[BACK]Return to xfs_iget.c CVS log [TXT][DIR] Up to [Development] / linux-2.6-xfs / fs / xfs

File: [Development] / linux-2.6-xfs / fs / xfs / xfs_iget.c (download)

Revision 1.105, Thu Oct 28 10:47:42 1999 UTC (17 years, 11 months ago) by lord
Branch: MAIN
Changes since 1.104: +7 -1 lines

Make the quiesce_new variable a strictly cell capable
kernel thing, it was being checked in an assert on
non cell_capable systems when it was not initialized.

#ident "$Revision$"
#if defined(__linux__)
#include <xfs_linux.h>
#endif

#ifdef SIM
#define _KERNEL 1
#endif
#include <sys/param.h>
#include <sys/mode.h>
#include <sys/stat.h>
#include <sys/buf.h>
#include <sys/sysmacros.h>
#include <sys/vnode.h>
#include <sys/vfs.h>
#include <sys/uuid.h>
#include <sys/grio.h>
#include <sys/sysinfo.h>
#include <sys/ksa.h>
#include <sys/debug.h>
#include <sys/imon.h>
#include <sys/cred.h>
#include <sys/cmn_err.h>

#ifdef SIM
#undef _KERNEL
#endif
#include <sys/kmem.h>
#ifndef SIM
#include <sys/uthread.h>
#include <sys/systm.h>
#endif
#include "xfs_macros.h"
#include "xfs_types.h"
#include "xfs_inum.h"
#include "xfs_log.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_dir.h"
#include "xfs_dir2.h"
#include "xfs_mount.h"
#include "xfs_alloc_btree.h"
#include "xfs_bmap_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_btree.h"
#include "xfs_ialloc.h"
#include "xfs_attr_sf.h"
#include "xfs_dir_sf.h"
#include "xfs_dir2_sf.h"
#include "xfs_dinode.h"
#include "xfs_inode.h"
#include "xfs_quota.h"
#include "xfs_utils.h"
#include "xfs_cxfs.h"

#ifdef SIM
#include "sim.h"
#endif /* SIM */

extern vnodeops_t xfs_vnodeops;
extern zone_t *xfs_chashlist_zone;

void
xfs_ilock_ra(xfs_inode_t	*ip,
		  uint		lock_flags,
		  void		*return_address);

/*
 * Initialize the inode hash table for the newly mounted file system.
 *
 * mp -- this is the mount point structure for the file system being
 *       initialized
 */
void
xfs_ihash_init(xfs_mount_t *mp)
{
	int	i;

	mp->m_ihsize = XFS_BUCKETS(mp);
	mp->m_ihash = (xfs_ihash_t *)kmem_zalloc(mp->m_ihsize
				      * sizeof(xfs_ihash_t), KM_SLEEP);
	ASSERT(mp->m_ihash != NULL);
	for (i = 0; i < mp->m_ihsize; i++) {
		mrinit(&(mp->m_ihash[i].ih_lock),"xfshash");
	}
}

/*
 * Free up structures allocated by xfs_ihash_init, at unmount time.
 */
void
xfs_ihash_free(xfs_mount_t *mp)
{
	int	i;

	for (i = 0; i < mp->m_ihsize; i++)
		mrfree(&mp->m_ihash[i].ih_lock);
	kmem_free(mp->m_ihash, mp->m_ihsize*sizeof(xfs_ihash_t));
	mp->m_ihash = NULL;
}

/*
 * Initialize the inode cluster hash table for the newly mounted file system.
 *
 * mp -- this is the mount point structure for the file system being
 *       initialized
 */
void
xfs_chash_init(xfs_mount_t *mp)
{
	int	i;

	/*
	 * m_chash size is based on m_ishash
	 * with a minimum of 32 entries
	 */
	mp->m_chsize = (37*(mp)->m_sb.sb_agcount-1) /
		         (XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog);
	if (mp->m_chsize < 37) {
		mp->m_chsize = 37;
	}
	mp->m_chash = (xfs_chash_t *)kmem_zalloc(mp->m_chsize
						 * sizeof(xfs_chash_t), 
						 KM_SLEEP);
	ASSERT(mp->m_chash != NULL);

	for (i = 0; i < mp->m_chsize; i++) {
		spinlock_init(&mp->m_chash[i].ch_lock,"xfshash");
	}
}

