
daddr_t first_blk,
daddr_t *last_blk,
uint cycle)
{
daddr_t mid_blk;
uint mid_cycle;
int error;
mid_blk = BLK_AVG(first_blk, *last_blk);
while (mid_blk != first_blk && mid_blk != *last_blk) {
if (error = xlog_bread(log, mid_blk, 1, bp))
return error;
mid_cycle = GET_CYCLE(bp->b_dmaaddr);
if (mid_cycle == cycle) {
*last_blk = mid_blk;
/* last_half_cycle == mid_cycle */
} else {
first_blk = mid_blk;
/* first_half_cycle == mid_cycle */
}
mid_blk = BLK_AVG(first_blk, *last_blk);
}
ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
(mid_blk == *last_blk && mid_blk-1 == first_blk));
return 0;
} /* xlog_find_cycle_start */
/*
* Check that the range of blocks does not contain the cycle number
* given. The scan needs to occur from front to back and the ptr into the
* region must be updated since a later routine will need to perform another
* test. If the region is completely good, we end up returning the same
* last block number.
*
* Return -1 if we encounter no errors. This is an invalid block number
* since we don't ever expect logs to get this large.
*/
STATIC daddr_t
xlog_find_verify_cycle(caddr_t *bap, /* update ptr as we go */
daddr_t start_blk,
int nbblks,
uint stop_on_cycle_no)
{
int i;
uint cycle;
for (i=0; i<nbblks; i++) {
cycle = GET_CYCLE(*bap);
if (cycle != stop_on_cycle_no) {
(*bap) += BBSIZE;
} else {
return (start_blk+i);
}
}
return -1;
} /* xlog_find_verify_cycle */
/*
* Potentially backup over partial log record write.
*
* In the typical case, last_blk is the number of the block directly after
* a good log record. Therefore, we subtract one to get the block number
* of the last block in the given buffer. extra_bblks contains the number
* of blocks we would have read on a previous read. This happens when the
* last log record is split over the end of the physical log.
*
* extra_bblks is the number of blocks potentially verified on a previous
* call to this routine.
*/
STATIC int
xlog_find_verify_log_record(caddr_t ba, /* update ptr as we go */
daddr_t start_blk,
daddr_t *last_blk,
int extra_bblks)
{
xlog_rec_header_t *rhead;
daddr_t i;
ASSERT(start_blk != 0 || *last_blk != start_blk);
ba -= BBSIZE;
for (i=(*last_blk)-1; i>=0; i--) {
if (*(uint *)ba == XLOG_HEADER_MAGIC_NUM) {
break;
} else {
if (i < start_blk) {
/* legal log record not found */
xlog_warn("XFS: xlog_find_verify_log_record: need to backup");
ASSERT(0);
return XFS_ERROR(EIO);
}
ba -= BBSIZE;
}
}
/*
* We hit the beginning of the physical log & still no header. Return
* to caller. If caller can handle a return of -1, then this routine
* will be called again for the end of the physical log.
*/
if (i == -1)
return -1;
/*
* We may have found a log record header before we expected one.
* last_blk will be the 1st block # with a given cycle #. We may end
* up reading an entire log record. In this case, we don't want to
* reset last_blk. Only when last_blk points in the middle of a log
* record do we update last_blk.
*/
rhead = (xlog_rec_header_t *)ba;
if (*last_blk - i + extra_bblks != BTOBB(rhead->h_len)+1)
*last_blk = i;
return 0;
} /* xlog_find_verify_log_record */
/*
* Head is defined to be the point of the log where the next log write
* write could go. This means that incomplete LR writes at the end are
* eliminated when calculating the head. We aren't guaranteed that previous
* LR have complete transactions. We only know that a cycle number of
* current cycle number -1 won't be present in the log if we start writing
* from our current block number.
*
* last_blk contains the block number of the first block with a given
* cycle number.
*
* Also called from xfs_log_print.c
*
* Return: zero if normal, non-zero if error.
*/
int
xlog_find_head(xlog_t *log,
daddr_t *return_head_blk)
{
buf_t *bp, *big_bp;
daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
int num_scan_bblks;
uint first_half_cycle, last_half_cycle;
uint stop_on_cycle;
caddr_t ba;
int error, log_bbnum = log->l_logBBsize;
/* special case freshly mkfs'ed filesystem; return immediately */
if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
*return_head_blk = first_blk;
return 0;
} else if (error)
return error;
first_blk = 0; /* get cycle # of 1st block */
bp = xlog_get_bp(1);
if (error = xlog_bread(log, 0, 1, bp))
goto bp_err;
first_half_cycle = GET_CYCLE(bp->b_dmaaddr);
last_blk = head_blk = log_bbnum-1; /* get cycle # of last block */
if (error = xlog_bread(log, last_blk, 1, bp))
goto bp_err;
last_half_cycle = GET_CYCLE(bp->b_dmaaddr);
ASSERT(last_half_cycle != 0);
/*
* If the 1st half cycle number is equal to the last half cycle number,
* then the entire log is stamped with the same cycle number. In this
* case, head_blk can't be set to zero (which makes sense). The below
* math doesn't work out properly with head_blk equal to zero. Instead,
* we set it to log_bbnum which is an illegal block number, but this
* value makes the math correct. If head_blk doesn't changed through
* all the tests below, *head_blk is set to zero at the very end rather
* than log_bbnum. In a sense, log_bbnum and zero are the same block
* in a circular file.
*/
if (first_half_cycle == last_half_cycle) {
/*
* In this case we believe that the entire log should have cycle
* number last_half_cycle. We need to scan backwards from the
* end verifying that there are no holes still containing
* last_half_cycle - 1. If we find such a hole, then the start
* of that hole will be the new head. The simple case looks like
* x | x ... | x - 1 | x
* Another case that fits this picture would be
* x | x + 1 | x ... | x
* In this case the head really is somwhere at the end of the
* log, as one of the latest writes at the beginning was incomplete.
* One more case is
* x | x + 1 | x ... | x - 1 | x
* This is really the combination of the above two cases, and the
* head has to end up at the start of the x-1 hole at the end of
* the log.
*
* In the 256k log case, we will read from the beginning to the
* end of the log and search for cycle numbers equal to x-1. We
* don't worry about the x+1 blocks that we encounter, because
* we know that they cannot be the head since the log started with
* x.
*/
head_blk = log_bbnum;
stop_on_cycle = last_half_cycle - 1;
} else {
/*
* In this case we want to find the first block with cycle number
* matching last_half_cycle. We expect the log to be some
* variation on
* x + 1 ... | x ...
* The first block with cycle number x (last_half_cycle) will be
* where the new head belongs. First we do a binary search for
* the first occurrence of last_half_cycle. The binary search
* may not be totally accurate, so then we scan back from there
* looking for occurrences of last_half_cycle before us. If
* that backwards scan wraps around the beginning of the log,
* then we look for occurrences of last_half_cycle - 1 at the
* end of the log. The cases we're looking for look like
* x + 1 ... | x | x + 1 | x ...
* ^ binary search stopped here
* or
* x + 1 ... | x ... | x - 1 | x
* <---------> less than scan distance
*/
stop_on_cycle = last_half_cycle;
if (error = xlog_find_cycle_start(log, bp, first_blk,
&head_blk, last_half_cycle))
goto bp_err;
}
/*
* Now validate the answer. Scan back some number of maximum possible
* blocks and make sure each one has the expected cycle number. The
* maximum is determined by the total possible amount of buffering
* in the in-core log. The following number can be made tighter if
* we actually look at the block size of the filesystem.
*/
num_scan_bblks = BTOBB(XLOG_MAX_ICLOGS<<XLOG_MAX_RECORD_BSHIFT);
big_bp = xlog_get_bp(num_scan_bblks);
if (head_blk >= num_scan_bblks) {
/*
* We are guaranteed that the entire check can be performed
* in one buffer.
*/
start_blk = head_blk - num_scan_bblks;
if (error = xlog_bread(log, start_blk, num_scan_bblks, big_bp))
goto big_bp_err;
ba = big_bp->b_dmaaddr;
new_blk = xlog_find_verify_cycle(&ba, start_blk, num_scan_bblks,
stop_on_cycle);
if (new_blk != -1)
head_blk = new_blk;
} else { /* need to read 2 parts of log */
/*
* We are going to scan backwards in the log in two parts. First
* we scan the physical end of the log. In this part of the log,
* we are looking for blocks with cycle number last_half_cycle - 1.
* If we find one, then we know that the log starts there, as we've
* found a hole that didn't get written in going around the end
* of the physical log. The simple case for this is
* x + 1 ... | x ... | x - 1 | x
* <---------> less than scan distance
* If all of the blocks at the end of the log have cycle number
* last_half_cycle, then we check the blocks at the start of the
* log looking for occurrences of last_half_cycle. If we find one,
* then our current estimate for the location of the first
* occurrence of last_half_cycle is wrong and we move back to the
* hole we've found. This case looks like
* x + 1 ... | x | x + 1 | x ...
* ^ binary search stopped here
* Another case we need to handle that only occurs in 256k logs is
* x + 1 ... | x ... | x+1 | x ...
* ^ binary search stops here
* In a 256k log, the scan at the end of the log will see the x+1
* blocks. We need to skip past those since that is certainly not
* the head of the log. By searching for last_half_cycle-1 we
* accomplish that.
*/
start_blk = log_bbnum - num_scan_bblks + head_blk;
ASSERT(head_blk <= INT_MAX && (daddr_t) num_scan_bblks-head_blk >= 0);
if (error = xlog_bread(log, start_blk,
num_scan_bblks-(int)head_blk, big_bp))
goto big_bp_err;
ba = big_bp->b_dmaaddr;
new_blk= xlog_find_verify_cycle(&ba, start_blk,
num_scan_bblks-(int)head_blk, (stop_on_cycle - 1));
if (new_blk != -1) {
head_blk = new_blk;
goto bad_blk;
}
/*
* Scan beginning of log now. The last part of the physical log
* is good. This scan needs to verify that it doesn't find the
* last_half_cycle.
*/
start_blk = 0;
ASSERT(head_blk <= INT_MAX);
if (error = xlog_bread(log, start_blk, (int) head_blk, big_bp))
goto big_bp_err;
ba = big_bp->b_dmaaddr;
new_blk = xlog_find_verify_cycle(&ba, start_blk, (int) head_blk,
stop_on_cycle);
if (new_blk != -1)
head_blk = new_blk;
}
bad_blk:
/*
* Now we need to make sure head_blk is not pointing to a block in
* the middle of a log record.
*/
num_scan_bblks = BTOBB(XLOG_MAX_RECORD_BSIZE);
if (head_blk >= num_scan_bblks) {
start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
if (error = xlog_bread(log, start_blk, num_scan_bblks, big_bp))
goto big_bp_err;
/* start ptr at last block ptr before head_blk */
ba = big_bp->b_dmaaddr + XLOG_MAX_RECORD_BSIZE;
if ((error = xlog_find_verify_log_record(ba,
start_blk,
&head_blk,
0)) == -1) {
error = XFS_ERROR(EIO);
goto big_bp_err;
} else if (error)
goto big_bp_err;
} else {
start_blk = 0;
ASSERT(head_blk <= INT_MAX);
if (error = xlog_bread(log, start_blk, (int)head_blk, big_bp))
goto big_bp_err;
ba = big_bp->b_dmaaddr + BBTOB(head_blk);
if ((error = xlog_find_verify_log_record(ba,
start_blk,
&head_blk,
0)) == -1) {
/* We hit the beginning of the log during our search */
start_blk = log_bbnum - num_scan_bblks + head_blk;
new_blk = log_bbnum;
ASSERT(start_blk <= INT_MAX && (daddr_t) log_bbnum-start_blk >= 0);
if (error = xlog_bread(log, start_blk, log_bbnum - (int)start_blk,
big_bp))
goto big_bp_err;
ba = big_bp->b_dmaaddr + BBTOB(log_bbnum - start_blk);
ASSERT(head_blk <= INT_MAX);
if ((error = xlog_find_verify_log_record(ba,
start_blk,
&new_blk,
(int)head_blk)) == -1) {
error = XFS_ERROR(EIO);
goto big_bp_err;
} else if (error)
goto big_bp_err;
if (new_blk != log_bbnum)
head_blk = new_blk;
} else if (error)
goto big_bp_err;
}
xlog_put_bp(big_bp);
xlog_put_bp(bp);
if (head_blk == log_bbnum)
*return_head_blk = 0;
else
*return_head_blk = head_blk;
/*
* When returning here, we have a good block number. Bad block
* means that during a previous crash, we didn't have a clean break
* from cycle number N to cycle number N-1. In this case, we need
* to find the first block with cycle number N-1.
*/
return 0;
big_bp_err:
xlog_put_bp(big_bp);
bp_err:
xlog_put_bp(bp);
return error;
} /* xlog_find_head */
#ifndef _KERNEL
/*
* Start is defined to be the block pointing to the oldest valid log record.
* Used by log print code. Don't put in xfs_log_print.c since most of the
* bread routines live in this module only.
*/
int
xlog_print_find_oldest(xlog_t *log,
daddr_t *last_blk)
{
buf_t *bp;
daddr_t first_blk;
uint first_half_cycle, last_half_cycle;
int error;
if (xlog_find_zeroed(log, &first_blk))
return 0;
first_blk = 0; /* read first block */
bp = xlog_get_bp(1);
xlog_bread(log, 0, 1, bp);
first_half_cycle = GET_CYCLE(bp->b_dmaaddr);
*last_blk = log->l_logBBsize-1; /* read last block */
xlog_bread(log, *last_blk, 1, bp);
last_half_cycle = GET_CYCLE(bp->b_dmaaddr);
ASSERT(last_half_cycle != 0);
if (first_half_cycle == last_half_cycle) {/* all cycle nos are same */
*last_blk = 0;
} else { /* have 1st and last; look for middle cycle */
error = xlog_find_cycle_start(log, bp, first_blk,
last_blk, last_half_cycle);
if (error)
return error;
}
xlog_put_bp(bp);
return 0;
} /* xlog_print_find_oldest */
#endif /* _KERNEL */
/*
* Find the sync block number or the tail of the log.
