File: [Development] / linux-2.6-xfs / fs / xfs / xfs_extfree_item.c (download)
Revision 1.23, Tue Oct 24 07:44:22 1995 UTC (21 years, 11 months ago) by ack
Branch: MAIN
Changes since 1.22: +0 -0
lines
auto-merge of changes from /hosts/clyde/proj/banyan/isms/irix/kern/fs/xfs/RCS/xfs_extfree_item.c,v
> ----------------------------
> revision 1.22
> date: 1995/10/13 00:28:23; author: doucette; state: Exp; lines: +2 -1
> Include sys/uuid.h since the uuid_t definition has been moved out
> of sys/types.h for DCE.
> =============================================================================
|
#ident "$Revision$"
/*
* This file contains the implementation of the xfs_efi_log_item
* and xfs_efd_log_item items.
*/
#ifdef SIM
#define _KERNEL 1
#endif
#include <sys/param.h>
#include <sys/buf.h>
#include <sys/vnode.h>
#ifdef SIM
#undef _KERNEL
#endif
#include <sys/debug.h>
#include <sys/kmem.h>
#include <sys/uuid.h>
#ifndef SIM
#include <sys/systm.h>
#else
#include <bstring.h>
#endif
#include "xfs_types.h"
#include "xfs_inum.h"
#include "xfs_log.h"
#include "xfs_trans.h"
#include "xfs_buf_item.h"
#include "xfs_sb.h"
#include "xfs_mount.h"
#include "xfs_trans_priv.h"
#include "xfs_extfree_item.h"
#ifdef SIM
#include "sim.h"
#endif
zone_t *xfs_efi_zone;
zone_t *xfs_efd_zone;
STATIC uint xfs_efi_item_size(xfs_efi_log_item_t *);
STATIC void xfs_efi_item_format(xfs_efi_log_item_t *, xfs_log_iovec_t *);
STATIC void xfs_efi_item_pin(xfs_efi_log_item_t *);
STATIC void xfs_efi_item_unpin(xfs_efi_log_item_t *);
STATIC uint xfs_efi_item_trylock(xfs_efi_log_item_t *);
STATIC void xfs_efi_item_unlock(xfs_efi_log_item_t *);
STATIC xfs_lsn_t xfs_efi_item_committed(xfs_efi_log_item_t *,
xfs_lsn_t lsn);
STATIC void xfs_efi_item_abort(xfs_efi_log_item_t *);
STATIC void xfs_efi_item_push(xfs_efi_log_item_t *);
STATIC void xfs_efi_cancel(xfs_efi_log_item_t *);
STATIC uint xfs_efd_item_size(xfs_efd_log_item_t *);
STATIC void xfs_efd_item_format(xfs_efd_log_item_t *, xfs_log_iovec_t *);
STATIC void xfs_efd_item_pin(xfs_efd_log_item_t *);
STATIC void xfs_efd_item_unpin(xfs_efd_log_item_t *);
STATIC uint xfs_efd_item_trylock(xfs_efd_log_item_t *);
STATIC void xfs_efd_item_unlock(xfs_efd_log_item_t *);
STATIC void xfs_efd_item_abort(xfs_efd_log_item_t *);
STATIC xfs_lsn_t xfs_efd_item_committed(xfs_efd_log_item_t *,
xfs_lsn_t lsn);
STATIC void xfs_efd_item_push(xfs_efd_log_item_t *);
/*
* This returns the number of iovecs needed to log the given efi item.
* We only need 1 iovec for an efi item. It just logs the efi_log_format
* structure.
*/
/*ARGSUSED*/
STATIC uint
xfs_efi_item_size(xfs_efi_log_item_t *efip)
{
return 1;
}
/*
* This is called to fill in the vector of log iovecs for the
* given efi log item. We use only 1 iovec, and we point that
* at the efi_log_format structure embedded in the efi item.
* It is at this point that we assert that all of the extent
* slots in the efi item have been filled.
*/
STATIC void
xfs_efi_item_format(xfs_efi_log_item_t *efip,
xfs_log_iovec_t *log_vector)
{
uint size;
ASSERT(efip->efi_next_extent == efip->efi_format.efi_nextents);
efip->efi_format.efi_type = XFS_LI_EFI;
size = sizeof(xfs_efi_log_format_t);
size += (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
efip->efi_format.efi_size = 1;
log_vector->i_addr = (caddr_t)&(efip->efi_format);
log_vector->i_len = size;
ASSERT(size >= sizeof(xfs_efi_log_format_t));
}
/*
* Pinning has no meaning for an efi item, so just return.
