/*
* Copyright(c) 1999 - 2003 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
*
* Changes:
*
* 2003/06/25 - Shmulik Hen <shmulik.hen at intel dot com>
* - Fixed signed/unsigned calculation errors that caused load sharing
* to collapse to one slave under very heavy UDP Tx stress.
*
* 2003/08/06 - Amir Noam <amir.noam at intel dot com>
* - Add support for setting bond's MAC address with special
* handling required for ALB/TLB.
*/
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/pkt_sched.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/timer.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/if_arp.h>
#include <linux/if_ether.h>
#include <linux/if_bonding.h>
#include <net/ipx.h>
#include <net/arp.h>
#include <asm/byteorder.h>
#include "bonding.h"
#include "bond_alb.h"
#define ALB_TIMER_TICKS_PER_SEC 10 /* should be a divisor of HZ */
#define BOND_TLB_REBALANCE_INTERVAL 10 /* in seconds, periodic re-balancing
* used for division - never set
* to zero !!!
*/
#define BOND_ALB_LP_INTERVAL 1 /* in seconds periodic send of
* learning packets to the switch
*/
#define BOND_TLB_REBALANCE_TICKS (BOND_TLB_REBALANCE_INTERVAL \
* ALB_TIMER_TICKS_PER_SEC)
#define BOND_ALB_LP_TICKS (BOND_ALB_LP_INTERVAL \
* ALB_TIMER_TICKS_PER_SEC)
#define TLB_HASH_TABLE_SIZE 256 /* The size of the clients hash table.
* Note that this value MUST NOT be smaller
* because the key hash table BYTE wide !
*/
#define TLB_NULL_INDEX 0xffffffff
#define MAX_LP_RETRY 3
/* rlb defs */
#define RLB_HASH_TABLE_SIZE 256
#define RLB_NULL_INDEX 0xffffffff
#define RLB_UPDATE_DELAY 2*ALB_TIMER_TICKS_PER_SEC /* 2 seconds */
#define RLB_ARP_BURST_SIZE 2
#define RLB_UPDATE_RETRY 3 /* 3-ticks - must be smaller than the rlb
* rebalance interval (5 min).
*/
/* RLB_PROMISC_TIMEOUT = 10 sec equals the time that the current slave is
* promiscuous after failover
*/
#define RLB_PROMISC_TIMEOUT 10*ALB_TIMER_TICKS_PER_SEC
#pragma pack(1)
struct learning_pkt {
u8 mac_dst[ETH_ALEN];
u8 mac_src[ETH_ALEN];
u16 type;
u8 padding[ETH_ZLEN - (2*ETH_ALEN + 2)];
};
struct arp_pkt {
u16 hw_addr_space;
u16 prot_addr_space;
u8 hw_addr_len;
u8 prot_addr_len;
u16 op_code;
u8 mac_src[ETH_ALEN]; /* sender hardware address */
u32 ip_src; /* sender IP address */
u8 mac_dst[ETH_ALEN]; /* target hardware address */
u32 ip_dst; /* target IP address */
};
#pragma pack()
/* Forward declaration */
static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[]);
static inline u8
_simple_hash(u8 *hash_start, int hash_size)
{
int i;
u8 hash = 0;
for (i=0; i<hash_size; i++) {
hash ^= hash_start[i];
}
return hash;
}
/*********************** tlb specific functions ***************************/
static inline void
_lock_tx_hashtbl(struct bonding *bond)
{
spin_lock(&(BOND_ALB_INFO(bond).tx_hashtbl_lock));
}
static inline void
_unlock_tx_hashtbl(struct bonding *bond)
{
spin_unlock(&(BOND_ALB_INFO(bond).tx_hashtbl_lock));
}
/* Caller must hold tx_hashtbl lock */
static inline void
tlb_init_table_entry(struct bonding *bond, u8 index, u8 save_load)
{
struct tlb_client_info *entry;
if (BOND_ALB_INFO(bond).tx_hashtbl == NULL) {
return;
}
entry = &(BOND_ALB_INFO(bond).tx_hashtbl[index]);
/* at end of cycle, save the load that was transmitted to the client
* during the cycle, and set the tx_bytes counter to 0 for counting
* the load during the next cycle
*/
if (save_load) {
entry->load_history = 1 + entry->tx_bytes /
BOND_TLB_REBALANCE_INTERVAL;
entry->tx_bytes = 0;
}
entry->tx_slave = NULL;
entry->next = TLB_NULL_INDEX;
entry->prev = TLB_NULL_INDEX;
}
static inline void
tlb_init_slave(struct slave *slave)
{
struct tlb_slave_info *slave_info = &(SLAVE_TLB_INFO(slave));
slave_info->load = 0;
slave_info->head = TLB_NULL_INDEX;
}
/* Caller must hold bond lock for read */
static inline void
tlb_clear_slave(struct bonding *bond, struct slave *slave, u8 save_load)
{
struct tlb_client_info *tx_hash_table = NULL;
u32 index, next_index;
/* clear slave from tx_hashtbl */
_lock_tx_hashtbl(bond);
tx_hash_table = BOND_ALB_INFO(bond).tx_hashtbl;
if (tx_hash_table) {
index = SLAVE_TLB_INFO(slave).head;
while (index != TLB_NULL_INDEX) {
next_index = tx_hash_table[index].next;
tlb_init_table_entry(bond, index, save_load);
index = next_index;
}
}
_unlock_tx_hashtbl(bond);
tlb_init_slave(slave);
}
/* Must be called before starting the monitor timer */
static int
tlb_initialize(struct bonding *bond)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
int i;
size_t size;
#if(TLB_HASH_TABLE_SIZE != 256)
/* Key to the hash table is byte wide. Check the size! */
#error Hash Table size is wrong.