/*
 * Free up structures allocated by xfs_chash_init, at unmount time.
 */
void
xfs_chash_free(xfs_mount_t *mp)
{
	int	i;

	for (i = 0; i < mp->m_chsize; i++) {
		spinlock_destroy(&mp->m_chash[i].ch_lock);
	}

	kmem_free(mp->m_chash, mp->m_chsize*sizeof(xfs_chash_t));
	mp->m_chash = NULL;
}

/*
 * Look up an inode by number in the given file system.
 * The inode is looked up in the hash table for the file system
 * represented by the mount point parameter mp.  Each bucket of
 * the hash table is guarded by an individual semaphore.
 *
 * If the inode is found in the hash table, its corresponding vnode
 * is obtained with a call to vn_get().  This call takes care of
 * coordination with the reclamation of the inode and vnode.  Note
 * that the vmap structure is filled in while holding the hash lock.
 * This gives us the state of the inode/vnode when we found it and
 * is used for coordination in vn_get().
 *
 * If it is not in core, read it in from the file system's device and
 * add the inode into the hash table.
 *
 * The inode is locked according to the value of the lock_flags parameter.
 * This flag parameter indicates how and if the inode's IO lock and inode lock
 * should be taken.
 *
 * mp -- the mount point structure for the current file system.  It points
 *       to the inode hash table.
 * tp -- a pointer to the current transaction if there is one.  This is
 *       simply passed through to the xfs_iread() call.
 * ino -- the number of the inode desired.  This is the unique identifier
 *        within the file system for the inode being requested.
 * lock_flags -- flags indicating how to lock the inode.  See the comment
 *		 for xfs_ilock() for a list of valid values.
 * bno -- the block number starting the buffer containing the inode,
 *	  if known (as by bulkstat), else 0.
 */
int
xfs_iget(
	xfs_mount_t	*mp,
	xfs_trans_t	*tp,
	xfs_ino_t	ino,
	uint		lock_flags,
	xfs_inode_t	**ipp,
	daddr_t		bno)
{
	xfs_ihash_t	*ih;
	xfs_inode_t	*ip;
	xfs_inode_t	*iq;
	vnode_t		*vp;
	ulong		version;
	int		error;
	/* REFERENCED */
	int		newnode;
#ifdef CELL_CAPABLE
	int		quiesce_new = 0;
#endif
	vmap_t		vmap;
	xfs_chash_t	*ch;
	xfs_chashlist_t	*chl, *chlnew;
	SPLDECL(s);

#if 0 /* conflicting with linux sysinfo... clean up later RMC */
	SYSINFO.iget++; 
#endif
	XFSSTATS.xs_ig_attempts++;

	ih = XFS_IHASH(mp, ino);
again:
	mraccess(&ih->ih_lock);
	for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
  		if (ip->i_ino == ino) {
			vp = XFS_ITOV(ip);
			VMAP(vp, vmap);
			/*
			 * Inode cache hit: if ip is not at the front of
			 * its hash chain, move it there now.
			 * Do this with the lock held for update, but
			 * do statistics after releasing the lock.
			 */
			if (ip->i_prevp != &ih->ih_next &&
			    mrtrypromote(&ih->ih_lock)) {
				if (iq = ip->i_next) {
					iq->i_prevp = ip->i_prevp;
				}
				*ip->i_prevp = iq;
				iq = ih->ih_next;
				iq->i_prevp = &ip->i_next;
				ip->i_next = iq;
				ip->i_prevp = &ih->ih_next;
				ih->ih_next = ip;
			}
			mrunlock(&ih->ih_lock);
			XFSSTATS.xs_ig_found++;
			/*
			 * Get a reference to the vnode/inode.
			 * vn_get() takes care of coordination with
			 * the file system inode release and reclaim
			 * functions.  If it returns NULL, the inode
			 * has been reclaimed so just start the search
			 * over again.  We probably won't find it,
			 * but we could be racing with another cpu
			 * looking for the same inode so we have to at
			 * least look.
			 */
			if (!(vp = vn_get(vp, &vmap, 0))) {
#pragma mips_frequency_hint NEVER
				XFSSTATS.xs_ig_frecycle++;
				goto again;
			}

			if (lock_flags != 0) {
				xfs_ilock(ip, lock_flags);
			}

			newnode = (ip->i_d.di_mode == 0);
#ifdef CELL_CAPABLE
			quiesce_new = 0;
#endif
			ITRACE(ip);
			goto return_ip;
		}
	}