*/
/*ARGSUSED*/
STATIC void
xfs_efi_item_pin(xfs_efi_log_item_t *efip)
{
return;
}
/*
* While EFIs cannot really be pinned, the unpin operation is the
* last place at which the EFI is manipulated during a transaction.
* Here we coordinate with xfs_efi_cancel() to determine who gets to
* free the EFI.
*/
/*ARGSUSED*/
STATIC void
xfs_efi_item_unpin(xfs_efi_log_item_t *efip)
{
int s;
int nexts;
int size;
xfs_mount_t *mp;
mp = efip->efi_item.li_mountp;
s = AIL_LOCK(mp);
if (efip->efi_flags & XFS_EFI_CANCELED) {
/*
* xfs_trans_delete_ail() drops the AIL lock.
*/
xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s);
nexts = efip->efi_format.efi_nextents;
if (nexts > XFS_EFI_MAX_FAST_EXTENTS) {
size = sizeof(xfs_efi_log_item_t);
size += (nexts - 1) * sizeof(xfs_extent_t);
kmem_free(efip, size);
} else {
kmem_zone_free(xfs_efi_zone, efip);
}
} else {
efip->efi_flags |= XFS_EFI_COMMITTED;
AIL_UNLOCK(mp, s);
}
return;
}
/*
* Efi items have no locking or pushing. However, since EFIs are
* pulled from the AIL when their corresponding EFDs are committed
* to disk, their situation is very similar to being pinned. Return
* XFS_ITEM_PINNED so that the caller will eventually flush the log.
* This should help in getting the EFI out of the AIL.
*/
/*ARGSUSED*/
STATIC uint
xfs_efi_item_trylock(xfs_efi_log_item_t *efip)
{
return XFS_ITEM_PINNED;
}
/*
* Efi items have no locking, so just return.
*/
/*ARGSUSED*/
STATIC void
xfs_efi_item_unlock(xfs_efi_log_item_t *efip)
{
return;
}
/*
* The EFI is logged only once and cannot be moved in the log, so
* simply return the lsn at which it's been logged. The canceled
* flag is not paid any attention here. Checking for that is delayed
* until the EFI is unpinned.
*/
/*ARGSUSED*/
STATIC xfs_lsn_t
xfs_efi_item_committed(xfs_efi_log_item_t *efip, xfs_lsn_t lsn)
{
return lsn;
}
/*
* This is called when the transaction logging the EFI is aborted.
* Free up the EFI and return.
*/
STATIC void
xfs_efi_item_abort(xfs_efi_log_item_t *efip)
{
int nexts;
int size;
nexts = efip->efi_format.efi_nextents;
if (nexts > XFS_EFI_MAX_FAST_EXTENTS) {
size = sizeof(xfs_efi_log_item_t);
size += (nexts - 1) * sizeof(xfs_extent_t);
kmem_free(efip, size);
} else {
kmem_zone_free(xfs_efi_zone, efip);
}
return;
}
/*
* There isn't much you can do to push on an efi item. It is simply
* stuck waiting for all of its corresponding efd items to be
* committed to disk.
*/
/*ARGSUSED*/
STATIC void
xfs_efi_item_push(xfs_efi_log_item_t *efip)
{
return;
}
/*
* This is the ops vector shared by all efi log items.
*/
struct xfs_item_ops xfs_efi_item_ops = {
(uint(*)(xfs_log_item_t*))xfs_efi_item_size,
(void(*)(xfs_log_item_t*, xfs_log_iovec_t*))xfs_efi_item_format,
(void(*)(xfs_log_item_t*))xfs_efi_item_pin,
(void(*)(xfs_log_item_t*))xfs_efi_item_unpin,
(uint(*)(xfs_log_item_t*))xfs_efi_item_trylock,
(void(*)(xfs_log_item_t*))xfs_efi_item_unlock,
(xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))xfs_efi_item_committed,
(void(*)(xfs_log_item_t*))xfs_efi_item_push,
(void(*)(xfs_log_item_t*))xfs_efi_item_abort
};
/*
* Allocate and initialize an efi item with the given number of extents.