#endif
spin_lock_init(&(bond_info->tx_hashtbl_lock));
_lock_tx_hashtbl(bond);
if (bond_info->tx_hashtbl != NULL) {
printk (KERN_ERR "%s: TLB hash table is not NULL\n",
bond->device->name);
_unlock_tx_hashtbl(bond);
return -1;
}
size = TLB_HASH_TABLE_SIZE * sizeof(struct tlb_client_info);
bond_info->tx_hashtbl = kmalloc(size, GFP_KERNEL);
if (bond_info->tx_hashtbl == NULL) {
printk (KERN_ERR "%s: Failed to allocate TLB hash table\n",
bond->device->name);
_unlock_tx_hashtbl(bond);
return -1;
}
memset(bond_info->tx_hashtbl, 0, size);
for (i=0; i<TLB_HASH_TABLE_SIZE; i++) {
tlb_init_table_entry(bond, i, 1);
}
_unlock_tx_hashtbl(bond);
return 0;
}
/* Must be called only after all slaves have been released */
static void
tlb_deinitialize(struct bonding *bond)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
_lock_tx_hashtbl(bond);
if (bond_info->tx_hashtbl == NULL) {
_unlock_tx_hashtbl(bond);
return;
}
kfree(bond_info->tx_hashtbl);
bond_info->tx_hashtbl = NULL;
_unlock_tx_hashtbl(bond);
}
/* Caller must hold bond lock for read */
static struct slave*
tlb_get_least_loaded_slave(struct bonding *bond)
{
struct slave *slave;
struct slave *least_loaded;
s64 curr_gap, max_gap;
/* Find the first enabled slave */
slave = bond_get_first_slave(bond);
while (slave) {
if (SLAVE_IS_OK(slave)) {
break;
}
slave = bond_get_next_slave(bond, slave);
}
if (!slave) {
return NULL;
}
least_loaded = slave;
max_gap = (s64)(slave->speed * 1000000) -
(s64)(SLAVE_TLB_INFO(slave).load * 8);
/* Find the slave with the largest gap */
slave = bond_get_next_slave(bond, slave);
while (slave) {
if (SLAVE_IS_OK(slave)) {
curr_gap = (s64)(slave->speed * 1000000) -
(s64)(SLAVE_TLB_INFO(slave).load * 8);
if (max_gap < curr_gap) {
least_loaded = slave;
max_gap = curr_gap;
}
}
slave = bond_get_next_slave(bond, slave);
}
return least_loaded;
}
/* Caller must hold bond lock for read */
struct slave*
tlb_choose_channel(struct bonding *bond, u32 hash_index, u32 skb_len)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct tlb_client_info *hash_table = NULL;
struct slave *assigned_slave = NULL;
_lock_tx_hashtbl(bond);
hash_table = bond_info->tx_hashtbl;
if (hash_table == NULL) {
printk (KERN_ERR "%s: TLB hash table is NULL\n",
bond->device->name);
_unlock_tx_hashtbl(bond);
return NULL;
}
assigned_slave = hash_table[hash_index].tx_slave;
if (!assigned_slave) {
assigned_slave = tlb_get_least_loaded_slave(bond);
if (assigned_slave) {
struct tlb_slave_info *slave_info =
&(SLAVE_TLB_INFO(assigned_slave));
u32 next_index = slave_info->head;
hash_table[hash_index].tx_slave = assigned_slave;
hash_table[hash_index].next = next_index;
hash_table[hash_index].prev = TLB_NULL_INDEX;
if (next_index != TLB_NULL_INDEX) {
hash_table[next_index].prev = hash_index;
}
slave_info->head = hash_index;
slave_info->load +=
hash_table[hash_index].load_history;
}
}
if (assigned_slave) {
hash_table[hash_index].tx_bytes += skb_len;
}
_unlock_tx_hashtbl(bond);
return assigned_slave;
}
/*********************** rlb specific functions ***************************/
static inline void
_lock_rx_hashtbl(struct bonding *bond)
{
spin_lock(&(BOND_ALB_INFO(bond).rx_hashtbl_lock));
}
static inline void
_unlock_rx_hashtbl(struct bonding *bond)
{
spin_unlock(&(BOND_ALB_INFO(bond).rx_hashtbl_lock));
}
/* when an ARP REPLY is received from a client update its info
* in the rx_hashtbl