	/*
	 * Inode cache miss: save the hash chain version stamp and unlock
	 * the chain, so we don't deadlock in vn_alloc.
	 */
	XFSSTATS.xs_ig_missed++;
	version = ih->ih_version;
	mrunlock(&ih->ih_lock);

	/*
	 * Read the disk inode attributes into a new inode structure and get
	 * a new vnode for it.  Initialize the inode lock so we can idestroy
	 * it soon if it's a dup.  This should also initialize i_dev, i_ino,
	 * i_bno, i_mount, and i_index.
	 */
	error = xfs_iread(mp, tp, ino, &ip, bno);
	if (error) {
		return error;
	}
	vp = vn_alloc(XFS_MTOVFS(mp), IFTOVT(ip->i_d.di_mode),
		      ip->i_df.if_u2.if_rdev);
	bhv_desc_init(&(ip->i_bhv_desc), ip, vp, &xfs_vnodeops);
	vn_bhv_insert_initial(VN_BHV_HEAD(vp), &(ip->i_bhv_desc));

	xfs_inode_lock_init(ip, vp);
	xfs_iocore_inode_init(ip);

#ifdef CELL_CAPABLE
	quiesce_new = 0;
#ifndef SIM
	if (mp->m_inode_quiesce)
		quiesce_new = cxfs_inode_qset(ip);
#endif
#endif

	if (lock_flags != 0) {
		xfs_ilock(ip, lock_flags);
	}

	/*
	 * Make sure the vnode's VENF_LOCKING flag corresponds with
	 * the inode's mode. 
	 */
	if (MANDLOCK(vp, ip->i_d.di_mode))
		VN_FLAGSET(vp, VENF_LOCKING);
	else
		VN_FLAGCLR(vp, VENF_LOCKING);

	/*
	 * If this is a shared mountpoint (cluster), make sure
	 * to disable swapping on the vnode.
	 */
	if (mp->m_cxfstype != XFS_CXFS_NOT) {
		VN_FLAGSET(vp, VNOSWAP);
	}

	/*
	 * Put ip on its hash chain, unless someone else hashed a duplicate
	 * after we released the hash lock.
	 */
	mrupdate(&ih->ih_lock);
	if (ih->ih_version != version) {
		for (iq = ih->ih_next; iq != NULL; iq = iq->i_next) {
			if (iq->i_ino == ino) {
				mrunlock(&ih->ih_lock);
				vn_bhv_remove(VN_BHV_HEAD(vp), 
					      &(ip->i_bhv_desc));
				vn_free(vp);
				xfs_idestroy(ip);
				XFSSTATS.xs_ig_dup++;
				goto again;
			}
		}
	}

	/*
	 * These values _must_ be set before releasing ihlock!
	 */
	ip->i_hash = ih;
	if (iq = ih->ih_next) {
		iq->i_prevp = &ip->i_next;
	}
	ip->i_next = iq;
	ip->i_prevp = &ih->ih_next;
	ih->ih_next = ip;
	ip->i_udquot = ip->i_pdquot = NULL;
	ih->ih_version++;

	/*
	 * put ip on its cluster's hash chain
	 */
	ASSERT(ip->i_chash == NULL && ip->i_cprev == NULL && 
	       ip->i_cnext == NULL);

	chlnew = NULL;
	ch = XFS_CHASH(mp, ip->i_blkno);
 chlredo:
	s = mutex_spinlock(&ch->ch_lock);
	for (chl = ch->ch_list; chl != NULL; chl = chl->chl_next) {
		if (chl->chl_blkno == ip->i_blkno) {

			/* insert this inode into the doubly-linked list 
			 * where chl points */
			if (iq = chl->chl_ip) {
				ip->i_cprev = iq->i_cprev;
				iq->i_cprev->i_cnext = ip;
				iq->i_cprev = ip;
				ip->i_cnext = iq;
			} else {
				ip->i_cnext = ip;
				ip->i_cprev = ip;
			}
			chl->chl_ip = ip;
			ip->i_chash = chl;
			break;
		}
	}