*
* This will be the block number of the last record to have its
* associated buffers synced to disk. Every log record header has
* a sync lsn embedded in it. LSNs hold block numbers, so it is easy
* to get a sync block number. The only concern is to figure out which
* log record header to believe.
*
* The following algorithm uses the log record header with the largest
* lsn. The entire log record does not need to be valid. We only care
* that the header is valid.
*
* We could speed up search by using current head_blk buffer, but it is not
* available.
*/
int
xlog_find_tail(xlog_t *log,
daddr_t *head_blk,
daddr_t *tail_blk)
{
xlog_rec_header_t *rhead;
xlog_op_header_t *op_head;
buf_t *bp;
int error, i, found;
daddr_t umount_data_blk;
daddr_t after_umount_blk;
xfs_lsn_t tail_lsn;
found = error = 0;
/*
* Find previous log record
*/
if (error = xlog_find_head(log, head_blk))
return error;
bp = xlog_get_bp(1);
if (*head_blk == 0) { /* special case */
if (error = xlog_bread(log, 0, 1, bp))
goto bread_err;
if (GET_CYCLE(bp->b_dmaaddr) == 0) {
*tail_blk = 0;
/* leave all other log inited values alone */
goto exit;
}
}
/*
* Search backwards looking for log record header block
*/
ASSERT(*head_blk < INT_MAX);
for (i=(int)(*head_blk)-1; i>=0; i--) {
if (error = xlog_bread(log, i, 1, bp))
goto bread_err;
if (*(uint *)(bp->b_dmaaddr) == XLOG_HEADER_MAGIC_NUM) {
found = 1;
break;
}
}
/*
* If we haven't found the log record header block, start looking
* again from the end of the physical log. XXXmiken: There should be
* a check here to make sure we didn't search more than N blocks in
* the previous code.
*/
if (!found) {
for (i=log->l_logBBsize-1; i>=(int)(*head_blk); i--) {
if (error = xlog_bread(log, i, 1, bp))
goto bread_err;
if (*(uint*)(bp->b_dmaaddr) == XLOG_HEADER_MAGIC_NUM) {
found = 2;
break;
}
}
}
if (!found) {
xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
ASSERT(0);
return XFS_ERROR(EIO);
}
/* find blk_no of tail of log */
rhead = (xlog_rec_header_t *)bp->b_dmaaddr;
*tail_blk = BLOCK_LSN(rhead->h_tail_lsn);
/*
* Reset log values according to the state of the log when we
* crashed. In the case where head_blk == 0, we bump curr_cycle
* one because the next write starts a new cycle rather than
* continuing the cycle of the last good log record. At this
* point we have guaranteed that all partial log records have been
* accounted for. Therefore, we know that the last good log record
* written was complete and ended exactly on the end boundary
* of the physical log.
*/
log->l_prev_block = i;
log->l_curr_block = (int)*head_blk;
log->l_curr_cycle = rhead->h_cycle;
if (found == 2)
log->l_curr_cycle++;
log->l_tail_lsn = rhead->h_tail_lsn;
log->l_last_sync_lsn = rhead->h_lsn;
log->l_grant_reserve_cycle = log->l_curr_cycle;
log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
log->l_grant_write_cycle = log->l_curr_cycle;
log->l_grant_write_bytes = BBTOB(log->l_curr_block);
/*
* Look for unmount record. If we find it, then we know there
* was a clean unmount. Since 'i' could be the last block in
* the physical log, we convert to a log block before comparing
* to the head_blk.
*
* Save the current tail lsn to use to pass to
* xlog_clear_stale_blocks() below. We won't want to clear the
* unmount record if there is one, so we pass the lsn of the
* unmount record rather than the block after it.
*/
after_umount_blk = (i + 2) % log->l_logBBsize;
tail_lsn = log->l_tail_lsn;
if (*head_blk == after_umount_blk && rhead->h_num_logops == 1) {
umount_data_blk = (i + 1) % log->l_logBBsize;
if (error = xlog_bread(log, umount_data_blk, 1, bp)) {
goto bread_err;
}
op_head = (xlog_op_header_t *)bp->b_dmaaddr;
if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
/*
* Set tail and last sync so that newly written
* log records will point recovery to after the
* current unmount record.
*/
log->l_tail_lsn =
((long long)log->l_curr_cycle << 32) |
((uint)(after_umount_blk));
log->l_last_sync_lsn =
((long long)log->l_curr_cycle << 32) |
((uint)(after_umount_blk));
*tail_blk = after_umount_blk;
}
}
/*
* Make sure that there are no blocks in front of the head
* with the same cycle number as the head. This can happen
* because we allow multiple outstanding log writes concurrently,
* and the later writes might make it out before earlier ones.
*
* We use the lsn from before modifying it so that we'll never
* overwrite the unmount record after a clean unmount.
*/
error = xlog_clear_stale_blocks(log, tail_lsn);
bread_err:
exit:
xlog_put_bp(bp);
return error;
} /* xlog_find_tail */
/*
* Is the log zeroed at all?
*
* The last binary search should be changed to perform an X block read
* once X becomes small enough. You can then search linearly through
* the X blocks. This will cut down on the number of reads we need to do.
*
* If the log is partially zeroed, this routine will pass back the blkno
* of the first block with cycle number 0. It won't have a complete LR
* preceding it.
*
* Return:
* 0 => the log is completely written to
* -1 => use *blk_no as the first block of the log
* >0 => error has occurred
*/
STATIC int
xlog_find_zeroed(xlog_t *log,
daddr_t *blk_no)
{
buf_t *bp, *big_bp;
uint first_cycle, last_cycle;
daddr_t new_blk, last_blk, start_blk;
daddr_t num_scan_bblks;
caddr_t ba;
int error, log_bbnum = log->l_logBBsize;
error = 0;
/* check totally zeroed log */
bp = xlog_get_bp(1);
if (error = xlog_bread(log, 0, 1, bp))
goto bp_err;
first_cycle = GET_CYCLE(bp->b_dmaaddr);
if (first_cycle == 0) { /* completely zeroed log */
*blk_no = 0;
xlog_put_bp(bp);
return -1;
}
/* check partially zeroed log */
if (error = xlog_bread(log, log_bbnum-1, 1, bp))
goto bp_err;
last_cycle = GET_CYCLE(bp->b_dmaaddr);
if (last_cycle != 0) { /* log completely written to */
xlog_put_bp(bp);
return 0;
} else if (first_cycle != 1) {
/*
* Hopefully, this will catch the case where someone mkfs's
* over a log partition.
*/
xlog_warn("XFS: (xlog_find_zeroed): last cycle = 0; first cycle != 1");
ASSERT(first_cycle == 1);
return XFS_ERROR(EINVAL);
}
/* we have a partially zeroed log */
last_blk = log_bbnum-1;
if (error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))
goto bp_err;
/*
* Validate the answer. Because there is no way to guarantee that
* the entire log is made up of log records which are the same size,
* we scan over the defined maximum blocks. At this point, the maximum
* is not chosen to mean anything special. XXXmiken
*/
num_scan_bblks = BTOBB(XLOG_MAX_ICLOGS<<XLOG_MAX_RECORD_BSHIFT);
ASSERT(num_scan_bblks <= INT_MAX);
big_bp = xlog_get_bp((int)num_scan_bblks);
if (last_blk < num_scan_bblks)
num_scan_bblks = last_blk;
start_blk = last_blk - num_scan_bblks;
if (error = xlog_bread(log, start_blk, (int)num_scan_bblks, big_bp))
goto big_bp_err;
ba = big_bp->b_dmaaddr;
/*
* We search for any instances of cycle number 0 that occur before
* our current estimate of the head. What we're trying to detect is
* 1 ... | 0 | 1 | 0...
* ^ binary search ends here
*/
new_blk = xlog_find_verify_cycle(&ba, start_blk,
(int)num_scan_bblks, 0);
if (new_blk != -1)
last_blk = new_blk;
/*
* Potentially backup over partial log record write. We don't need
* to search the end of the log because we know it is zero.
*/
if (error = xlog_find_verify_log_record(ba, start_blk, &last_blk, 0))
goto big_bp_err;
*blk_no = last_blk;
big_bp_err:
xlog_put_bp(big_bp);
bp_err:
xlog_put_bp(bp);
if (error)
return error;
return -1;
} /* xlog_find_zeroed */
/*
* This is simply a subroutine used by xlog_clear_stale_blocks() below
* to initialize a buffer full of empty log record headers and write
* them into the log.
*/
STATIC int
xlog_write_log_records(
xlog_t *log,
int cycle,
int start_block,
int blocks,
int tail_cycle,
int tail_block,
buf_t *bp)
{
xlog_rec_header_t *recp;
int i;
int curr_block;
int error;
recp = (xlog_rec_header_t*)(bp->b_un.b_addr);
curr_block = start_block;
for (i = 0; i < blocks; i++) {
recp->h_magicno = XLOG_HEADER_MAGIC_NUM;
recp->h_cycle = cycle;
recp->h_version = 1;
recp->h_len = 0;
ASSIGN_ANY_LSN(recp->h_lsn, cycle, curr_block);
ASSIGN_ANY_LSN(recp->h_tail_lsn, tail_cycle, tail_block);
recp->h_chksum = 0;
recp->h_prev_block = 0; /* unused */
recp->h_num_logops = 0;
curr_block++;
recp = (xlog_rec_header_t*)(((char *)recp) + BBSIZE);
}
error = xlog_bwrite(log, start_block, blocks, bp);
return error;
}
/*
* This routine is called to blow away any incomplete log writes out
* in front of the log head. We do this so that we won't become confused
* if we come up, write only a little bit more, and then crash again.
* If we leave the partial log records out there, this situation could
* cause us to think those partial writes are valid blocks since they
* have the current cycle number. We get rid of them by overwriting them
* with empty log records with the old cycle number rather than the
* current one.
*
* The tail lsn is passed in rather than taken from
* the log so that we will not write over the unmount record after a
* clean unmount in a 512 block log. Doing so would leave the log without
* any valid log records in it until a new one was written. If we crashed
* during that time we would not be able to recover.
*/
STATIC int
xlog_clear_stale_blocks(
xlog_t *log,
xfs_lsn_t tail_lsn)
{
int tail_cycle;
int head_cycle;
int tail_block;
int head_block;
int tail_distance;
int max_distance;
int distance;
buf_t *bp;
int error;
tail_cycle = CYCLE_LSN(tail_lsn);
tail_block = BLOCK_LSN(tail_lsn);
head_cycle = log->l_curr_cycle;
head_block = log->l_curr_block;
/*
* Figure out the distance between the new head of the log
* and the tail. We want to write over any blocks beyond the
* head that we may have written just before the crash, but
* we don't want to overwrite the tail of the log.
*/
if (head_cycle == tail_cycle) {
/*
* The tail is behind the head in the physical log,
* so the distance from the head to the tail is the
* distance from the head to the end of the log plus
* the distance from the beginning of the log to the
* tail.
*/
ASSERT(head_block >= tail_block);
ASSERT(head_block < log->l_logBBsize);
tail_distance = tail_block +
(log->l_logBBsize - head_block);
} else {
/*
* The head is behind the tail in the physical log,
* so the distance from the head to the tail is just
* the tail block minus the head block.
*/
ASSERT(head_block < tail_block);
ASSERT(head_cycle == (tail_cycle + 1));
tail_distance = tail_block - head_block;
}
/*
* If the head is right up against the tail, we can't clear
* anything.
*/
if (tail_distance <= 0) {
ASSERT(tail_distance == 0);
return 0;
}
max_distance = BTOBB(XLOG_MAX_ICLOGS << XLOG_MAX_RECORD_BSHIFT);
/*
* Take the smaller of the maximum amount of outstanding I/O
* we could have and the distance to the tail to clear out.
* We take the smaller so that we don't overwrite the tail and
* we don't waste all day writing from the head to the tail
* for no reason.
*/
max_distance = MIN(max_distance, tail_distance);
bp = xlog_get_bp(max_distance);
if ((head_block + max_distance) <= log->l_logBBsize) {
/*
* We can stomp all the blocks we need to without
* wrapping around the end of the log. Just do it
* in a single write. Use the cycle number of the
* current cycle minus one so that the log will look like:
* n ... | n - 1 ...
*/
error = xlog_write_log_records(log, (head_cycle - 1),
head_block, max_distance, tail_cycle,
tail_block, bp);
if (error) {
xlog_put_bp(bp);
return error;
}
} else {
/*
* We need to wrap around the end of the physical log in
* order to clear all the blocks. Do it in two separate
* I/Os. The first write should be from the head to the
* end of the physical log, and it should use the current
* cycle number minus one just like above.
*/
distance = log->l_logBBsize - head_block;
error = xlog_write_log_records(log, (head_cycle - 1),
head_block, distance, tail_cycle,
tail_block, bp);
if (error) {
xlog_put_bp(bp);
return error;
}
/*
* Now write the blocks at the start of the physical log.
* This writes the remainder of the blocks we want to clear.
* It uses the current cycle number since we're now on the
* same cycle as the head so that we get:
* n ... n ... | n - 1 ...
