#
# USB Gadget support on a system involves
# (a) a peripheral controller, and
# (b) the gadget driver using it.
#
# for 2.5 kbuild, drivers/usb/gadget/Kconfig
# source this at the end of drivers/usb/Kconfig
#
menuconfig USB_GADGET
tristate "Support for USB Gadgets"
depends on EXPERIMENTAL
help
USB is a master/slave protocol, organized with one master
host (such as a PC) controlling up to 127 peripheral devices.
The USB hardware is asymmetric, which makes it easier to set up:
you can't connect two "to-the-host" connectors to each other.
Linux can run in the host, or in the peripheral. In both cases
you need a low level bus controller driver, and some software
talking to it. Peripheral controllers are often discrete silicon,
or are integrated with the CPU in a microcontroller. The more
familiar host side controllers have names like like "EHCI", "OHCI",
or "UHCI", and are usually integrated into southbridges on PC
motherboards.
Enable this configuration option if you want to run Linux inside
a USB peripheral device. Configure one hardware driver for your
peripheral/device side bus controller, and a "gadget driver" for
your peripheral protocol. (If you use modular gadget drivers,
you may configure more than one.)
If in doubt, say "N" and don't enable these drivers; most people
don't have this kind of hardware (except maybe inside Linux PDAs).
#
# USB Peripheral Controller Support
#
choice
prompt "USB Peripheral Controller Support"
depends on USB_GADGET
config USB_NET2280
tristate "NetChip 2280 USB Peripheral Controller"
depends on PCI && USB_GADGET
help
NetChip 2280 is a PCI based USB peripheral controller which
supports both full and high speed USB 2.0 data transfers.
It has six configurable endpoints, as well as endpoint zero
(for control transfers) and several endpoints with dedicated
functions.
Say "y" to link the driver statically, or "m" to build a
dynamically linked module called "net2280" and force all
gadget drivers to also be dynamically linked.
endchoice
#
# USB Gadget Drivers
#
choice
prompt "USB Gadget Drivers"
depends on USB_GADGET
default USB_ETH
# FIXME want a cleaner dependency/config approach for drivers.
config USB_ZERO
tristate "Gadget Zero (DEVELOPMENT)"
depends on USB_GADGET && (USB_DUMMY_HCD || USB_NET2280 || USB_PXA2XX || USB_SA1100)
help
Gadget Zero is a two-configuration device. It either sinks and
sources bulk data; or it loops back a configurable number of
transfers. It also implements control requests, for "chapter 9"
conformance. The driver needs only two bulk-capable endpoints, so
it can work on top of most device-side usb controllers. It's
useful for testing, and is also a working example showing how
USB "gadget drivers" can be written.
Make this be the first driver you try using on top of any new
USB peripheral controller driver. Then you can use host-side
test software, like the "usbtest" driver, to put your hardware
and its driver through a basic set of functional tests.
Gadget Zero also works with the host-side "usb-skeleton" driver,
and with many kinds of host-side test software. You may need
to tweak product and vendor IDs before host software knows about
this device, and arrange to select an appropriate configuration.
Say "y" to link the driver statically, or "m" to build a
dynamically linked module called "g_zero".
config USB_ZERO_NET2280
bool
# for now, treat the "dummy" hcd as if it were a net2280
depends on USB_ZERO && (USB_NET2280 || USB_DUMMY_HCD)
default y
config USB_ZERO_PXA2XX
bool
depends on USB_ZERO && USB_PXA2XX
default y
config USB_ZERO_SA1100
bool
depends on USB_ZERO && USB_SA1100
default y
config USB_ETH
tristate "Ethernet Gadget"
depends on USB_GADGET && NET && (USB_DUMMY_HCD || USB_NET2280 || USB_PXA2XX || USB_SA1100)
help
This driver implements Ethernet style communication, in either
of two ways:
- The "Communication Device Class" (CDC) Ethernet Control Model.
That protocol is often avoided with pure Ethernet adapters, in
favor of simpler vendor-specific hardware, but is widely
supported by firmware for smart network devices.
- On hardware can't implement that protocol, a simpler approach
is used, placing fewer demands on USB.
Within the USB device, this gadget driver exposes a network device
"usbX", where X depends on what other networking devices you have.
Treat it like a two-node Ethernet link: host, and gadget.
The Linux-USB host-side "usbnet" driver interoperates with this
driver, so that deep I/O queues can be supported. On 2.4 kernels,
use "CDCEther" instead, if you're using the CDC option. That CDC
mode should also interoperate with standard CDC Ethernet class
drivers on other host operating systems.
Say "y" to link the driver statically, or "m" to build a
dynamically linked module called "g_ether".
config USB_ETH_NET2280
bool
# for now, treat the "dummy" hcd as if it were a net2280
depends on USB_ETH && (USB_NET2280 || USB_DUMMY_HCD)
default y
config USB_ETH_PXA2XX
bool
depends on USB_ETH && USB_PXA2XX
default y
config USB_ETH_SA1100
bool
depends on USB_ETH && USB_SA1100
default y
config USB_GADGETFS
tristate "Gadget Filesystem (EXPERIMENTAL)"
depends on USB_GADGET && (USB_DUMMY_HCD || USB_NET2280 || USB_PXA2XX) && EXPERIMENTAL
help
This driver provides a filesystem based API that lets user mode
programs implement a single-configuration USB device, including
endpoint I/O and control requests that don't relate to enumeration.
All endpoints, transfer speeds, and transfer types supported by
the hardware are available, through read() and write() calls.
Say "y" to link the driver statically, or "m" to build a
dynamically linked module called "gadgetfs".
config USB_GADGETFS_NET2280
bool
# for now, treat the "dummy" hcd as if it were a net2280
depends on USB_GADGETFS && (USB_NET2280 || USB_DUMMY_HCD)
default y
config USB_GADGETFS_PXA2XX
bool
depends on USB_GADGETFS && USB_PXA2XX
default y
config USB_G_SERIAL
tristate "serial Gadget"
depends on USB_GADGET && (USB_DUMMY_HCD || USB_NET2280 || USB_PXA2XX || USB_SA1100)
config USB_G_SERIAL_NET2280
bool
# for now, treat the "dummy" hcd as if it were a net2280
depends on USB_G_SERIAL && (USB_NET2280 || USB_DUMMY_HCD)
default y
config USB_G_SERIAL_PXA2XX
bool
depends on USB_G_SERIAL && USB_PXA2XX
default y
config USB_G_SERIAL_SA1100
bool
depends on USB_G_SERIAL && USB_SA1100
default y
endchoice
# endmenuconfig