	/* no hash list found for this block; add a new hash list */
	if (chl == NULL)  {
		if (chlnew == NULL) {
			mutex_spinunlock(&ch->ch_lock, s);
			ASSERT(xfs_chashlist_zone != NULL);
			chlnew = (xfs_chashlist_t *)kmem_zone_zalloc(xfs_chashlist_zone,
								  KM_SLEEP);
			ASSERT(chlnew != NULL);
			goto chlredo;
		} else {
			ip->i_cnext = ip;
			ip->i_cprev = ip;
			ip->i_chash = chlnew;
			chlnew->chl_ip = ip;
			chlnew->chl_blkno = ip->i_blkno;
			chlnew->chl_next = ch->ch_list;
			ch->ch_list = chlnew;
			chlnew = NULL;
		}
	} else {
		if (chlnew != NULL) {
			kmem_zone_free(xfs_chashlist_zone, chlnew);
		}
	}
	mutex_spinunlock(&ch->ch_lock, s);
	mrunlock(&ih->ih_lock);

	/*
	 * Link ip to its mount and thread it on the mount's inode list.
	 */
	XFS_MOUNT_ILOCK(mp);
	if (iq = mp->m_inodes) {
		ASSERT(iq->i_mprev->i_mnext == iq);
		ip->i_mprev = iq->i_mprev;
		iq->i_mprev->i_mnext = ip;
		iq->i_mprev = ip;
		ip->i_mnext = iq;
	} else {
		ip->i_mnext = ip;
		ip->i_mprev = ip;
	}
	mp->m_inodes = ip;
#ifdef CELL_CAPABLE
	ASSERT((quiesce_new == 0) || (mp->m_inode_quiesce != 0));
#endif


	XFS_MOUNT_IUNLOCK(mp);

	newnode = 1;

 return_ip:
	ASSERT(ip->i_df.if_ext_max ==
	       XFS_IFORK_DSIZE(ip) / sizeof(xfs_bmbt_rec_t));
	/*
	 * Call hook for imon to see whether ip is of interest and should
	 * have its vnodeops monitored.
	 */
#ifndef SIM
	if (newnode) {
#ifdef CELL_CAPABLE
	        if (quiesce_new)
			cxfs_inode_quiesce(ip);
#endif
		IMON_CHECK(vp, ip->i_dev, (ino_t)ino);
	}
#endif
	*ipp = ip;
	return 0;
}

/*
 * Do the setup for the various locvks within the incore inode.
 */
void
xfs_inode_lock_init(
	xfs_inode_t	*ip,
	vnode_t		*vp)
{
	mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI, "xfsino", (long)vp->v_number);
	mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", vp->v_number);
#ifdef NOTYET
	mutex_init(&ip->i_range_lock.r_spinlock, MUTEX_SPIN, "xrange");
#endif /* NOTYET */
	init_sema(&ip->i_flock, 1, "xfsfino", vp->v_number);
	init_sv(&ip->i_pinsema, SV_DEFAULT, "xfspino", vp->v_number);
	spinlock_init(&ip->i_ipinlock, "xfs_ipin");
}

/*
 * Look for the inode corresponding to the given ino in the hash table.
 * If it is there and its i_transp pointer matches tp, return it.
 * Otherwise, return NULL.
 */
xfs_inode_t *
xfs_inode_incore(xfs_mount_t	*mp,
		 xfs_ino_t	ino,
		 xfs_trans_t	*tp)
{
	xfs_ihash_t	*ih;
	xfs_inode_t	*ip;
	xfs_inode_t	*iq;

	ih = XFS_IHASH(mp, ino);
	mraccess(&ih->ih_lock);
	for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
		if (ip->i_ino == ino) {
			/*
			 * If we find it and tp matches, return it.
			 * Also move it to the front of the hash list
			 * if we find it and it is not already there.
			 * Otherwise break from the loop and return
			 * NULL.
			 */
			if (ip->i_transp == tp) {
				if (ip->i_prevp != &ih->ih_next &&
				    mrtrypromote(&ih->ih_lock)) {
					if (iq = ip->i_next) {
						iq->i_prevp = ip->i_prevp;
					}
					*ip->i_prevp = iq;
					iq = ih->ih_next;
					iq->i_prevp = &ip->i_next;
					ip->i_next = iq;
					ip->i_prevp = &ih->ih_next;
					ih->ih_next = ip;
				}
				mrunlock(&ih->ih_lock);
				return (ip);
			}
			break;
		}
	}	
	mrunlock(&ih->ih_lock);
	return (NULL);
}