* ^^^^^ blocks we're writing
*/
distance = max_distance - (log->l_logBBsize - head_block);
error = xlog_write_log_records(log, head_cycle, 0, distance,
tail_cycle, tail_block, bp);
if (error) {
xlog_put_bp(bp);
return error;
}
}
xlog_put_bp(bp);
return 0;
}
/******************************************************************************
*
* Log recover routines
*
******************************************************************************
*/
STATIC xlog_recover_t *
xlog_recover_find_tid(xlog_recover_t *q,
xlog_tid_t tid)
{
xlog_recover_t *p = q;
while (p != NULL) {
if (p->r_log_tid == tid)
break;
p = p->r_next;
}
return p;
} /* xlog_recover_find_tid */
STATIC void
xlog_recover_put_hashq(xlog_recover_t **q,
xlog_recover_t *trans)
{
trans->r_next = *q;
*q = trans;
} /* xlog_recover_put_hashq */
STATIC void
xlog_recover_add_item(xlog_recover_item_t **itemq)
{
xlog_recover_item_t *item;
item = kmem_zalloc(sizeof(xlog_recover_item_t), 0);
xlog_recover_insert_item_backq(itemq, item);
} /* xlog_recover_add_item */
STATIC int
xlog_recover_add_to_cont_trans(xlog_recover_t *trans,
caddr_t dp,
int len)
{
xlog_recover_item_t *item;
caddr_t ptr, old_ptr;
int old_len;
item = trans->r_itemq;
if (item == 0) {
/* finish copying rest of trans header */
xlog_recover_add_item(&trans->r_itemq);
ptr = (caddr_t)&trans->r_theader+sizeof(xfs_trans_header_t)-len;
bcopy(dp, ptr, len); /* s, d, l */
return 0;
}
item = item->ri_prev;
old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
old_len = item->ri_buf[item->ri_cnt-1].i_len;
ptr = kmem_realloc(old_ptr, len+old_len, 0);
bcopy(dp , &ptr[old_len], len); /* s, d, l */
item->ri_buf[item->ri_cnt-1].i_len += len;
item->ri_buf[item->ri_cnt-1].i_addr = ptr;
return 0;
} /* xlog_recover_add_to_cont_trans */
/* The next region to add is the start of a new region. It could be
* a whole region or it could be the first part of a new region. Because
* of this, the assumption here is that the type and size fields of all
* format structures fit into the first 32 bits of the structure.
*
* This works because all regions must be 32 bit aligned. Therefore, we
* either have both fields or we have neither field. In the case we have
* neither field, the data part of the region is zero length. We only have
* a log_op_header and can throw away the header since a new one will appear
* later. If we have at least 4 bytes, then we can determine how many regions
* will appear in the current log item.
*/
STATIC int
xlog_recover_add_to_trans(xlog_recover_t *trans,
caddr_t dp,
int len)
{
xfs_inode_log_format_t *in_f; /* any will do */
xlog_recover_item_t *item;
caddr_t ptr;
if (!len)
return 0;
ptr = kmem_zalloc(len, 0);
bcopy(dp, ptr, len);
in_f = (xfs_inode_log_format_t *)ptr;
item = trans->r_itemq;
if (item == 0) {
ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC);
if (len == sizeof(xfs_trans_header_t))
xlog_recover_add_item(&trans->r_itemq);
bcopy(dp, &trans->r_theader, len); /* s, d, l */
return 0;
}
if (item->ri_prev->ri_total != 0 &&
item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
xlog_recover_add_item(&trans->r_itemq);
}
item = trans->r_itemq;
item = item->ri_prev;
if (item->ri_total == 0) { /* first region to be added */
item->ri_total = in_f->ilf_size;
ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
item->ri_buf = kmem_zalloc((item->ri_total *
sizeof(xfs_log_iovec_t)), 0);
}
ASSERT(item->ri_total > item->ri_cnt);
/* Description region is ri_buf[0] */
item->ri_buf[item->ri_cnt].i_addr = ptr;
item->ri_buf[item->ri_cnt].i_len = len;
item->ri_cnt++;
return 0;
} /* xlog_recover_add_to_trans */
STATIC void
xlog_recover_new_tid(xlog_recover_t **q,
xlog_tid_t tid,
xfs_lsn_t lsn)
{
xlog_recover_t *trans;
trans = kmem_zalloc(sizeof(xlog_recover_t), 0);
trans->r_log_tid = tid;
trans->r_lsn = lsn;
xlog_recover_put_hashq(q, trans);
} /* xlog_recover_new_tid */
STATIC int
xlog_recover_unlink_tid(xlog_recover_t **q,
xlog_recover_t *trans)
{
xlog_recover_t *tp;
int found = 0;
ASSERT(trans != 0);
if (trans == *q) {
*q = (*q)->r_next;
} else {
tp = *q;
while (tp != 0) {
if (tp->r_next == trans) {
found = 1;
break;
}
tp = tp->r_next;
}
if (!found) {
xlog_warn(
"XFS: xlog_recover_unlink_tid: trans not found");
ASSERT(0);
return XFS_ERROR(EIO);
}
tp->r_next = tp->r_next->r_next;
}
return 0;
} /* xlog_recover_unlink_tid */
#ifdef SIM
STATIC void
xlog_recover_print_trans_head(xlog_recover_t *tr)
{
static char *trans_type[] = {
"",
"SETATTR",
"SETATTR_SIZE",
"INACTIVE",
"CREATE",
"CREATE_TRUNC",
"TRUNCATE_FILE",
"REMOVE",
"LINK",
"RENAME",
"MKDIR",
"RMDIR",
"SYMLINK",
"SET_DMATTRS",
"GROWFS",
"STRAT_WRITE",
"DIOSTRAT",
"WRITE_SYNC",
"WRITEID",
"ADDAFORK",
"ATTRINVAL",
"ATRUNCATE",
"ATTR_SET",
"ATTR_QM",
"ATTR_FLAG",
"CLEAR_AGI_BUCKET",
"QM_SBCHANGE",
"QM_QUOTAOFF",
"QM_DQALLOC",
"QM_SETQLIM",
"QM_DQCLUSTER",
"QM_QINOCREATE",
"QM_QUOTAOFF_END"
};
printf("TRANS: tid:0x%x type:%s #items:%d trans:0x%x q:0x%x\n",
tr->r_log_tid, trans_type[tr->r_theader.th_type],
tr->r_theader.th_num_items,
tr->r_theader.th_tid, tr->r_itemq);
} /* xlog_recover_print_trans_head */
void
xlog_recover_print_data(caddr_t p, int len)
{
extern int print_data;
if (print_data) {
uint *dp = (uint *)p;
int nums = len >> 2;
int j = 0;
while (j < nums) {
if ((j % 8) == 0)
printf("%2x ", j);
printf("%8x ", *dp);
dp++;
j++;
if ((j % 8) == 0)
printf("\n");
}
printf("\n");
}
} /* xlog_recover_print_data */
STATIC void
xlog_recover_print_buffer(xlog_recover_item_t *item)
{
xfs_agi_t *agi;
xfs_agf_t *agf;
xfs_buf_log_format_v1_t *old_f;
xfs_buf_log_format_t *f;
caddr_t p;
int len, num, i;
daddr_t blkno;
extern int print_buffer;
xfs_disk_dquot_t *ddq;
f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
old_f = (xfs_buf_log_format_v1_t *)f;
len = item->ri_buf[0].i_len;
printf(" ");
switch (f->blf_type) {
case XFS_LI_BUF: {
printf("BUF: ");
break;
}
case XFS_LI_6_1_BUF: {
printf("6.1 BUF: ");
break;
}
case XFS_LI_5_3_BUF:
printf("5.3 BUF: ");
break;
}
if (f->blf_type == XFS_LI_BUF) {
printf("#regs:%d start blkno:0x%llx len:%d bmap size:%d",
f->blf_size, f->blf_blkno, f->blf_len, f->blf_map_size);
blkno = (daddr_t)f->blf_blkno;
i = f->blf_flags;
} else {
printf("#regs:%d start blkno:0x%x len:%d bmap size:%d",
old_f->blf_size, old_f->blf_blkno, old_f->blf_len,
old_f->blf_map_size);
blkno = (daddr_t)old_f->blf_blkno;
i = old_f->blf_flags;
}
if (i)
printf(" flags: <%s%s%s%s>",
i & XFS_BLI_INODE_BUF ? "inode_buf " : "",
i & XFS_BLI_CANCEL ? "cancel " : "",
i & XFS_BLI_UDQUOT_BUF ? "udquot_buf " : "",
i & XFS_BLI_PDQUOT_BUF ? "pdquot_buf " : "");
printf("\n");
num = f->blf_size-1;
i = 1;
while (num-- > 0) {
p = item->ri_buf[i].i_addr;
len = item->ri_buf[i].i_len;
i++;
if (blkno == 0) { /* super block */
printf(" SUPER Block Buffer:\n");
if (!print_buffer) continue;
printf(" icount:%lld ifree:%lld ",
*(long long *)(p), *(long long *)(p+8));
printf("fdblks:%lld frext:%lld\n",
*(long long *)(p+16),
*(long long *)(p+24));
} else if (*(uint *)p == XFS_AGI_MAGIC) {
agi = (xfs_agi_t *)p;
printf(" AGI Buffer: (XAGI)\n");
if (!print_buffer) continue;
printf(" ver:%d ", agi->agi_versionnum);
printf("seq#:%d len:%d cnt:%d root:%d\n",
agi->agi_seqno, agi->agi_length,
agi->agi_count, agi->agi_root);
printf(" level:%d free#:0x%x newino:0x%x\n",
agi->agi_level, agi->agi_freecount,
agi->agi_newino);
} else if (*(uint *)p == XFS_AGF_MAGIC) {
agf = (xfs_agf_t *)p;
printf(" AGF Buffer: (XAGF)\n");
if (!print_buffer) continue;
printf(" ver:%d seq#:%d len:%d \n",
agf->agf_versionnum, agf->agf_seqno,
agf->agf_length);
printf(" root BNO:%d CNT:%d\n",
agf->agf_roots[XFS_BTNUM_BNOi],
agf->agf_roots[XFS_BTNUM_CNTi]);
printf(" level BNO:%d CNT:%d\n",
agf->agf_levels[XFS_BTNUM_BNOi],
agf->agf_levels[XFS_BTNUM_CNTi]);
printf(" 1st:%d last:%d cnt:%d freeblks:%d longest:%d\n",
agf->agf_flfirst, agf->agf_fllast, agf->agf_flcount,
agf->agf_freeblks, agf->agf_longest);
} else if (*(uint *)p == XFS_DQUOT_MAGIC) {
ddq = (xfs_disk_dquot_t *)p;
printf(" DQUOT Buffer:\n");
if (!print_buffer) continue;
printf(" UIDs 0x%x-0x%x\n",
ddq->d_id,
ddq->d_id + (BBTOB(f->blf_len) / sizeof(xfs_dqblk_t)) - 1);
} else {
printf(" BUF DATA\n");
if (!print_buffer) continue;
xlog_recover_print_data(p, len);
}
}
} /* xlog_recover_print_buffer */
STATIC void
xlog_recover_print_quotaoff(xlog_recover_item_t *item)
{
xfs_qoff_logformat_t *qoff_f;
char str[20];
qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
ASSERT(qoff_f);
if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
strcpy(str, "USER QUOTA");
if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
strcat(str, "PROJ QUOTA");
printf("\tQUOTAOFF: #regs:%d type:%s\n",
qoff_f->qf_size, str);
}
STATIC void
xlog_recover_print_dquot(xlog_recover_item_t *item)
{
xfs_dq_logformat_t *f;
struct xfs_disk_dquot *d;
extern int print_quota;
f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
ASSERT(f);
ASSERT(f->qlf_len == 1);
d = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
printf("\tDQUOT: #regs:%d blkno:%lld boffset:%u id: %d\n",
f->qlf_size, f->qlf_blkno, f->qlf_boffset, f->qlf_id);
if (!print_quota)
return;
printf("\t\tmagic 0x%x\tversion 0x%x\tID 0x%x (%d)\t\n",
d->d_magic, d->d_version, d->d_id, d->d_id);
printf("\t\tblk_hard 0x%x\tblk_soft 0x%x\tino_hard 0x%x"
"\tino_soft 0x%x\n",
(int)d->d_blk_hardlimit, (int)d->d_blk_softlimit,
(int)d->d_ino_hardlimit, (int)d->d_ino_softlimit);
printf("\t\tbcount 0x%x (%d) icount 0x%x (%d)\n",
(int)d->d_bcount, (int)d->d_bcount,
(int)d->d_icount, (int)d->d_icount);
printf("\t\tbtimer 0x%x itimer 0x%x \n",
(int)d->d_btimer, (int)d->d_itimer);
}
STATIC void
xlog_recover_print_inode_core(xfs_dinode_core_t *di)
{
extern int print_inode;
printf(" CORE inode:\n");
if (!print_inode)
return;
printf(" magic:%c%c mode:0x%x ver:%d format:%d onlink:%d\n",
((char *)&di->di_magic)[0], ((char *)&di->di_magic)[1], di->di_mode,
di->di_version, di->di_format, di->di_onlink);
printf(" uid:%d gid:%d nlink:%d projid:%d\n",
di->di_uid, di->di_gid, di->di_nlink, (uint)di->di_projid);
printf(" atime:%d mtime:%d ctime:%d\n",
di->di_atime.t_sec, di->di_mtime.t_sec, di->di_ctime.t_sec);
printf(" size:0x%llx nblks:0x%llx exsize:%d nextents:%d anextents:%d\n",
di->di_size, di->di_nblocks, di->di_extsize, di->di_nextents,
(int)di->di_anextents);
printf(" forkoff:%d dmevmask:0x%x dmstate:%d flags:0x%x gen:%d\n",
(int)di->di_forkoff, di->di_dmevmask, (int)di->di_dmstate, (int)di->di_flags,
di->di_gen);
} /* xlog_recover_print_inode_core */
STATIC void
xlog_recover_print_inode(xlog_recover_item_t *item)
{
xfs_inode_log_format_t *f;
int attr_index;
extern int print_inode, print_data;
f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
ASSERT(item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t));
printf(" INODE: #regs:%d ino:0x%llx flags:0x%x dsize:%d\n",
f->ilf_size, f->ilf_ino, f->ilf_fields, f->ilf_dsize);
/* core inode comes 2nd */
ASSERT(item->ri_buf[1].i_len == sizeof(xfs_dinode_core_t));
xlog_recover_print_inode_core((xfs_dinode_core_t *)item->ri_buf[1].i_addr);
/* does anything come next */
switch (f->ilf_fields & (XFS_ILOG_DFORK | XFS_ILOG_DEV | XFS_ILOG_UUID)) {
case XFS_ILOG_DEXT: {
ASSERT(f->ilf_size <= 4);
printf(" DATA FORK EXTENTS inode data:\n");
if (print_inode && print_data) {
xlog_recover_print_data(item->ri_buf[2].i_addr,
item->ri_buf[2].i_len);
}
break;
}
case XFS_ILOG_DBROOT: {
ASSERT(f->ilf_size == 3);
printf(" DATA FORK BTREE inode data:\n");
if (print_inode && print_data) {
xlog_recover_print_data(item->ri_buf[2].i_addr,
item->ri_buf[2].i_len);
}
break;
}
case XFS_ILOG_DDATA: {
ASSERT(f->ilf_size == 3);
printf(" DATA FORK LOCAL inode data:\n");
if (print_inode && print_data) {
xlog_recover_print_data(item->ri_buf[2].i_addr,
item->ri_buf[2].i_len);
}
break;
}
case XFS_ILOG_DEV: {
ASSERT(f->ilf_size == 2);
printf(" DEV inode: no extra region\n");
break;
}
case XFS_ILOG_UUID: {
ASSERT(f->ilf_size == 2);
printf(" UUID inode: no extra region\n");
break;
}
case 0: {
ASSERT(f->ilf_size == 2);
break;
}
default: {
xlog_panic("xlog_print_trans_inode: illegal inode type");
}
}
if (f->ilf_fields & XFS_ILOG_AFORK) {
if (f->ilf_fields & XFS_ILOG_DFORK) {
attr_index = 3;
} else {
attr_index = 2;
}
switch (f->ilf_fields & XFS_ILOG_AFORK) {
case XFS_ILOG_AEXT: {
ASSERT(f->ilf_size <= 4);
printf(" ATTR FORK EXTENTS inode data:\n");
if (print_inode && print_data) {
xlog_recover_print_data(
item->ri_buf[attr_index].i_addr,
item->ri_buf[attr_index].i_len);
}
break;
}
case XFS_ILOG_ABROOT: {
ASSERT(f->ilf_size <= 4);
printf(" ATTR FORK BTREE inode data:\n");
if (print_inode && print_data) {
xlog_recover_print_data(
item->ri_buf[attr_index].i_addr,
item->ri_buf[attr_index].i_len);
}
break;
}
case XFS_ILOG_ADATA: {
ASSERT(f->ilf_size <= 4);
printf(" ATTR FORK LOCAL inode data:\n");
if (print_inode && print_data) {
xlog_recover_print_data(
item->ri_buf[attr_index].i_addr,
item->ri_buf[attr_index].i_len);
}
break;
}
default: {
xlog_panic("xlog_print_trans_inode: illegal inode log flag");
}
}
}
} /* xlog_recover_print_inode */
STATIC void
xlog_recover_print_efd(xlog_recover_item_t *item)
{
xfs_efd_log_format_t *f;
xfs_extent_t *ex;
int i;
f = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
/*
* An xfs_efd_log_format structure contains a variable length array
* as the last field. Each element is of size xfs_extent_t.