*/
xfs_efi_log_item_t *
xfs_efi_init(xfs_mount_t *mp,
uint nextents)
{
xfs_efi_log_item_t *efip;
uint size;
ASSERT(nextents > 0);
if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
size = sizeof(xfs_efi_log_item_t) +
((nextents - 1) * sizeof(xfs_extent_t));
efip = (xfs_efi_log_item_t*)kmem_zalloc(size, KM_SLEEP);
} else {
efip = (xfs_efi_log_item_t*)kmem_zone_zalloc(xfs_efi_zone,
KM_SLEEP);
}
efip->efi_item.li_type = XFS_LI_EFI;
efip->efi_item.li_ops = &xfs_efi_item_ops;
efip->efi_item.li_mountp = mp;
efip->efi_format.efi_nextents = nextents;
efip->efi_format.efi_id = (__uint64_t)efip;
return (efip);
}
/*
* This is called by the efd item code below to release references to
* the given efi item. Each efd calls this with the number of
* extents that it has logged, and when the sum of these reaches
* the total number of extents logged by this efi item we can free
* the efi item.
*
* Freeing the efi item requires that we remove it from the AIL.
* We'll use the AIL lock to protect our counters as well as
* the removal from the AIL.
*/
void
xfs_efi_release(xfs_efi_log_item_t *efip,
uint nextents)
{
xfs_mount_t *mp;
int s;
int extents_left;
uint size;
int nexts;
ASSERT(efip->efi_next_extent > 0);
ASSERT(efip->efi_flags & XFS_EFI_COMMITTED);
mp = efip->efi_item.li_mountp;
s = AIL_LOCK(mp);
ASSERT(efip->efi_next_extent >= nextents);
efip->efi_next_extent -= nextents;
extents_left = efip->efi_next_extent;
if (extents_left == 0) {
/*
* xfs_trans_delete_ail() drops the AIL lock.
*/
xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s);
} else {
AIL_UNLOCK(mp, s);
}
if (extents_left == 0) {
nexts = efip->efi_format.efi_nextents;
if (nexts > XFS_EFI_MAX_FAST_EXTENTS) {
size = sizeof(xfs_efi_log_item_t);
size += (nexts - 1) * sizeof(xfs_extent_t);
kmem_free(efip, size);
} else {
kmem_zone_free(xfs_efi_zone, efip);
}
}
}
/*
* This is called when the transaction that should be committing the
* EFD corresponding to the given EFI is aborted. The committed and
* canceled flags are used to coordinate the freeing of the EFI and
* the references by the transaction that committed it.
*/
STATIC void
xfs_efi_cancel(
xfs_efi_log_item_t *efip)
{
int s;
int nexts;
int size;
xfs_mount_t *mp;
mp = efip->efi_item.li_mountp;
s = AIL_LOCK(mp);
if (efip->efi_flags & XFS_EFI_COMMITTED) {
/*
* xfs_trans_delete_ail() drops the AIL lock.
*/
xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s);
nexts = efip->efi_format.efi_nextents;
if (nexts > XFS_EFI_MAX_FAST_EXTENTS) {
size = sizeof(xfs_efi_log_item_t);
size += (nexts - 1) * sizeof(xfs_extent_t);
kmem_free(efip, size);
} else {
kmem_zone_free(xfs_efi_zone, efip);
}
} else {
efip->efi_flags |= XFS_EFI_CANCELED;
AIL_UNLOCK(mp, s);
}
return;
}
/*
* This returns the number of iovecs needed to log the given efd item.
* We only need 1 iovec for an efd item. It just logs the efd_log_format
* structure.
*/
/*ARGSUSED*/
STATIC uint
xfs_efd_item_size(xfs_efd_log_item_t *efdp)
{
return 1;
}
/*
* This is called to fill in the vector of log iovecs for the
* given efd log item. We use only 1 iovec, and we point that
* at the efd_log_format structure embedded in the efd item.
* It is at this point that we assert that all of the extent
* slots in the efd item have been filled.
*/
STATIC void
xfs_efd_item_format(xfs_efd_log_item_t *efdp,
xfs_log_iovec_t *log_vector)
{
uint size;
ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
efdp->efd_format.efd_type = XFS_LI_EFD;
size = sizeof(xfs_efd_log_format_t);
size += (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
efdp->efd_format.efd_size = 1;
log_vector->i_addr = (caddr_t)&(efdp->efd_format);
log_vector->i_len = size;
ASSERT(size >= sizeof(xfs_efd_log_format_t));
}
/*
* Pinning has no meaning for an efd item, so just return.