/*
 * Decrement reference count of an inode structure and unlock it.
 *
 * ip -- the inode being released
 * lock_flags -- this parameter indicates the inode's locks to be
 *       to be released.  See the comment on xfs_iunlock() for a list
 *	 of valid values.
 */
void
xfs_iput(xfs_inode_t	*ip,
	 uint		lock_flags)
{
	xfs_iunlock(ip, lock_flags);
	ITRACE(ip);
	VN_RELE(XFS_ITOV(ip));
}

/*
 * This routine embodies the part of the reclaim code that pulls
 * the inode from the inode hash table and the mount structure's
 * inode list.
 * This should only be called from xfs_reclaim().
 */
void
xfs_ireclaim(xfs_inode_t *ip)
{
	vnode_t		*vp;

	/*
	 * Remove from old hash list and mount list.
	 */
	XFSSTATS.xs_ig_reclaims++;
	xfs_iextract(ip);

	/*
	 * Here we do a spurious inode lock in order to coordinate with
	 * xfs_sync().  This is because xfs_sync() references the inodes
	 * in the mount list without taking references on the corresponding
	 * vnodes.  We make that OK here by ensuring that we wait until
	 * the inode is unlocked in xfs_sync() before we go ahead and
	 * free it.  We get both the regular lock and the io lock because
	 * the xfs_sync() code may need to drop the regular one but will
	 * still hold the io lock.
	 */
	xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);

	/*
	 * Release dquots (and their references) if any. An inode may escape 
	 * xfs_inactive and get here via vn_alloc->vn_reclaim path.
	 */
	if (ip->i_udquot || ip->i_pdquot) {
		xfs_qm_dqdettach_inode(ip);
	}
	
	/*
	 * Pull our behavior descriptor from the vnode chain.
	 */
	vp = XFS_ITOV(ip);
	vn_bhv_remove(VN_BHV_HEAD(vp), &(ip->i_bhv_desc));
 
	/*
	 * Free all memory associated with the inode.
	 */
	xfs_idestroy(ip);
}

/*
 * This routine removes an about-to-be-destoryed inode from 
 * all of the lists in which it is lcoated with the exception
 * of the behavior chain.  It is used by xfs_ireclaim and
 * by cxfs relocation cocde, in which case, we are removing 
 * the xfs_inode but leaving the vnode alone since it has
 * been transformed into a client vnode.
 */
void
xfs_iextract(
	xfs_inode_t	*ip)
{
	xfs_ihash_t	*ih;
	xfs_inode_t	*iq;
	xfs_mount_t	*mp;
	xfs_chash_t	*ch;
	xfs_chashlist_t *chl, *chm;
	SPLDECL(s);
 
	ih = ip->i_hash;
	mrupdate(&ih->ih_lock);
	if (iq = ip->i_next) {
		iq->i_prevp = ip->i_prevp;
	}
	*ip->i_prevp = iq;

	/*
	 * Remove from cluster hash list
	 *   1) delete the chashlist if this is the last inode on the chashlist
	 *   2) unchain from list of inodes
	 *   3) point chashlist->chl_ip to 'chl_next' if to this inode.
	 */
	mp = ip->i_mount;
	ch = XFS_CHASH(mp, ip->i_blkno);
	s = mutex_spinlock(&ch->ch_lock);

	if (ip->i_cnext == ip) {
		/* Last inode on chashlist */
		ASSERT(ip->i_cnext == ip && ip->i_cprev == ip);
		ASSERT(ip->i_chash != NULL);
		chm=NULL;
		for (chl = ch->ch_list; chl != NULL; chl = chl->chl_next) {
			if (chl->chl_blkno == ip->i_blkno) {
				if (chm == NULL) {
					/* first item on the list */
					ch->ch_list = chl->chl_next;
				} else {
					chm->chl_next = chl->chl_next;
				}
				kmem_zone_free(xfs_chashlist_zone, chl);
				break;
			} else {
				ASSERT(chl->chl_ip != ip);
				chm = chl;
			}
		}
#ifndef SIM
		ASSERT_ALWAYS(chl != NULL);
#endif
       } else {
		/* delete one inode from a non-empty list */
		iq = ip->i_cnext;
		iq->i_cprev = ip->i_cprev;
		ip->i_cprev->i_cnext = iq;
		if (ip->i_chash->chl_ip == ip) {
			ip->i_chash->chl_ip = iq;
		}
		ip->i_chash = __return_address;
		ip->i_cprev = __return_address;
		ip->i_cnext = __return_address;
	}
	mutex_spinunlock(&ch->ch_lock, s);
	mrunlock(&ih->ih_lock);