*/
ASSERT(item->ri_buf[0].i_len == sizeof(xfs_efd_log_format_t)+sizeof(xfs_extent_t)*(f->efd_nextents-1));
printf(" EFD: #regs: %d num_extents: %d id: 0x%llx\n",
f->efd_size, f->efd_nextents, f->efd_efi_id);
ex = f->efd_extents;
printf(" ");
for (i=0; i< f->efd_size; i++) {
printf("(s: 0x%llx, l: %d) ", ex->ext_start, ex->ext_len);
if (i % 4 == 3) printf("\n");
ex++;
}
if (i % 4 != 0) printf("\n");
return;
} /* xlog_recover_print_efd */
STATIC void
xlog_recover_print_efi(xlog_recover_item_t *item)
{
xfs_efi_log_format_t *f;
xfs_extent_t *ex;
int i;
f = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
/*
* An xfs_efi_log_format structure contains a variable length array
* as the last field. Each element is of size xfs_extent_t.
*/
ASSERT(item->ri_buf[0].i_len == sizeof(xfs_efi_log_format_t)+sizeof(xfs_extent_t)*(f->efi_nextents-1));
printf(" EFI: #regs:%d num_extents:%d id:0x%llx\n",
f->efi_size, f->efi_nextents, f->efi_id);
ex = f->efi_extents;
printf(" ");
for (i=0; i< f->efi_size; i++) {
printf("(s: 0x%llx, l: %d) ", ex->ext_start, ex->ext_len);
if (i % 4 == 3) printf("\n");
ex++;
}
if (i % 4 != 0) printf("\n");
return;
} /* xlog_recover_print_efi */
#endif /* SIM */
STATIC void
xlog_recover_print_item(xlog_recover_item_t *item)
{
int i;
switch (ITEM_TYPE(item)) {
case XFS_LI_BUF: {
printf("BUF");
break;
}
case XFS_LI_INODE: {
printf("INO");
break;
}
case XFS_LI_EFD: {
printf("EFD");
break;
}
case XFS_LI_EFI: {
printf("EFI");
break;
}
case XFS_LI_6_1_BUF: {
printf("6.1 BUF");
break;
}
case XFS_LI_5_3_BUF: {
printf("5.3 BUF");
break;
}
case XFS_LI_6_1_INODE: {
printf("6.1 INO");
break;
}
case XFS_LI_5_3_INODE: {
printf("5.3 INO");
break;
}
case XFS_LI_DQUOT: {
printf("DQ ");
break;
}
case XFS_LI_QUOTAOFF: {
printf("QOFF");
break;
}
default: {
cmn_err(CE_PANIC, "xlog_recover_print_item: illegal type\n");
break;
}
}
/* type isn't filled in yet
printf("ITEM: type: %d cnt: %d total: %d ",
item->ri_type, item->ri_cnt, item->ri_total);
*/
printf(": cnt:%d total:%d ", item->ri_cnt, item->ri_total);
for (i=0; i<item->ri_cnt; i++) {
printf("a:0x%x len:%d ",
item->ri_buf[i].i_addr, item->ri_buf[i].i_len);
}
printf("\n");
#ifdef SIM
switch (ITEM_TYPE(item)) {
case XFS_LI_BUF:
case XFS_LI_6_1_BUF:
case XFS_LI_5_3_BUF: {
xlog_recover_print_buffer(item);
break;
}
case XFS_LI_INODE:
case XFS_LI_6_1_INODE:
case XFS_LI_5_3_INODE: {
xlog_recover_print_inode(item);
break;
}
case XFS_LI_EFD: {
xlog_recover_print_efd(item);
break;
}
case XFS_LI_EFI: {
xlog_recover_print_efi(item);
break;
}
case XFS_LI_DQUOT: {
xlog_recover_print_dquot(item);
break;
}
case XFS_LI_QUOTAOFF: {
xlog_recover_print_quotaoff(item);
break;
}
default: {
printf("xlog_recover_print_item: illegal type\n");
break;
}
}
#endif
} /* xlog_recover_print_item */
/*ARGSUSED*/
STATIC void
xlog_recover_print_trans(xlog_recover_t *trans,
xlog_recover_item_t *itemq,
int print)
{
xlog_recover_item_t *first_item, *item;
if (print < 3)
return;
printf("======================================\n");
#ifdef SIM
xlog_recover_print_trans_head(trans);
#endif
item = first_item = itemq;
do {
xlog_recover_print_item(item);
item = item->ri_next;
} while (first_item != item);
} /* xlog_recover_print_trans */
STATIC void
xlog_recover_insert_item_backq(xlog_recover_item_t **q,
xlog_recover_item_t *item)
{
if (*q == 0) {
item->ri_prev = item->ri_next = item;
*q = item;
} else {
item->ri_next = *q;
item->ri_prev = (*q)->ri_prev;
(*q)->ri_prev = item;
item->ri_prev->ri_next = item;
}
} /* xlog_recover_insert_item_backq */
#ifndef SIM
STATIC void
xlog_recover_insert_item_frontq(xlog_recover_item_t **q,
xlog_recover_item_t *item)
{
xlog_recover_insert_item_backq(q, item);
*q = item;
} /* xlog_recover_insert_item_frontq */
/*ARGSUSED*/
STATIC int
xlog_recover_reorder_trans(xlog_t *log,
xlog_recover_t *trans)
{
xlog_recover_item_t *first_item, *itemq, *itemq_next;
first_item = itemq = trans->r_itemq;
trans->r_itemq = NULL;
do {
itemq_next = itemq->ri_next;
switch (ITEM_TYPE(itemq)) {
case XFS_LI_BUF:
case XFS_LI_6_1_BUF:
case XFS_LI_5_3_BUF: {
xlog_recover_insert_item_frontq(&trans->r_itemq, itemq);
break;
}
case XFS_LI_INODE:
case XFS_LI_6_1_INODE:
case XFS_LI_5_3_INODE:
case XFS_LI_DQUOT:
case XFS_LI_QUOTAOFF:
case XFS_LI_EFD:
case XFS_LI_EFI: {
xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
break;
}
default: {
xlog_warn(
"XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
ASSERT(0);
return XFS_ERROR(EIO);
}
}
itemq = itemq_next;
} while (first_item != itemq);
return 0;
} /* xlog_recover_reorder_trans */
/*
* Build up the table of buf cancel records so that we don't replay
* cancelled data in the second pass. For buffer records that are
* not cancel records, there is nothing to do here so we just return.
*
* If we get a cancel record which is already in the table, this indicates
* that the buffer was cancelled multiple times. In order to ensure
* that during pass 2 we keep the record in the table until we reach its
* last occurrence in the log, we keep a reference count in the cancel
* record in the table to tell us how many times we expect to see this
* record during the second pass.
*/
STATIC void
xlog_recover_do_buffer_pass1(xlog_t *log,
xfs_buf_log_format_t *buf_f)
{
xfs_buf_cancel_t *bcp;
xfs_buf_cancel_t *nextp;
xfs_buf_cancel_t *prevp;
xfs_buf_cancel_t **bucket;
xfs_buf_log_format_v1_t *obuf_f;
daddr_t blkno;
uint len;
ushort flags;
switch (buf_f->blf_type) {
case XFS_LI_BUF:
blkno = buf_f->blf_blkno;
len = buf_f->blf_len;
flags = buf_f->blf_flags;
break;
case XFS_LI_6_1_BUF:
case XFS_LI_5_3_BUF:
obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
blkno = (daddr_t) obuf_f->blf_blkno;
len = obuf_f->blf_len;
flags = obuf_f->blf_flags;
break;
}
/*
* If this isn't a cancel buffer item, then just return.
*/
if (!(flags & XFS_BLI_CANCEL)) {
return;
}
/*
* Insert an xfs_buf_cancel record into the hash table of
* them. If there is already an identical record, bump
* its reference count.
*/
bucket = &(log->l_buf_cancel_table[blkno % XLOG_BC_TABLE_SIZE]);
/*
* If the hash bucket is empty then just insert a new record into
* the bucket.
*/
if (*bucket == NULL) {
bcp = (xfs_buf_cancel_t*)kmem_alloc(sizeof(xfs_buf_cancel_t),
KM_SLEEP);
bcp->bc_blkno = blkno;
bcp->bc_len = len;
bcp->bc_refcount = 1;
bcp->bc_next = NULL;
*bucket = bcp;
return;
}
/*
* The hash bucket is not empty, so search for duplicates of our
* record. If we find one them just bump its refcount. If not
* then add us at the end of the list.
*/
prevp = NULL;
nextp = *bucket;
while (nextp != NULL) {
if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
nextp->bc_refcount++;
return;
}
prevp = nextp;
nextp = nextp->bc_next;
}
ASSERT(prevp != NULL);
bcp = (xfs_buf_cancel_t*)kmem_alloc(sizeof(xfs_buf_cancel_t),
KM_SLEEP);
bcp->bc_blkno = blkno;
bcp->bc_len = len;
bcp->bc_refcount = 1;
bcp->bc_next = NULL;
prevp->bc_next = bcp;
return;
}
/*
* Check to see whether the buffer being recovered has a corresponding
* entry in the buffer cancel record table. If it does then return 1
* so that it will be cancelled, otherwise return 0. If the buffer is
* actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
* the refcount on the entry in the table and remove it from the table
* if this is the last reference.
*
* We remove the cancel record from the table when we encounter its
* last occurrence in the log so that if the same buffer is re-used
* again after its last cancellation we actually replay the changes
* made at that point.
*/
STATIC int
xlog_recover_do_buffer_pass2(xlog_t *log,
xfs_buf_log_format_t *buf_f)
{
xfs_buf_cancel_t *bcp;
xfs_buf_cancel_t *prevp;
xfs_buf_cancel_t **bucket;
xfs_buf_log_format_v1_t *obuf_f;
daddr_t blkno;
ushort flags;
uint len;
switch (buf_f->blf_type) {
case XFS_LI_BUF:
blkno = buf_f->blf_blkno;
flags = buf_f->blf_flags;
len = buf_f->blf_len;
break;
case XFS_LI_6_1_BUF:
case XFS_LI_5_3_BUF:
obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
blkno = (daddr_t) obuf_f->blf_blkno;
flags = obuf_f->blf_flags;
len = (daddr_t) obuf_f->blf_len;
break;
}
if (log->l_buf_cancel_table == NULL) {
/*
* There is nothing in the table built in pass one,
* so this buffer must not be cancelled.
*/
ASSERT(!(flags & XFS_BLI_CANCEL));
return 0;
}
bucket = &(log->l_buf_cancel_table[blkno % XLOG_BC_TABLE_SIZE]);
bcp = *bucket;
if (bcp == NULL) {
/*
* There is no corresponding entry in the table built
* in pass one, so this buffer has not been cancelled.
*/
ASSERT(!(flags & XFS_BLI_CANCEL));
return 0;
}
/*
* Search for an entry in the buffer cancel table that
* matches our buffer.
*/
prevp = NULL;
while (bcp != NULL) {
if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
/*
* We've go a match, so return 1 so that the
* recovery of this buffer is cancelled.
* If this buffer is actually a buffer cancel
* log item, then decrement the refcount on the
* one in the table and remove it if this is the
* last reference.