*/
static void
rlb_update_entry_from_arp(struct bonding *bond, struct arp_pkt *arp)
{
u32 hash_index;
struct rlb_client_info *client_info = NULL;
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
_lock_rx_hashtbl(bond);
if (bond_info->rx_hashtbl == NULL) {
_unlock_rx_hashtbl(bond);
return;
}
hash_index = _simple_hash((u8*)&(arp->ip_src), 4);
client_info = &(bond_info->rx_hashtbl[hash_index]);
if ((client_info->assigned) &&
(client_info->ip_src == arp->ip_dst) &&
(client_info->ip_dst == arp->ip_src)) {
/* update the clients MAC address */
memcpy(client_info->mac_dst, arp->mac_src, ETH_ALEN);
client_info->ntt = 1;
bond_info->rx_ntt = 1;
}
_unlock_rx_hashtbl(bond);
}
static int
rlb_arp_recv(struct sk_buff *skb,
struct net_device *dev,
struct packet_type* ptype)
{
struct bonding *bond = (struct bonding *)dev->priv;
int ret = NET_RX_DROP;
struct arp_pkt *arp = (struct arp_pkt *)skb->data;
if (!(dev->flags & IFF_MASTER)) {
goto out;
}
if (!arp) {
printk(KERN_ERR "Packet has no ARP data\n");
goto out;
}
if (skb->len < sizeof(struct arp_pkt)) {
printk(KERN_ERR "Packet is too small to be an ARP\n");
goto out;
}
if (arp->op_code == htons(ARPOP_REPLY)) {
/* update rx hash table for this ARP */
rlb_update_entry_from_arp(bond, arp);
BOND_PRINT_DBG(("Server received an ARP Reply from client"));
}
ret = NET_RX_SUCCESS;
out:
dev_kfree_skb(skb);
return ret;
}
/* Caller must hold bond lock for read */
static struct slave*
rlb_next_rx_slave(struct bonding *bond)
{
struct slave *rx_slave = NULL, *slave = NULL;
unsigned int i = 0;
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
slave = bond_info->next_rx_slave;
if (slave == NULL) {
slave = bond->next;
}
/* this loop uses the circular linked list property of the
* slave's list to go through all slaves
*/
for (i = 0; i < bond->slave_cnt; i++, slave = slave->next) {
if (SLAVE_IS_OK(slave)) {
if (!rx_slave) {
rx_slave = slave;
}
else if (slave->speed > rx_slave->speed) {
rx_slave = slave;
}
}
}
if (rx_slave) {
bond_info->next_rx_slave = rx_slave->next;
}
return rx_slave;
}
/* teach the switch the mac of a disabled slave
* on the primary for fault tolerance
*
* Caller must hold bond->ptrlock for write or bond lock for write
*/
static void
rlb_teach_disabled_mac_on_primary(struct bonding *bond, u8 addr[])
{
if (!bond->current_slave) {
return;
}
if (!bond->alb_info.primary_is_promisc) {
bond->alb_info.primary_is_promisc = 1;
dev_set_promiscuity(bond->current_slave->dev, 1);
}
bond->alb_info.rlb_promisc_timeout_counter = 0;
alb_send_learning_packets(bond->current_slave, addr);
}
/* slave being removed should not be active at this point
*
* Caller must hold bond lock for read
*/
static void
rlb_clear_slave(struct bonding *bond, struct slave *slave)
{
struct rlb_client_info *rx_hash_table = NULL;
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
u8 mac_bcast[ETH_ALEN] = {0xff,0xff,0xff,0xff,0xff,0xff};
u32 index, next_index;
/* clear slave from rx_hashtbl */
_lock_rx_hashtbl(bond);
rx_hash_table = bond_info->rx_hashtbl;
if (rx_hash_table == NULL) {
_unlock_rx_hashtbl(bond);
return;
}
index = bond_info->rx_hashtbl_head;
for (; index != RLB_NULL_INDEX; index = next_index) {
next_index = rx_hash_table[index].next;
if (rx_hash_table[index].slave == slave) {
struct slave *assigned_slave = rlb_next_rx_slave(bond);
if (assigned_slave) {