	/*
	 * Remove from mount's inode list.
	 */
	XFS_MOUNT_ILOCK(mp);
	ASSERT((ip->i_mnext != NULL) && (ip->i_mprev != NULL));
	iq = ip->i_mnext;
	iq->i_mprev = ip->i_mprev;
	ip->i_mprev->i_mnext = iq;

	/*
	 * Fix up the head pointer if it points to the inode being deleted.
	 */
	if (mp->m_inodes == ip) {
		if (ip == iq) {
			mp->m_inodes = NULL;
		} else {
			mp->m_inodes = iq;
		}
	}
	
	mp->m_ireclaims++;
	XFS_MOUNT_IUNLOCK(mp);
}

/*
 * This is a wrapper routine around the xfs_ilock() routine
 * used to centralize some grungy code.  It is used in places
 * that wish to lock the inode solely for reading the extents.
 * The reason these places can't just call xfs_ilock(SHARED)
 * is that the inode lock also guards to bringing in of the
 * extents from disk for a file in b-tree format.  If the inode
 * is in b-tree format, then we need to lock the inode exclusively
 * until the extents are read in.  Locking it exclusively all
 * the time would limit our parallelism unnecessarily, though.
 * What we do instead is check to see if the extents have been
 * read in yet, and only lock the inode exclusively if they
 * have not.
 *
 * The function returns a value which should be given to the
 * corresponding xfs_iunlock_map_shared().  This value is
 * the mode in which the lock was actually taken.
 */
uint
xfs_ilock_map_shared(
	xfs_inode_t	*ip)
{
	uint	lock_mode;

	if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) &&
	    ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) {
		lock_mode = XFS_ILOCK_EXCL;
	} else {
		lock_mode = XFS_ILOCK_SHARED;
	}

	xfs_ilock_ra(ip, lock_mode, (inst_t *)__return_address);

	return lock_mode;
}

/*
 * This is simply the unlock routine to go with xfs_ilock_map_shared().
 * All it does is call xfs_iunlock() with the given lock_mode.
 */
void
xfs_iunlock_map_shared(
	xfs_inode_t	*ip,
	unsigned int	lock_mode)
{
	xfs_iunlock(ip, lock_mode);
}

/*
 * The xfs inode contains 2 locks: a multi-reader lock called the
 * i_iolock and a multi-reader lock called the i_lock.  This routine
 * allows either or both of the locks to be obtained.
 *
 * The 2 locks should always be ordered so that the IO lock is
 * obtained first in order to prevent deadlock.
 *
 * ip -- the inode being locked
 * lock_flags -- this parameter indicates the inode's locks
 *       to be locked.  It can be:
 *		XFS_IOLOCK_SHARED,
 *		XFS_IOLOCK_SHARED | XFS_IOLOCK_NESTED,
 *		XFS_IOLOCK_EXCL,
 *		XFS_IOLOCK_EXCL | XFS_IOLOCK_NESTED,
 *	 	XFS_ILOCK_SHARED,
 *		XFS_ILOCK_EXCL,
 *		XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
 *		XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
 *		XFS_IOLOCK_SHARED | XFS_IOLOCK_NESTED | XFS_ILOCK_SHARED,
 *		XFS_IOLOCK_SHARED | XFS_IOLOCK_NESTED | XFS_ILOCK_EXCL,
 *		XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
 *		XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
 *		XFS_IOLOCK_EXCL | XFS_IOLOCK_NESTED | XFS_ILOCK_SHARED,
 *		XFS_IOLOCK_EXCL | XFS_IOLOCK_NESTED | XFS_ILOCK_EXCL
 */
void
xfs_ilock_ra(xfs_inode_t	*ip,
		  uint		lock_flags,
		  void		*return_address)
{
	/*
	 * You can't set both SHARED and EXCL for the same lock,
	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
	 */
	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
	ASSERT((lock_flags & ~XFS_LOCK_MASK) == 0);
#ifdef SIM
	ASSERT(!(lock_flags & XFS_IOLOCK_NESTED));
#endif
	if (return_address == NULL)
		return_address = (inst_t *)__return_address;