*/
if (flags & XFS_BLI_CANCEL) {
bcp->bc_refcount--;
if (bcp->bc_refcount == 0) {
if (prevp == NULL) {
*bucket = bcp->bc_next;
} else {
prevp->bc_next = bcp->bc_next;
}
kmem_free(bcp,
sizeof(xfs_buf_cancel_t));
}
}
return 1;
}
prevp = bcp;
bcp = bcp->bc_next;
}
/*
* We didn't find a corresponding entry in the table, so
* return 0 so that the buffer is NOT cancelled.
*/
ASSERT(!(flags & XFS_BLI_CANCEL));
return 0;
}
/*
* Perform recovery for a buffer full of inodes. In these buffers,
* the only data which should be recovered is that which corresponds
* to the di_next_unlinked pointers in the on disk inode structures.
* The rest of the data for the inodes is always logged through the
* inodes themselves rather than the inode buffer and is recovered
* in xlog_recover_do_inode_trans().
*
* The only time when buffers full of inodes are fully recovered is
* when the buffer is full of newly allocated inodes. In this case
* the buffer will not be marked as an inode buffer and so will be
* sent to xlog_recover_do_reg_buffer() below during recovery.
*/
STATIC void
xlog_recover_do_inode_buffer(xfs_mount_t *mp,
xlog_recover_item_t *item,
buf_t *bp,
xfs_buf_log_format_t *buf_f)
{
int i;
int item_index;
int bit;
int nbits;
int reg_buf_offset;
int reg_buf_bytes;
int next_unlinked_offset;
int inodes_per_buf;
xfs_agino_t *logged_nextp;
xfs_agino_t *buffer_nextp;
xfs_buf_log_format_v1_t *obuf_f;
unsigned int *data_map;
unsigned int map_size;
switch (buf_f->blf_type) {
case XFS_LI_BUF:
data_map = buf_f->blf_data_map;
map_size = buf_f->blf_map_size;
break;
case XFS_LI_6_1_BUF:
case XFS_LI_5_3_BUF:
obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
data_map = obuf_f->blf_data_map;
map_size = obuf_f->blf_map_size;
break;
}
/*
* Set the variables corresponding to the current region to
* 0 so that we'll initialize them on the first pass through
* the loop.
*/
reg_buf_offset = 0;
reg_buf_bytes = 0;
bit = 0;
nbits = 0;
item_index = 0;
inodes_per_buf = bp->b_bcount >> mp->m_sb.sb_inodelog;
for (i = 0; i < inodes_per_buf; i++) {
next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
offsetof(xfs_dinode_t, di_next_unlinked);
while (next_unlinked_offset >=
(reg_buf_offset + reg_buf_bytes)) {
/*
* The next di_next_unlinked field is beyond
* the current logged region. Find the next
* logged region that contains or is beyond
* the current di_next_unlinked field.
*/
bit += nbits;
bit = xfs_buf_item_next_bit(data_map, map_size, bit);
/*
* If there are no more logged regions in the
* buffer, then we're done.
*/
if (bit == -1) {
return;
}
nbits = xfs_buf_item_contig_bits(data_map, map_size,
bit);
reg_buf_offset = bit << XFS_BLI_SHIFT;
reg_buf_bytes = nbits << XFS_BLI_SHIFT;
item_index++;
}
/*
* If the current logged region starts after the current
* di_next_unlinked field, then move on to the next
* di_next_unlinked field.
*/
if (next_unlinked_offset < reg_buf_offset) {
continue;
}
ASSERT(item->ri_buf[item_index].i_addr != NULL);
ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
ASSERT((reg_buf_offset + reg_buf_bytes) <= bp->b_bcount);
/*
* The current logged region contains a copy of the
* current di_next_unlinked field. Extract its value
* and copy it to the buffer copy.
*/
logged_nextp = (xfs_agino_t *)
((char *)(item->ri_buf[item_index].i_addr) +
(next_unlinked_offset - reg_buf_offset));
#ifndef NO_XFS_PARANOIA
if (*logged_nextp == 0)
cmn_err(CE_PANIC,
"XFS trying to replay bad (0) inode di_next_unlinked field\n");
#endif
buffer_nextp = (xfs_agino_t *)((char *)(bp->b_un.b_addr) +
next_unlinked_offset);
*buffer_nextp = *logged_nextp;
}
} /* xlog_recover_do_inode_buffer */
/*
* Perform a 'normal' buffer recovery. Each logged region of the
* buffer should be copied over the corresponding region in the
* given buffer. The bitmap in the buf log format structure indicates
* where to place the logged data.
*/
/*ARGSUSED*/
STATIC void
xlog_recover_do_reg_buffer(xfs_mount_t *mp,
xlog_recover_item_t *item,
buf_t *bp,
xfs_buf_log_format_t *buf_f)
{
int i;
int bit;
int nbits;
xfs_buf_log_format_v1_t *obuf_f;
unsigned int *data_map;
unsigned int map_size;
int error;
switch (buf_f->blf_type) {
case XFS_LI_BUF:
data_map = buf_f->blf_data_map;
map_size = buf_f->blf_map_size;
break;
case XFS_LI_6_1_BUF:
case XFS_LI_5_3_BUF:
obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
data_map = obuf_f->blf_data_map;
map_size = obuf_f->blf_map_size;
break;
}
bit = 0;
i = 1; /* 0 is the buf format structure */
while (1) {
bit = xfs_buf_item_next_bit(data_map, map_size, bit);
if (bit == -1)
break;
nbits = xfs_buf_item_contig_bits(data_map, map_size, bit);
ASSERT(item->ri_buf[i].i_addr != 0);
ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
ASSERT(bp->b_bcount >=
((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
/*
* Do a sanity check if this is a dquot buffer. Just checking the
* first dquot in the buffer should do. XXXThis is
* probably a good thing to do for other buf types also.
*/
error = 0;
if (buf_f->blf_flags & (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF)) {
error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
item->ri_buf[i].i_addr,
-1, 0, XFS_QMOPT_DOWARN,
"dquot_buf_recover");
}
if (!error)
bcopy(item->ri_buf[i].i_addr, /* source */
bp->b_un.b_addr+((uint)bit << XFS_BLI_SHIFT), /* dest */
nbits<<XFS_BLI_SHIFT); /* length */
i++;
bit += nbits;
}
/* Shouldn't be any more regions */
ASSERT(i == item->ri_total);
} /* xlog_recover_do_reg_buffer */
/*
* Perform a dquot buffer recovery.
* Simple algorithm: if we have found a QUOTAOFF logitem of the same type
* (ie. USR or PRJ), then just toss this buffer away; don't recover it.
* Else, treat it as a regular buffer and do recovery.
*/
STATIC void
xlog_recover_do_dquot_buffer(
xfs_mount_t *mp,
xlog_t *log,
xlog_recover_item_t *item,
buf_t *bp,
xfs_buf_log_format_t *buf_f)
{
uint type;
/*
* Non-root filesystems are required to send in quota flags
* at mount time. However, we may also get QUOTA_MAYBE flag set,
* indicating that quota should stay on (and stay consistent),
* if it already is. (so, we have to replay dquot log records
* when MAYBE flag's set).
*/
if (mp->m_qflags == 0 &&
mp->m_dev != rootdev) {
return;
}
type = 0;
if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
type |= XFS_DQ_USER;
if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
type |= XFS_DQ_PROJ;
/*
* This type of quotas was turned off, so ignore this buffer
*/
if (log->l_quotaoffs_flag & type)
return;
xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
}
/*
* This routine replays a modification made to a buffer at runtime.
* There are actually two types of buffer, regular and inode, which
* are handled differently. Inode buffers are handled differently
* in that we only recover a specific set of data from them, namely
* the inode di_next_unlinked fields. This is because all other inode
* data is actually logged via inode records and any data we replay
* here which overlaps that may be stale.
*
* When meta-data buffers are freed at run time we log a buffer item
* with the XFS_BLI_CANCEL bit set to indicate that previous copies
* of the buffer in the log should not be replayed at recovery time.
* This is so that if the blocks covered by the buffer are reused for
* file data before we crash we don't end up replaying old, freed
* meta-data into a user's file.
*
* To handle the cancellation of buffer log items, we make two passes
* over the log during recovery. During the first we build a table of
* those buffers which have been cancelled, and during the second we
* only replay those buffers which do not have corresponding cancel
* records in the table. See xlog_recover_do_buffer_pass[1,2] above
* for more details on the implementation of the table of cancel records.
*/
STATIC int
xlog_recover_do_buffer_trans(xlog_t *log,
xlog_recover_item_t *item,
int pass)
{
xfs_buf_log_format_t *buf_f;
xfs_buf_log_format_v1_t *obuf_f;
xfs_mount_t *mp;
buf_t *bp;
int error;
int cancel;
daddr_t blkno;
int len;
ushort flags;
buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
if (pass == XLOG_RECOVER_PASS1) {
/*
* In this pass we're only looking for buf items
* with the XFS_BLI_CANCEL bit set.
*/
xlog_recover_do_buffer_pass1(log, buf_f);
return 0;
} else {
/*
* In this pass we want to recover all the buffers
* which have not been cancelled and are not
* cancellation buffers themselves. The routine
* we call here will tell us whether or not to
* continue with the replay of this buffer.
*/
cancel = xlog_recover_do_buffer_pass2(log, buf_f);
if (cancel) {
return 0;
}
}
switch (buf_f->blf_type) {
case XFS_LI_BUF:
blkno = buf_f->blf_blkno;
len = buf_f->blf_len;
flags = buf_f->blf_flags;
break;
case XFS_LI_6_1_BUF:
case XFS_LI_5_3_BUF:
obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
blkno = obuf_f->blf_blkno;
len = obuf_f->blf_len;
flags = obuf_f->blf_flags;
break;
default:
cmn_err(CE_ALERT,
"xfs_log_recover: unknown buffer type 0x%x\n",
buf_f->blf_type);
ASSERT(0);
break;
}
mp = log->l_mp;
bp = bread(mp->m_dev, blkno, len);
if (bp->b_flags & B_ERROR) {
cmn_err(CE_ALERT,
"XFS: xlog_recover_do_buffer_trans: bread error (%d)",
blkno);
ASSERT(0);
error = bp->b_error;
brelse(bp);
return error;
}
if (flags & XFS_BLI_INODE_BUF) {
xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
} else if (flags & (XFS_BLI_UDQUOT_BUF | XFS_BLI_PDQUOT_BUF)) {
xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
} else {
xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
}
/*
* Perform delayed write on the buffer. Asynchronous writes will be
* slower when taking into account all the buffers to be flushed.
*
* Also make sure that only inode buffers with good sizes stay in
* the buffer cache. The kernel moves inodes in buffers of 1 block
* or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
* buffers in the log can be a different size if the log was generated
* by an older kernel using unclustered inode buffers or a newer kernel
* running with a different inode cluster size. Regardless, if the
* the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
* for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
* the buffer out of the buffer cache so that the buffer won't
* overlap with future reads of those inodes.
*/
if ((*((__uint16_t *)(bp->b_un.b_addr)) == XFS_DINODE_MAGIC) &&
(bp->b_bcount != MAX(log->l_mp->m_sb.sb_blocksize,
XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
bp->b_flags |= B_STALE;
bwrite(bp);
} else {
bdwrite(bp);
}
/*
* Once bdwrite() is called, we lose track of the buffer. Therefore,
* if we want to keep track of buffer errors, we need to add a
* release function which sets some variable which gets looked at
* after calling bflush() on the device. XXXmiken
*/
return 0;
} /* xlog_recover_do_buffer_trans */
STATIC int
xlog_recover_do_inode_trans(xlog_t *log,
xlog_recover_item_t *item,
int pass)
{
xfs_inode_log_format_t *in_f;
xfs_mount_t *mp;
buf_t *bp;
xfs_imap_t imap;
xfs_dinode_t *dip;
int len;
caddr_t src;
caddr_t dest;
int error;
int attr_index;
uint fields;
xfs_dinode_core_t *dicp;
if (pass == XLOG_RECOVER_PASS1) {
return 0;
}
in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
mp = log->l_mp;
if (ITEM_TYPE(item) == XFS_LI_INODE) {
imap.im_blkno = (daddr_t)in_f->ilf_blkno;
imap.im_len = in_f->ilf_len;
imap.im_boffset = in_f->ilf_boffset;
} else {
/*
* It's an old inode format record. We don't know where
* its cluster is located on disk, and we can't allow
* xfs_imap() to figure it out because the inode btrees
* are not ready to be used. Therefore do not pass the
* XFS_IMAP_LOOKUP flag to xfs_imap(). This will give
* us only the single block in which the inode lives
* rather than its cluster, so we must make sure to
* invalidate the buffer when we write it out below.
*/
imap.im_blkno = 0;
xfs_imap(log->l_mp, 0, in_f->ilf_ino, &imap, 0);
}
bp = bread(mp->m_dev, imap.im_blkno, imap.im_len);
if (bp->b_flags & B_ERROR) {
cmn_err(CE_ALERT,
"XFS: xlog_recover_do_inode_trans: bread error (%d)",
bp->b_blkno);
ASSERT(0);
error = bp->b_error;
brelse(bp);
return error;
}
xfs_inobp_check(mp, bp);
ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
dip = (xfs_dinode_t *)(bp->b_un.b_addr+imap.im_boffset);
/*
* Make sure the place we're flushing out to really looks
* like an inode!