*/
/*ARGSUSED*/
STATIC void
xfs_efd_item_pin(xfs_efd_log_item_t *efdp)
{
return;
}
/*
* Since pinning has no meaning for an efd item, unpinning does
* not either.
*/
/*ARGSUSED*/
STATIC void
xfs_efd_item_unpin(xfs_efd_log_item_t *efdp)
{
return;
}
/*
* Efd items have no locking, so just return success.
*/
/*ARGSUSED*/
STATIC uint
xfs_efd_item_trylock(xfs_efd_log_item_t *efdp)
{
return XFS_ITEM_LOCKED;
}
/*
* Efd items have no locking or pushing, so return failure
* so that the caller doesn't bother with us.
*/
/*ARGSUSED*/
STATIC void
xfs_efd_item_unlock(xfs_efd_log_item_t *efdp)
{
return;
}
/*
* When the efd item is committed to disk, all we need to do
* is delete our reference to our partner efi item and then
* free ourselves. Since we're freeing ourselves we must
* return -1 to keep the transaction code from further referencing
* this item.
*/
/*ARGSUSED*/
STATIC xfs_lsn_t
xfs_efd_item_committed(xfs_efd_log_item_t *efdp, xfs_lsn_t lsn)
{
uint size;
int nexts;
xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents);
nexts = efdp->efd_format.efd_nextents;
if (nexts > XFS_EFD_MAX_FAST_EXTENTS) {
size = sizeof(xfs_efd_log_item_t);
size += (nexts - 1) * sizeof(xfs_extent_t);
kmem_free(efdp, size);
} else {
kmem_zone_free(xfs_efd_zone, efdp);
}
return (xfs_lsn_t)-1;
}
/*
* The transaction of which this EFD is a part has been aborted.
* Inform its companion EFI of this fact and then clean up after
* ourselves.
*/
STATIC void
xfs_efd_item_abort(xfs_efd_log_item_t *efdp)
{
int nexts;
int size;
xfs_efi_cancel(efdp->efd_efip);
nexts = efdp->efd_format.efd_nextents;
if (nexts > XFS_EFD_MAX_FAST_EXTENTS) {
size = sizeof(xfs_efd_log_item_t);
size += (nexts - 1) * sizeof(xfs_extent_t);
kmem_free(efdp, size);
} else {
kmem_zone_free(xfs_efd_zone, efdp);
}
return;
}
/*
* There isn't much you can do to push on an efd item. It is simply
* stuck waiting for the log to be flushed to disk.
*/
/*ARGSUSED*/
STATIC void
xfs_efd_item_push(xfs_efd_log_item_t *efdp)
{
return;
}
/*
* This is the ops vector shared by all efd log items.
*/
struct xfs_item_ops xfs_efd_item_ops = {
(uint(*)(xfs_log_item_t*))xfs_efd_item_size,
(void(*)(xfs_log_item_t*, xfs_log_iovec_t*))xfs_efd_item_format,
(void(*)(xfs_log_item_t*))xfs_efd_item_pin,
(void(*)(xfs_log_item_t*))xfs_efd_item_unpin,
(uint(*)(xfs_log_item_t*))xfs_efd_item_trylock,
(void(*)(xfs_log_item_t*))xfs_efd_item_unlock,
(xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))xfs_efd_item_committed,
(void(*)(xfs_log_item_t*))xfs_efd_item_push,
(void(*)(xfs_log_item_t*))xfs_efd_item_abort
};
/*
* Allocate and initialize an efd item with the given number of extents.
*/
xfs_efd_log_item_t *
xfs_efd_init(xfs_mount_t *mp,
xfs_efi_log_item_t *efip,
uint nextents)
{
xfs_efd_log_item_t *efdp;
uint size;
ASSERT(nextents > 0);
if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
size = sizeof(xfs_efd_log_item_t) +
((nextents - 1) * sizeof(xfs_extent_t));
efdp = (xfs_efd_log_item_t*)kmem_zalloc(size, KM_SLEEP);
} else {
efdp = (xfs_efd_log_item_t*)kmem_zone_zalloc(xfs_efd_zone,
KM_SLEEP);
}
efdp->efd_item.li_type = XFS_LI_EFD;
efdp->efd_item.li_ops = &xfs_efd_item_ops;
efdp->efd_item.li_mountp = mp;
efdp->efd_efip = efip;
efdp->efd_format.efd_nextents = nextents;
efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
return (efdp);
}