	if (!(lock_flags & XFS_IOLOCK_NESTED)) {
		if (lock_flags & XFS_IOLOCK_EXCL) {
			mrupdatef(&ip->i_iolock, PLTWAIT);
		} else if (lock_flags & XFS_IOLOCK_SHARED) {
			mraccessf(&ip->i_iolock, PLTWAIT);
		}
	}
#ifndef SIM
	else {
#pragma mips_frequency_hint NEVER
		ASSERT(XFST_ISNESTED_ENABLED());
		if (!XFST_ISNESTED_MAX())
			XFST_NESTED_INCR();
		else
			cmn_err(CE_PANIC,
				"i/o lock recursion loop, inode 0x%llx",
				(uint64_t) ip);
	}
#endif /* !SIM */
	if (lock_flags & XFS_ILOCK_EXCL) {
		mrupdatef(&ip->i_lock, PLTWAIT);
		ip->i_ilock_ra = return_address;
	} else if (lock_flags & XFS_ILOCK_SHARED) {
		mraccessf(&ip->i_lock, PLTWAIT);
	}
#ifdef XFS_ILOCK_TRACE
	xfs_ilock_trace(ip, 1, lock_flags, (inst_t *)return_address);
#endif
}

void
xfs_ilock(xfs_inode_t	*ip,
	  uint		lock_flags)
{
	xfs_ilock_ra(ip, lock_flags, (inst_t *)__return_address);
}

/*
 * This is just like xfs_ilock(), except that the caller
 * is guaranteed not to sleep.  It returns 1 if it gets
 * the requested locks and 0 otherwise.  If the IO lock is
 * obtained but the inode lock cannot be, then the IO lock
 * is dropped before returning.
 *
 * ip -- the inode being locked
 * lock_flags -- this parameter indicates the inode's locks to be
 *       to be locked.  See the comment for xfs_ilock() for a list
 *	 of valid values.
 *
 */
int
xfs_ilock_nowait(xfs_inode_t	*ip,
		 uint		lock_flags)
{
	int	iolocked;
	int	ilocked;
	int	iolock_recursive;

	/*
	 * You can't set both SHARED and EXCL for the same lock,
	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
	 */
	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
	ASSERT((lock_flags & ~XFS_LOCK_MASK) == 0);
#ifdef SIM
	ASSERT(!(lock_flags & XFS_IOLOCK_NESTED));
#endif

	iolocked = iolock_recursive = 0;
	if (!(lock_flags & XFS_IOLOCK_NESTED)) {
		if (lock_flags & XFS_IOLOCK_EXCL) {
			iolocked = mrtryupdate(&ip->i_iolock);
			if (!iolocked) {
				return 0;
			}
		} else if (lock_flags & XFS_IOLOCK_SHARED) {
			iolocked = mrtryaccess(&ip->i_iolock);
			if (!iolocked) {
				return 0;
			}
		}
	}
#ifndef SIM
	else {
#pragma mips_frequency_hint NEVER
		ASSERT(XFST_ISNESTED_ENABLED());
		if (!XFST_ISNESTED_MAX()) {
			XFST_NESTED_INCR();
			iolock_recursive = 1;
		} else
			cmn_err(CE_PANIC,
				"i/o lock recursion loop, inode 0x%llx",
				(uint64_t) ip);
	}
#endif /* !SIM */
	if (lock_flags & XFS_ILOCK_EXCL) {
		ilocked = mrtryupdate(&ip->i_lock);
		if (!ilocked) {
			if (iolocked) {
				mrunlock(&ip->i_iolock);
			} else if (iolock_recursive)
				XFST_NESTED_DECR();
			return 0;
		}
		ip->i_ilock_ra = (inst_t *) __return_address;
	} else if (lock_flags & XFS_ILOCK_SHARED) {
		ilocked = mrtryaccess(&ip->i_lock);
		if (!ilocked) {
			if (iolocked) {
				mrunlock(&ip->i_iolock);
			} else if (iolock_recursive)
				XFST_NESTED_DECR();
			return 0;
		}
	}
#ifdef XFS_ILOCK_TRACE
	xfs_ilock_trace(ip, 2, lock_flags, (inst_t *)__return_address);
#endif
	return 1;
}