*/
if (dip->di_core.di_magic != XFS_DINODE_MAGIC) {
cmn_err(CE_PANIC,
"xfs_inode_recover: Bad inode pointer 0x%x",
dip);
}
dicp = (xfs_dinode_core_t*)(item->ri_buf[1].i_addr);
if (dicp->di_magic != XFS_DINODE_MAGIC) {
cmn_err(CE_PANIC,
"xfs_inode_recover: Bad inode record 0x%x",
item);
}
if ((dicp->di_mode & IFMT) == IFREG) {
if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
(dicp->di_format != XFS_DINODE_FMT_BTREE)) {
cmn_err(CE_PANIC,
"xfs_inode_recover: Bad reg inode 0x%x\n",
item);
}
} else if ((dicp->di_mode & IFMT) == IFDIR) {
if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
(dicp->di_format != XFS_DINODE_FMT_BTREE) &&
(dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
cmn_err(CE_PANIC,
"xfs_inode_recover: Bad dir inode 0x%x\n",
item);
}
}
if (dicp->di_nextents > dicp->di_nblocks) {
cmn_err(CE_PANIC,
"xfs_inode_recover: Bad inode nblocks 0x%x\n",
item);
}
if (dicp->di_forkoff > mp->m_sb.sb_inodesize) {
cmn_err(CE_PANIC,
"xfs_inode_recover: Bad inode forkoff 0x%x\n",
item);
}
if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) {
cmn_err(CE_PANIC,
"xfs_inode_recover: Bad inode record length 0x%x",
item);
}
ASSERT((caddr_t)dip+item->ri_buf[1].i_len <= bp->b_dmaaddr+bp->b_bcount);
bcopy(item->ri_buf[1].i_addr, dip, item->ri_buf[1].i_len);
if (in_f->ilf_size == 2)
goto write_inode_buffer;
len = item->ri_buf[2].i_len;
src = item->ri_buf[2].i_addr;
fields = in_f->ilf_fields;
ASSERT(in_f->ilf_size <= 4);
ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
ASSERT(!(fields & XFS_ILOG_DFORK) ||
(len == in_f->ilf_dsize));
switch (fields & (XFS_ILOG_DFORK | XFS_ILOG_DEV | XFS_ILOG_UUID)) {
case XFS_ILOG_DDATA:
case XFS_ILOG_DEXT:
ASSERT((caddr_t)&dip->di_u+len <= bp->b_dmaaddr+bp->b_bcount);
bcopy(src, &dip->di_u, len);
break;
case XFS_ILOG_DBROOT:
xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
&(dip->di_u.di_bmbt),
XFS_DFORK_DSIZE(dip, mp));
break;
case XFS_ILOG_DEV:
dip->di_u.di_dev = in_f->ilf_u.ilfu_rdev;
break;
case XFS_ILOG_UUID:
dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid;
break;
default:
/*
* There are no data fork, dev or uuid flags set.
*/
ASSERT((fields &
(XFS_ILOG_DFORK|XFS_ILOG_DEV|XFS_ILOG_UUID)) == 0);
break;
}
/*
* If we logged any attribute data, recover it. There may or
* may not have been any other non-core data logged in this
* transaction.
*/
if (in_f->ilf_fields & XFS_ILOG_AFORK) {
if (in_f->ilf_fields & XFS_ILOG_DFORK) {
attr_index = 3;
} else {
attr_index = 2;
}
len = item->ri_buf[attr_index].i_len;
src = item->ri_buf[attr_index].i_addr;
ASSERT(len == in_f->ilf_asize);
switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
case XFS_ILOG_ADATA:
case XFS_ILOG_AEXT:
dest = XFS_DFORK_APTR(dip);
ASSERT(dest+len <= bp->b_dmaaddr+bp->b_bcount);
ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
bcopy(src, dest, len);
break;
case XFS_ILOG_ABROOT:
dest = XFS_DFORK_APTR(dip);
xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
(xfs_bmdr_block_t*)dest,
XFS_DFORK_ASIZE(dip, mp));
break;
default:
xlog_warn("XFS: xlog_recover_do_inode_trans: Illegal flag");
ASSERT(0);
brelse(bp);
return XFS_ERROR(EIO);
}
}
write_inode_buffer:
#if 0
/*
* Can't do this if the transaction didn't log the current
* contents, e.g. rmdir.
*/
xfs_dir_shortform_validate_ondisk(mp, dip);
#endif
xfs_inobp_check(mp, bp);
if (ITEM_TYPE(item) == XFS_LI_INODE) {
bdwrite(bp);
} else {
bp->b_flags |= B_STALE;
bwrite(bp);
}
/*
* Once bdwrite() is called, we lose track of the buffer. Therefore,
* if we want to keep track of buffer errors, we need to add a
* release function which sets some variable which gets looked at
* after calling bflush() on the device. XXXmiken
*/
return 0;
} /* xlog_recover_do_inode_trans */
/*
* Recover QUOTAOFF records. We simply make a note of it in the xlog_t
* structure, so that we know not to do any dquot item or dquot buffer recovery,
* of that type.
*/
STATIC int
xlog_recover_do_quotaoff_trans(xlog_t *log,
xlog_recover_item_t *item,
int pass)
{
xfs_qoff_logformat_t *qoff_f;
if (pass == XLOG_RECOVER_PASS2) {
return (0);
}
qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
ASSERT(qoff_f);
/*
* The logitem format's flag tells us if this was user quotaoff,
* project quotaoff or both.
*/
if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
log->l_quotaoffs_flag |= XFS_DQ_USER;
if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
log->l_quotaoffs_flag |= XFS_DQ_PROJ;
return (0);
}
/*
* Recover a dquot record
*/
STATIC int
xlog_recover_do_dquot_trans(xlog_t *log,
xlog_recover_item_t *item,
int pass)
{
xfs_mount_t *mp;
buf_t *bp;
struct xfs_disk_dquot *ddq, *recddq;
int error;
xfs_dq_logformat_t *dq_f;
uint type;
if (pass == XLOG_RECOVER_PASS1) {
return 0;
}
mp = log->l_mp;
/*
* Non-root filesystems are required to send in quota flags
* at mount time. However, we may also get QUOTA_MAYBE flag set,
* indicating that quota should stay on (and stay consistent),
* if it already is. (so, we have to replay dquot log records
* when MAYBE flag's set).
*/
if (mp->m_qflags == 0 &&
mp->m_dev != rootdev) {
return (0);
}
recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
ASSERT(recddq);
/*
* This type of quotas was turned off, so ignore this record.
*/
type = recddq->d_flags & (XFS_DQ_USER|XFS_DQ_PROJ);
ASSERT(type);
if (log->l_quotaoffs_flag & type)
return (0);
/*
* At this point we know that if we are recovering a root filesystem
* then quota was _not_ turned off. Since there is no other flag
* indicate to us otherwise, this must mean that quota's on,
* and the dquot needs to be replayed. Remember that we may not have
* fully recovered the superblock yet, so we can't do the usual trick
* of looking at the SB quota bits.
*/
dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
ASSERT(dq_f);
if (xfs_qm_dqcheck(recddq,
dq_f->qlf_id,
0, XFS_QMOPT_DOWARN,
"xlog_recover_do_dquot_trans (log copy)")) {
return XFS_ERROR(EIO);
}
ASSERT(dq_f->qlf_len == 1);
bp = read_buf(mp->m_dev,
dq_f->qlf_blkno,
XFS_FSB_TO_BB(mp, dq_f->qlf_len),
0);
if (bp == NULL || bp->b_flags & B_ERROR) {
cmn_err(CE_WARN,
"XFS: xlog_recover_do_dquot_trans: bread error (%d)",
(int) dq_f->qlf_blkno);
ASSERT(0);
error = bp->b_error;
brelse(bp);
return error;
}
ddq = (xfs_disk_dquot_t *) ((char *)bp->b_un.b_addr + dq_f->qlf_boffset);
/*
* At least the magic num portion should be on disk because this
* was among a chunk of dquots created earlier, and we did some
* minimal initialization then.
*/
if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
"xlog_recover_do_dquot_trans")) {
brelse(bp);
return XFS_ERROR(EIO);
}
ASSERT((caddr_t)ddq + item->ri_buf[1].i_len <=
bp->b_dmaaddr + bp->b_bcount);
bcopy(recddq, ddq, item->ri_buf[1].i_len);
ASSERT(dq_f->qlf_size == 2);
bdwrite(bp);
return (0);
} /* xlog_recover_do_dquot_trans */
/*
* This routine is called to create an in-core extent free intent
* item from the efi format structure which was logged on disk.
* It allocates an in-core efi, copies the extents from the format
* structure into it, and adds the efi to the AIL with the given
* LSN.
*/
STATIC void
xlog_recover_do_efi_trans(xlog_t *log,
xlog_recover_item_t *item,
xfs_lsn_t lsn,
int pass)
{
xfs_mount_t *mp;
xfs_efi_log_item_t *efip;
xfs_efi_log_format_t *efi_formatp;
SPLDECL(spl);
if (pass == XLOG_RECOVER_PASS1) {
return;
}
efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
ASSERT(item->ri_buf[0].i_len ==
(sizeof(xfs_efi_log_format_t) +
((efi_formatp->efi_nextents - 1) * sizeof(xfs_extent_t))));
mp = log->l_mp;
efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
bcopy((char *)efi_formatp, (char *)&(efip->efi_format),
sizeof(xfs_efi_log_format_t) +
((efi_formatp->efi_nextents - 1) * sizeof(xfs_extent_t)));
efip->efi_next_extent = efi_formatp->efi_nextents;
efip->efi_flags |= XFS_EFI_COMMITTED;
AIL_LOCK(mp,spl);
/*
* xfs_trans_update_ail() drops the AIL lock.
*/
xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn, spl);
} /* xlog_recover_do_efi_trans */
/*
* This routine is called when an efd format structure is found in
* a committed transaction in the log. It's purpose is to cancel
* the corresponding efi if it was still in the log. To do this
* it searches the AIL for the efi with an id equal to that in the
* efd format structure. If we find it, we remove the efi from the
* AIL and free it.
*/
STATIC void
xlog_recover_do_efd_trans(xlog_t *log,
xlog_recover_item_t *item,
int pass)
{
xfs_mount_t *mp;
xfs_efd_log_format_t *efd_formatp;
xfs_efi_log_item_t *efip;
xfs_log_item_t *lip;
int gen;
int nexts;
__uint64_t efi_id;
SPLDECL(spl);
if (pass == XLOG_RECOVER_PASS1) {
return;
}
efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
ASSERT(item->ri_buf[0].i_len ==
(sizeof(xfs_efd_log_format_t) +
((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_t))));
efi_id = efd_formatp->efd_efi_id;
/*
* Search for the efi with the id in the efd format structure
* in the AIL.
*/
mp = log->l_mp;
AIL_LOCK(mp,spl);
lip = xfs_trans_first_ail(mp, &gen);
while (lip != NULL) {
if (lip->li_type == XFS_LI_EFI) {
efip = (xfs_efi_log_item_t *)lip;
if (efip->efi_format.efi_id == efi_id) {
/*
* xfs_trans_delete_ail() drops the
* AIL lock.
*/
xfs_trans_delete_ail(mp, lip, spl);
break;
}
}
lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
}
if (lip == NULL) {
AIL_UNLOCK(mp, spl);
}
/*
* If we found it, then free it up. If it wasn't there, it
* must have been overwritten in the log. Oh well.
*/
if (lip != NULL) {
nexts = efip->efi_format.efi_nextents;
if (nexts > XFS_EFI_MAX_FAST_EXTENTS) {
kmem_free(lip, sizeof(xfs_efi_log_item_t) +
((nexts - 1) * sizeof(xfs_extent_t)));
} else {
kmem_zone_free(xfs_efi_zone, efip);
}
}
} /* xlog_recover_do_efd_trans */
#endif /* !SIM */
/*
* Perform the transaction
*
* If the transaction modifies a buffer or inode, do it now. Otherwise,
* EFIs and EFDs get queued up by adding entries into the AIL for them.
*/
#ifndef _KERNEL
/* ARGSUSED */
#endif
STATIC int
xlog_recover_do_trans(xlog_t *log,
xlog_recover_t *trans,
int pass)
{
int error = 0;
#ifdef _KERNEL
xlog_recover_item_t *item, *first_item;
#endif
if (pass == XLOG_RECOVER_PASS1)
xlog_recover_print_trans(trans, trans->r_itemq, xlog_debug);
#ifdef _KERNEL
if (error = xlog_recover_reorder_trans(log, trans))
return error;
if (pass == XLOG_RECOVER_PASS1)
xlog_recover_print_trans(trans, trans->r_itemq, xlog_debug+1);
first_item = item = trans->r_itemq;
do {
/*
* we don't need to worry about the block number being
* truncated in > 1 TB buffers because in user-land,
* we're now n32 or 64-bit so daddr_t is 64-bits so
* the blkno's will get through the user-mode buffer
* cache properly. The only bad case is o32 kernels
* where daddr_t is 32-bits but mount will warn us
* off a > 1 TB filesystem before we get here.
*/
if ((ITEM_TYPE(item) == XFS_LI_BUF) ||
(ITEM_TYPE(item) == XFS_LI_6_1_BUF) ||
(ITEM_TYPE(item) == XFS_LI_5_3_BUF)) {
if (error = xlog_recover_do_buffer_trans(log, item,
pass))
break;
} else if ((ITEM_TYPE(item) == XFS_LI_INODE) ||
(ITEM_TYPE(item) == XFS_LI_6_1_INODE) ||
(ITEM_TYPE(item) == XFS_LI_5_3_INODE)) {
if (error = xlog_recover_do_inode_trans(log, item,
pass))
break;
} else if (ITEM_TYPE(item) == XFS_LI_EFI) {
xlog_recover_do_efi_trans(log, item, trans->r_lsn,
pass);
} else if (ITEM_TYPE(item) == XFS_LI_EFD) {
xlog_recover_do_efd_trans(log, item, pass);
} else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
if (error = xlog_recover_do_dquot_trans(log, item,
pass))
break;
} else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
if (error = xlog_recover_do_quotaoff_trans(log, item,
pass))
break;
} else {
xlog_warn("XFS: xlog_recover_do_trans");
ASSERT(0);
error = XFS_ERROR(EIO);
break;
}
item = item->ri_next;
} while (first_item != item);
#endif /* _KERNEL */
return error;
} /* xlog_recover_do_trans */
/*
* Free up any resources allocated by the transaction
*
* Remember that EFIs, EFDs, and IUNLINKs are handled later.
*/
STATIC void
xlog_recover_free_trans(xlog_recover_t *trans)
{
xlog_recover_item_t *first_item, *item, *free_item;
int i;
item = first_item = trans->r_itemq;
do {
free_item = item;
item = item->ri_next;
/* Free the regions in the item. */
for (i = 0; i < free_item->ri_cnt; i++) {
kmem_free(free_item->ri_buf[i].i_addr,
free_item->ri_buf[i].i_len);
}
/* Free the item itself */
kmem_free(free_item->ri_buf,
(free_item->ri_total * sizeof(xfs_log_iovec_t)));
kmem_free(free_item, sizeof(xlog_recover_item_t));
} while (first_item != item);
/* Free the transaction recover structure */
kmem_free(trans, sizeof(xlog_recover_t));
} /* xlog_recover_free_trans */
STATIC int
xlog_recover_commit_trans(xlog_t *log,
xlog_recover_t **q,
xlog_recover_t *trans,
int pass)
{
int error;
if (error = xlog_recover_unlink_tid(q, trans))
return error;
if (error = xlog_recover_do_trans(log, trans, pass))
return error;
xlog_recover_free_trans(trans); /* no error */
return 0;
} /* xlog_recover_commit_trans */
/*ARGSUSED*/
STATIC int
xlog_recover_unmount_trans(xlog_recover_t *trans)
{
/* Do nothing now */
xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
return( 0 );
} /* xlog_recover_unmount_trans */
/*
* There are two valid states of the r_state field. 0 indicates that the
* transaction structure is in a normal state. We have either seen the
* start of the transaction or the last operation we added was not a partial
* operation. If the last operation we added to the transaction was a
* partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
*
* NOTE: skip LRs with 0 data length.
*/
STATIC int
xlog_recover_process_data(xlog_t *log,
xlog_recover_t *rhash[],
xlog_rec_header_t *rhead,
caddr_t dp,
int pass)
{
caddr_t lp = dp+rhead->h_len;
int num_logops = rhead->h_num_logops;
xlog_op_header_t *ohead;
xlog_recover_t *trans;
xlog_tid_t tid;
int error;
unsigned long hash;
uint flags;
#ifdef SIM
printf("LOG REC AT LSN cycle 0x%x blkno 0x%x\n",
CYCLE_LSN(rhead->h_lsn), BLOCK_LSN(rhead->h_lsn));
#endif
while (dp < lp) {
ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
ohead = (xlog_op_header_t *)dp;
dp += sizeof(xlog_op_header_t);
if (ohead->oh_clientid != XFS_TRANSACTION &&
ohead->oh_clientid != XFS_LOG) {
xlog_warn("XFS: xlog_recover_process_data: bad clientid ");
ASSERT(0);
return (XFS_ERROR(EIO));
}
tid = ohead->oh_tid;
hash = XLOG_RHASH(tid);
trans = xlog_recover_find_tid(rhash[hash], tid);
if (trans == NULL) { /* not found; add new tid */
if (ohead->oh_flags & XLOG_START_TRANS)
xlog_recover_new_tid(&rhash[hash], tid, rhead->h_lsn);
} else {
ASSERT(dp+ohead->oh_len <= lp);
flags = ohead->oh_flags & ~XLOG_END_TRANS;
if (flags & XLOG_WAS_CONT_TRANS)
flags &= ~XLOG_CONTINUE_TRANS;
switch (flags) {
case XLOG_COMMIT_TRANS: {
error = xlog_recover_commit_trans(log, &rhash[hash],
trans, pass);
break;
}
case XLOG_UNMOUNT_TRANS: {
error = xlog_recover_unmount_trans(trans);
break;
}
case XLOG_WAS_CONT_TRANS: {
error = xlog_recover_add_to_cont_trans(trans, dp,
ohead->oh_len);
break;
}
case XLOG_START_TRANS : {
xlog_warn("XFS: xlog_recover_process_data: bad transaction");
ASSERT(0);
error = XFS_ERROR(EIO);
break;
}
case 0:
case XLOG_CONTINUE_TRANS: {
error = xlog_recover_add_to_trans(trans, dp,
ohead->oh_len);
break;
}
default: {
xlog_warn("XFS: xlog_recover_process_data: bad flag");
ASSERT(0);
error = XFS_ERROR(EIO);
break;
}
} /* switch */
if (error)
return error;
} /* if */
dp += ohead->oh_len;
num_logops--;
}
return( 0 );
} /* xlog_recover_process_data */
#ifndef SIM
/*
* Process an extent free intent item that was recovered from
* the log. We need to free the extents that it describes.
*/
STATIC void
xlog_recover_process_efi(xfs_mount_t *mp,
xfs_efi_log_item_t *efip)
{
xfs_efd_log_item_t *efdp;
xfs_trans_t *tp;
int i;
xfs_extent_t *extp;
xfs_fsblock_t startblock_fsb;
ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
/*
* First check the validity of the extents described by the
* EFI. If any are bad, then assume that all are bad and
* just toss the EFI.
*/
for (i = 0; i < efip->efi_format.efi_nextents; i++) {
extp = &(efip->efi_format.efi_extents[i]);
startblock_fsb = XFS_BB_TO_FSB(mp,
XFS_FSB_TO_DADDR(mp, extp->ext_start));
if ((startblock_fsb == 0) ||
(extp->ext_len == 0) ||
(startblock_fsb >= mp->m_sb.sb_dblocks) ||
(extp->ext_len >= mp->m_sb.sb_agblocks)) {
/*
* This will pull the EFI from the AIL and
* free the memory associated with it.
*/
xfs_efi_release(efip, efip->efi_format.efi_nextents);
return;
}
}
tp = xfs_trans_alloc(mp, 0);
xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
for (i = 0; i < efip->efi_format.efi_nextents; i++) {
extp = &(efip->efi_format.efi_extents[i]);
xfs_free_extent(tp, extp->ext_start, extp->ext_len);
xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
extp->ext_len);
}
efip->efi_flags |= XFS_EFI_RECOVERED;
xfs_trans_commit(tp, 0);
} /* xlog_recover_process_efi */
#endif /* !SIM */
/*
* Verify that once we've encountered something other than an EFI
* in the AIL that there are no more EFIs in the AIL.
*/
#if defined(DEBUG) && !defined(SIM)
STATIC void
xlog_recover_check_ail(xfs_mount_t *mp,
xfs_log_item_t *lip,
int gen)
{
int orig_gen;
orig_gen = gen;
do {
ASSERT(lip->li_type != XFS_LI_EFI);
lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
/*
* The check will be bogus if we restart from the
* beginning of the AIL, so ASSERT that we don't.
* We never should since we're holding the AIL lock
* the entire time.
*/
ASSERT(gen == orig_gen);
} while (lip != NULL);
}
#endif /* DEBUG && !SIM */
#ifndef SIM
/*
* When this is called, all of the EFIs which did not have
* corresponding EFDs should be in the AIL. What we do now
* is free the extents associated with each one.
*
* Since we process the EFIs in normal transactions, they
* will be removed at some point after the commit. This prevents
* us from just walking down the list processing each one.
* We'll use a flag in the EFI to skip those that we've already
* processed and use the AIL iteration mechanism's generation
* count to try to speed this up at least a bit.
*
* When we start, we know that the EFIs are the only things in
* the AIL. As we process them, however, other items are added
* to the AIL. Since everything added to the AIL must come after
* everything already in the AIL, we stop processing as soon as
* we see something other than an EFI in the AIL.
*/
STATIC void
xlog_recover_process_efis(xlog_t *log)
{
xfs_log_item_t *lip;
xfs_efi_log_item_t *efip;
int gen;
xfs_mount_t *mp;
SPLDECL(spl);
mp = log->l_mp;
AIL_LOCK(mp,spl);
lip = xfs_trans_first_ail(mp, &gen);
while (lip != NULL) {
/*
* We're done when we see something other than an EFI.
*/
if (lip->li_type != XFS_LI_EFI) {
xlog_recover_check_ail(mp, lip, gen);
break;
}
/*
* Skip EFIs that we've already processed.
*/
efip = (xfs_efi_log_item_t *)lip;
if (efip->efi_flags & XFS_EFI_RECOVERED) {
lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
continue;
}
AIL_UNLOCK(mp, spl);
xlog_recover_process_efi(mp, efip);
AIL_LOCK(mp,spl);
lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
}
AIL_UNLOCK(mp, spl);
} /* xlog_recover_process_efis */
/*
* This routine performs a transaction to null out a bad inode pointer
* in an agi unlinked inode hash bucket.
*/
STATIC void
xlog_recover_clear_agi_bucket(
xfs_mount_t *mp,
xfs_agnumber_t agno,
int bucket)
{
xfs_trans_t *tp;
xfs_agi_t *agi;
daddr_t agidaddr;
buf_t *agibp;
int offset;
int error;
tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0);
agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR);
error = xfs_trans_read_buf(tp, mp->m_dev, agidaddr, 1, 0, &agibp);
if (error) {
xfs_trans_cancel(tp, XFS_TRANS_ABORT);
return;
}
agi = XFS_BUF_TO_AGI(agibp);
if (agi->agi_magicnum != XFS_AGI_MAGIC) {
xfs_trans_cancel(tp, 0);
return;
}
ASSERT(agi->agi_magicnum == XFS_AGI_MAGIC);
agi->agi_unlinked[bucket] = NULLAGINO;
offset = offsetof(xfs_agi_t, agi_unlinked) +
(sizeof(xfs_agino_t) * bucket);
xfs_trans_log_buf(tp, agibp, offset,
(offset + sizeof(xfs_agino_t) - 1));
xfs_trans_commit(tp, 0);
} /* xlog_recover_clear_agi_bucket */
/*
* xlog_iunlink_recover
*
* This is called during recovery to process any inodes which
* we unlinked but not freed when the system crashed. These
* inodes will be on the lists in the AGI blocks. What we do
* here is scan all the AGIs and fully truncate and free any
* inodes found on the lists. Each inode is removed from the
* lists when it has been fully truncated and is freed. The
* freeing of the inode and its removal from the list must be
* atomic.
*/
STATIC void
xlog_recover_process_iunlinks(xlog_t *log)
{
xfs_mount_t *mp;
xfs_agnumber_t agno;
xfs_agi_t *agi;
daddr_t agidaddr;
buf_t *agibp;
xfs_inode_t *ip;
xfs_agino_t agino;
xfs_ino_t ino;
int bucket;
int error;
xfs_ino_t last_ino;
mp = log->l_mp;
last_ino = 0;
for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
/*
* Find the agi for this ag.
*/
agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR);
agibp = read_buf(mp->m_dev, agidaddr, 1, 0);
agi = XFS_BUF_TO_AGI(agibp);
ASSERT(agi->agi_magicnum == XFS_AGI_MAGIC);
bucket = 0;
while (bucket < XFS_AGI_UNLINKED_BUCKETS) {
/*
* If there is nothing in the current bucket,
* then continue on to the next one.
*/
agino = agi->agi_unlinked[bucket];
if (agino == NULLAGINO) {
bucket++;
continue;
}
/*
* Release the agi buffer so that it can
* be acquired in the normal course of the
* transaction to truncate and free the inode.
*/
brelse(agibp);
ino = XFS_AGINO_TO_INO(mp, agno, agino);
error = xfs_iget(mp, NULL, ino, 0, &ip, 0);
/*
* This inode is messed up. Just
* ditch this bucket of inodes. We
* will lose some inodes and space,
* but at least we won't hang.
*/
if (!error &&
(ino != last_ino) &&
(ip->i_d.di_nlink == 0) &&
(ip->i_d.di_mode != 0)) {
ASSERT(ip != NULL);
ASSERT(ip->i_d.di_nlink == 0);
ASSERT(ip->i_d.di_mode != 0);
ASSERT(XFS_ITOV(ip)->v_count == 1);
/*
* Drop our reference to the inode. This
* will send the inode to xfs_inactive()
* which will truncate the file and free
* the inode.
*/
VN_RELE(XFS_ITOV(ip));
last_ino = ino;
} else {
/*
* Skip this bucket if we can't read in
* the inode it points to. Call
* xlog_recover_clear_agi_bucket()
* to perform a transaction to clear
* the inode pointer in the bucket.
*/
if (!error) {
VN_RELE(XFS_ITOV(ip));
}
xlog_recover_clear_agi_bucket(mp, agno,
bucket);
bucket++;
}
/*
* Reacquire the agibuffer and continue around
* the loop.
*/
agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR);
agibp = read_buf(mp->m_dev, agidaddr, 1, 0);
agi = XFS_BUF_TO_AGI(agibp);
ASSERT(agi->agi_magicnum == XFS_AGI_MAGIC);
}
/*
* Release the buffer for the current agi so we can
* go on to the next one.
*/
brelse(agibp);
}
} /* xlog_recover_process_iunlinks */
#endif /* !SIM */
/*
* Stamp cycle number in every block
*
* This routine is also called in xfs_log.c
*/
/*ARGSUSED*/
void
xlog_pack_data(xlog_t *log, xlog_in_core_t *iclog)
{
int i;
caddr_t dp;
#ifdef DEBUG
uint *up;
uint chksum = 0;
up = (uint *)iclog->ic_data;
/* divide length by 4 to get # words */
for (i=0; i<iclog->ic_offset >> 2; i++) {
chksum ^= *up;
up++;
}
iclog->ic_header.h_chksum = chksum;
#endif /* DEBUG */
dp = iclog->ic_data;
for (i = 0; i<BTOBB(iclog->ic_offset); i++) {
iclog->ic_header.h_cycle_data[i] = *(uint *)dp;
*(uint *)dp = CYCLE_LSN(iclog->ic_header.h_lsn);
dp += BBSIZE;
}
} /* xlog_pack_data */
/*ARGSUSED*/
STATIC void
xlog_unpack_data(xlog_rec_header_t *rhead,
caddr_t dp,
xlog_t *log)
{
int i;
#if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
uint *up = (uint *)dp;
uint chksum = 0;
#endif
for (i=0; i<BTOBB(rhead->h_len); i++) {
*(uint *)dp = *(uint *)&rhead->h_cycle_data[i];
dp += BBSIZE;
}
#if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
/* divide length by 4 to get # words */
for (i=0; i < rhead->h_len >> 2; i++) {
chksum ^= *up;
up++;
}
if (chksum != rhead->h_chksum) {
if (rhead->h_chksum != 0 ||
((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
cmn_err(CE_DEBUG,
"XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
rhead->h_chksum, chksum);
cmn_err(CE_DEBUG,
"XFS: Disregard message if filesystem was created with non-DEBUG kernel\n");
log->l_flags |= XLOG_CHKSUM_MISMATCH;
}
}
#endif /* DEBUG && XFS_LOUD_RECOVERY */
} /* xlog_unpack_data */
/*
* Read the log from tail to head and process the log records found.