/*
 * xfs_iunlock() is used to drop the inode locks acquired with
 * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
 * that we know which locks to drop.
 *
 * ip -- the inode being unlocked
 * lock_flags -- this parameter indicates the inode's locks to be
 *       to be unlocked.  See the comment for xfs_ilock() for a list
 *	 of valid values for this parameter.
 *
 */
void
xfs_iunlock(xfs_inode_t	*ip,
	    uint	lock_flags)
{
	/*
	 * You can't set both SHARED and EXCL for the same lock,
	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
	 */
	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_IUNLOCK_NONOTIFY)) == 0);
	ASSERT(lock_flags != 0);
#ifdef SIM
	ASSERT(!(lock_flags & XFS_IOLOCK_NESTED));
#endif

	if (!(lock_flags & XFS_IOLOCK_NESTED)) {
		if (lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) {
			ASSERT(!(lock_flags & XFS_IOLOCK_SHARED) ||
			       (ismrlocked(&ip->i_iolock, MR_ACCESS)));
			ASSERT(!(lock_flags & XFS_IOLOCK_EXCL) ||
			       (ismrlocked(&ip->i_iolock, MR_UPDATE)));
			mrunlock(&ip->i_iolock);
		}
	}
#ifndef SIM
	else {
#pragma mips_frequency_hint NEVER
		ASSERT_ALWAYS(XFST_ISNESTED_ENABLED());
		ASSERT_ALWAYS(XFST_ISNESTED_USED());
		XFST_NESTED_DECR();
	}
#endif /* !SIM */

	if (lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) {
		ASSERT(!(lock_flags & XFS_ILOCK_SHARED) ||
		       (ismrlocked(&ip->i_lock, MR_ACCESS)));
		ASSERT(!(lock_flags & XFS_ILOCK_EXCL) ||
		       (ismrlocked(&ip->i_lock, MR_UPDATE)));
		if (lock_flags & XFS_ILOCK_EXCL)
			ip->i_ilock_ra = NULL;
		mrunlock(&ip->i_lock);
	}

	/*
	 * Let the AIL know that this item has been unlocked in case
	 * it is in the AIL and anyone is waiting on it.  Don't do
	 * this if the caller has asked us not to.
	 */
	if (!(lock_flags & XFS_IUNLOCK_NONOTIFY) && ip->i_itemp != NULL) {
		xfs_trans_unlocked_item(ip->i_mount,
					(xfs_log_item_t*)(ip->i_itemp));
	}
#ifdef XFS_ILOCK_TRACE
	xfs_ilock_trace(ip, 3, lock_flags, (inst_t *)__return_address);
#endif
}

#ifndef SIM
/*
 * give up write locks.  the i/o lock cannot be held nested
 * if it is being demoted.
 */
void
xfs_ilock_demote(xfs_inode_t	*ip,
		 uint		lock_flags)
{
	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
	ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);

	if (lock_flags & XFS_ILOCK_EXCL) {
		ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
		mrdemote(&ip->i_lock);
	}
	if (lock_flags & XFS_IOLOCK_EXCL) {
		ASSERT(!XFST_ISNESTED_USED());
		ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE));
		mrdemote(&ip->i_iolock);
	}
}
#endif /* !SIM */

/*
 * The following three routines simply manage the i_flock
 * semaphore embedded in the inode.  This semaphore synchronizes
 * processes attempting to flush the in-core inode back to disk.
 */
void
xfs_iflock(xfs_inode_t *ip)
{
	psema(&(ip->i_flock), PINOD|PLTWAIT);
}

int
xfs_iflock_nowait(xfs_inode_t *ip)
{
	return (cpsema(&(ip->i_flock)));
}

void
xfs_ifunlock(xfs_inode_t *ip)
{
	ASSERT(valusema(&(ip->i_flock)) <= 0);
	vsema(&(ip->i_flock));
}