* Handle the two cases where the tail and head are in the same cycle
* and where the active portion of the log wraps around the end of
* the physical log separately. The pass parameter is passed through
* to the routines called to process the data and is not looked at
* here.
*/
STATIC int
xlog_do_recovery_pass(xlog_t *log,
daddr_t head_blk,
daddr_t tail_blk,
int pass)
{
xlog_rec_header_t *rhead;
daddr_t blk_no;
caddr_t bufaddr;
buf_t *hbp, *dbp;
int error;
int bblks, split_bblks;
xlog_recover_t *rhash[XLOG_RHASH_SIZE];
error = 0;
hbp = xlog_get_bp(1);
dbp = xlog_get_bp(BTOBB(XLOG_MAX_RECORD_BSIZE));
bzero(rhash, sizeof(rhash));
if (tail_blk <= head_blk) {
for (blk_no = tail_blk; blk_no < head_blk; ) {
if (error = xlog_bread(log, blk_no, 1, hbp))
goto bread_err;
rhead = (xlog_rec_header_t *)hbp->b_dmaaddr;
ASSERT(rhead->h_magicno == XLOG_HEADER_MAGIC_NUM);
ASSERT(BTOBB(rhead->h_len <= INT_MAX));
bblks = (int) BTOBB(rhead->h_len); /* blocks in data section */
if (bblks > 0) {
if (error = xlog_bread(log, blk_no+1, bblks, dbp))
goto bread_err;
xlog_unpack_data(rhead, dbp->b_dmaaddr, log);
if (error = xlog_recover_process_data(log, rhash,
rhead, dbp->b_dmaaddr,
pass))
goto bread_err;
}
blk_no += (bblks+1);
}
} else {
/*
* Perform recovery around the end of the physical log. When the head
* is not on the same cycle number as the tail, we can't do a sequential
* recovery as above.
*/
blk_no = tail_blk;
while (blk_no < log->l_logBBsize) {
/* Read header of one block */
if (error = xlog_bread(log, blk_no, 1, hbp))
goto bread_err;
rhead = (xlog_rec_header_t *)hbp->b_dmaaddr;
ASSERT(rhead->h_magicno == XLOG_HEADER_MAGIC_NUM);
ASSERT(BTOBB(rhead->h_len <= INT_MAX));
bblks = (int) BTOBB(rhead->h_len);
/* LR body must have data or it wouldn't have been written */
ASSERT(bblks > 0);
blk_no++; /* successfully read header */
ASSERT(blk_no <= log->l_logBBsize);
/* Read in data for log record */
if (blk_no+bblks <= log->l_logBBsize) {
if (error = xlog_bread(log, blk_no, bblks, dbp))
goto bread_err;
} else {
/* This log record is split across physical end of log */
split_bblks = 0;
if (blk_no != log->l_logBBsize) {
/* some data is before physical end of log */
ASSERT(blk_no <= INT_MAX);
split_bblks = log->l_logBBsize - (int)blk_no;
ASSERT(split_bblks > 0);
if (error = xlog_bread(log, blk_no, split_bblks, dbp))
goto bread_err;
}
bufaddr = dbp->b_dmaaddr;
dbp->b_dmaaddr += BBTOB(split_bblks);
if (error = xlog_bread(log, 0, bblks - split_bblks, dbp))
goto bread_err;
dbp->b_dmaaddr = bufaddr;
}
xlog_unpack_data(rhead, dbp->b_dmaaddr, log);
if (error = xlog_recover_process_data(log, rhash,
rhead, dbp->b_dmaaddr,
pass))
goto bread_err;
blk_no += bblks;
}
ASSERT(blk_no >= log->l_logBBsize);
blk_no -= log->l_logBBsize;
/* read first part of physical log */
while (blk_no < head_blk) {
if (error = xlog_bread(log, blk_no, 1, hbp))
goto bread_err;
rhead = (xlog_rec_header_t *)hbp->b_dmaaddr;
ASSERT(rhead->h_magicno == XLOG_HEADER_MAGIC_NUM);
ASSERT(BTOBB(rhead->h_len <= INT_MAX));
bblks = (int) BTOBB(rhead->h_len);
ASSERT(bblks > 0);
if (error = xlog_bread(log, blk_no+1, bblks, dbp))
goto bread_err;
xlog_unpack_data(rhead, dbp->b_dmaaddr, log);
if (error = xlog_recover_process_data(log, rhash,
rhead, dbp->b_dmaaddr,
pass))
goto bread_err;
blk_no += (bblks+1);
}
}
bread_err:
xlog_put_bp(dbp);
xlog_put_bp(hbp);
return error;
}
/*
* Do the recovery of the log. We actually do this in two phases.
* The two passes are necessary in order to implement the function
* of cancelling a record written into the log. The first pass
* determines those things which have been cancelled, and the
* second pass replays log items normally except for those which
* have been cancelled. The handling of the replay and cancellations
* takes place in the log item type specific routines.
*
* The table of items which have cancel records in the log is allocated
* and freed at this level, since only here do we know when all of
* the log recovery has been completed.
*/
STATIC int
xlog_do_log_recovery(xlog_t *log,
daddr_t head_blk,
daddr_t tail_blk)
{
int error;
#ifdef DEBUG
int i;
#endif
/*
* First do a pass to find all of the cancelled buf log items.
* Store them in the buf_cancel_table for use in the second pass.
*/
log->l_buf_cancel_table =
(xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
sizeof(xfs_buf_cancel_t*),
KM_SLEEP);
error = xlog_do_recovery_pass(log, head_blk, tail_blk,
XLOG_RECOVER_PASS1);
if (error != 0) {
kmem_free(log->l_buf_cancel_table,
XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
log->l_buf_cancel_table = NULL;
return error;
}
/*
* Then do a second pass to actually recover the items in the log.
* When it is complete free the table of buf cancel items.
*/
error = xlog_do_recovery_pass(log, head_blk, tail_blk,
XLOG_RECOVER_PASS2);
#ifdef DEBUG
for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) {
ASSERT(log->l_buf_cancel_table[i] == NULL);
}
#endif /* DEBUG */
kmem_free(log->l_buf_cancel_table,
XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
log->l_buf_cancel_table = NULL;
return error;
}
/*
* Do the actual recovery
*/
STATIC int
xlog_do_recover(xlog_t *log,
daddr_t head_blk,
daddr_t tail_blk)
{
#ifdef _KERNEL
buf_t *bp;
xfs_sb_t *sbp;
struct bdevsw *my_bdevsw;
#endif
int error;
/*
* First replay the images in the log.
*/
error = xlog_do_log_recovery(log, head_blk, tail_blk);
if (error) {
return error;
}
#ifdef _KERNEL
bflush(log->l_mp->m_dev); /* Flush out the delayed write buffers */
/*
* We now update the tail_lsn since much of the recovery has completed
* and there may be space available to use. If there were no extent
* or iunlinks, we can free up the entire log and set the tail_lsn to
* be the last_sync_lsn. This was set in xlog_find_tail to be the
* lsn of the last known good LR on disk. If there are extent frees
* or iunlinks they will have some entries in the AIL; so we look at
* the AIL to determine how to set the tail_lsn.
*/
xlog_assign_tail_lsn(log->l_mp, 0);
/*
* Now that we've finished replaying all buffer and inode
* updates, re-read in the superblock.
*/
bp = xfs_getsb(log->l_mp, 0);
bp->b_flags &= ~B_DONE;
bp->b_flags |= B_READ;
#ifndef SIM
bp_dcache_wbinval(bp);
#endif
my_bdevsw = get_bdevsw(bp->b_edev);
ASSERT(my_bdevsw != NULL);
bdstrat(my_bdevsw, bp);
if (error = iowait(bp)) {
ASSERT(0);
brelse(bp);
return error;
}
sbp = XFS_BUF_TO_SBP(bp);
ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
ASSERT(XFS_SB_GOOD_VERSION(sbp));
log->l_mp->m_sb = *sbp;
brelse(bp);
xlog_recover_check_summary(log);
/* Normal transactions can now occur */
log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
#endif /* _KERNEL */
return 0;
} /* xlog_do_recover */
/*
* Perform recovery and re-initialize some log variables in xlog_find_tail.
*
* Return error or zero.
*/
int
xlog_recover(xlog_t *log)
{
daddr_t head_blk, tail_blk;
int error;
if (error = xlog_find_tail(log, &head_blk, &tail_blk))
return error;
if (tail_blk != head_blk) {
#ifdef SIM
extern daddr_t HEAD_BLK, TAIL_BLK;
head_blk = HEAD_BLK;
tail_blk = TAIL_BLK;
#endif
#ifdef _KERNEL
#if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
cmn_err(CE_NOTE,
"Starting XFS recovery on filesystem: %s (dev: %d/%d)",
log->l_mp->m_fsname, emajor(log->l_dev),
eminor(log->l_dev));
#else
cmn_err(CE_NOTE,
"!Starting XFS recovery on filesystem: %s (dev: %d/%d)",
log->l_mp->m_fsname, emajor(log->l_dev),
eminor(log->l_dev));
#endif
#endif
error = xlog_do_recover(log, head_blk, tail_blk);
log->l_flags |= XLOG_RECOVERY_NEEDED;
}
return error;
} /* xlog_recover */
/*
* In the first part of recovery we replay inodes and buffers and build
* up the list of extent free items which need to be processed. Here
* we process the extent free items and clean up the on disk unlinked
* inode lists. This is separated from the first part of recovery so
* that the root and real-time bitmap inodes can be read in from disk in
* between the two stages. This is necessary so that we can free space
* in the real-time portion of the file system.
*/
int
xlog_recover_finish(xlog_t *log)
{
/*
* Now we're ready to do the transactions needed for the
* rest of recovery. Start with completing all the extent
* free intent records and then process the unlinked inode
* lists. At this point, we essentially run in normal mode
* except that we're still performing recovery actions
* rather than accepting new requests.
*/
if (log->l_flags & XLOG_RECOVERY_NEEDED) {
#ifdef _KERNEL
xlog_recover_process_efis(log);
/*
* Sync the log to get all the EFIs out of the AIL.
* This isn't absolutely necessary, but it helps in
* case the unlink transactions would have problems
* pushing the EFIs out of the way.
*/
xfs_log_force(log->l_mp, (xfs_lsn_t)0,
(XFS_LOG_FORCE | XFS_LOG_SYNC));
xlog_recover_process_iunlinks(log);
xlog_recover_check_summary(log);
#endif /* _KERNEL */
#if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
cmn_err(CE_NOTE,
"Ending XFS recovery for filesystem: %s (%V)",
log->l_mp->m_fsname, log->l_dev);
#else
cmn_err(CE_NOTE,
"!Ending XFS recovery for filesystem: %s (%V)",
log->l_mp->m_fsname, log->l_dev);
#endif
log->l_flags &= ~XLOG_RECOVERY_NEEDED;
} else {
cmn_err(CE_NOTE,
"!Ending clean XFS mount for filesystem: %s",
log->l_mp->m_fsname);
}
return 0;
} /* xlog_recover_finish */
#if defined(DEBUG) && !defined(SIM)
/*
* Read all of the agf and agi counters and check that they
* are consistent with the superblock counters.
*/
void
xlog_recover_check_summary(xlog_t *log)
{
xfs_mount_t *mp;
xfs_agf_t *agfp;
xfs_agi_t *agip;
buf_t *agfbp;
buf_t *agibp;
daddr_t agfdaddr;
daddr_t agidaddr;
buf_t *sbbp;
#ifdef XFS_LOUD_RECOVERY
xfs_sb_t *sbp;
#endif
xfs_agnumber_t agno;
__uint64_t freeblks;
__uint64_t itotal;
__uint64_t ifree;
mp = log->l_mp;
freeblks = 0LL;
itotal = 0LL;
ifree = 0LL;
for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR);
agfbp = read_buf(mp->m_dev, agfdaddr, 1, 0);
agfp = XFS_BUF_TO_AGF(agfbp);
ASSERT(agfp->agf_magicnum == XFS_AGF_MAGIC);
ASSERT(XFS_AGF_GOOD_VERSION(agfp->agf_versionnum));
ASSERT(agfp->agf_seqno == agno);
freeblks += agfp->agf_freeblks + agfp->agf_flcount;
brelse(agfbp);
agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR);
agibp = read_buf(mp->m_dev, agidaddr, 1, 0);
agip = XFS_BUF_TO_AGI(agibp);
ASSERT(agip->agi_magicnum == XFS_AGI_MAGIC);
ASSERT(XFS_AGI_GOOD_VERSION(agip->agi_versionnum));
ASSERT(agip->agi_seqno == agno);
itotal += agip->agi_count;
ifree += agip->agi_freecount;
brelse(agibp);
}
sbbp = xfs_getsb(mp, 0);
#ifdef XFS_LOUD_RECOVERY
sbp = XFS_BUF_TO_SBP(sbbp);
cmn_err(CE_NOTE,
"xlog_recover_check_summary: sb_icount %llu itotal %llu",
sbp->sb_icount, itotal);
cmn_err(CE_NOTE,
"xlog_recover_check_summary: sb_ifree %llu itotal %llu",
sbp->sb_ifree, ifree);
cmn_err(CE_NOTE,
"xlog_recover_check_summary: sb_fdblocks %llu freeblks %llu",
sbp->sb_fdblocks, freeblks);
#if 0
/*
* This is turned off until I account for the allocation
* btree blocks which live in free space.
*/
ASSERT(sbp->sb_icount == itotal);
ASSERT(sbp->sb_ifree == ifree);
ASSERT(sbp->sb_fdblocks == freeblks);
#endif
#endif
brelse(sbbp);
}
#endif /* DEBUG && !SIM */