rx_hash_table[index].slave = assigned_slave;
if (memcmp(rx_hash_table[index].mac_dst,
mac_bcast, ETH_ALEN)) {
bond_info->rx_hashtbl[index].ntt = 1;
bond_info->rx_ntt = 1;
/* A slave has been removed from the
* table because it is either disabled
* or being released. We must retry the
* update to avoid clients from not
* being updated & disconnecting when
* there is stress
*/
bond_info->rlb_update_retry_counter =
RLB_UPDATE_RETRY;
}
} else { /* there is no active slave */
rx_hash_table[index].slave = NULL;
}
}
}
_unlock_rx_hashtbl(bond);
write_lock(&bond->ptrlock);
if (slave != bond->current_slave) {
rlb_teach_disabled_mac_on_primary(bond, slave->dev->dev_addr);
}
write_unlock(&bond->ptrlock);
}
static void
rlb_update_client(struct rlb_client_info *client_info)
{
int i = 0;
if (client_info->slave == NULL) {
return;
}
for (i=0; i<RLB_ARP_BURST_SIZE; i++) {
arp_send(ARPOP_REPLY, ETH_P_ARP,
client_info->ip_dst,
client_info->slave->dev,
client_info->ip_src,
client_info->mac_dst,
client_info->slave->dev->dev_addr,
client_info->mac_dst);
}
}
/* sends ARP REPLIES that update the clients that need updating */
static void
rlb_update_rx_clients(struct bonding *bond)
{
u32 hash_index;
struct rlb_client_info *client_info = NULL;
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
_lock_rx_hashtbl(bond);
if (bond_info->rx_hashtbl == NULL) {
_unlock_rx_hashtbl(bond);
return;
}
hash_index = bond_info->rx_hashtbl_head;
for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
client_info = &(bond_info->rx_hashtbl[hash_index]);
if (client_info->ntt) {
rlb_update_client(client_info);
if (bond_info->rlb_update_retry_counter == 0) {
client_info->ntt = 0;
}
}
}
/* do not update the entries again untill this counter is zero so that
* not to confuse the clients.
*/
bond_info->rlb_update_delay_counter = RLB_UPDATE_DELAY;
_unlock_rx_hashtbl(bond);
}
/* The slave was assigned a new mac address - update the clients */
static void
rlb_req_update_slave_clients(struct bonding *bond, struct slave *slave)
{
u32 hash_index;
u8 ntt = 0;
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
u8 mac_bcast[ETH_ALEN] = {0xff,0xff,0xff,0xff,0xff,0xff};
struct rlb_client_info* client_info = NULL;
_lock_rx_hashtbl(bond);
if (bond_info->rx_hashtbl == NULL) {
_unlock_rx_hashtbl(bond);
return;
}
hash_index = bond_info->rx_hashtbl_head;
for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
client_info = &(bond_info->rx_hashtbl[hash_index]);
if ((client_info->slave == slave) &&
memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
client_info->ntt = 1;
ntt = 1;
}
}
// update the team's flag only after the whole iteration
if (ntt) {
bond_info->rx_ntt = 1;
//fasten the change
bond_info->rlb_update_retry_counter = RLB_UPDATE_RETRY;
}
_unlock_rx_hashtbl(bond);
}
/* mark all clients using src_ip to be updated */
static void
rlb_req_update_subnet_clients(struct bonding *bond, u32 src_ip)
{
u32 hash_index;
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
u8 mac_bcast[ETH_ALEN] = {0xff,0xff,0xff,0xff,0xff,0xff};
struct rlb_client_info *client_info = NULL;
_lock_rx_hashtbl(bond);
if (bond_info->rx_hashtbl == NULL) {
_unlock_rx_hashtbl(bond);
return;
}
hash_index = bond_info->rx_hashtbl_head;
for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
client_info = &(bond_info->rx_hashtbl[hash_index]);
if (!client_info->slave) {
printk(KERN_ERR "Bonding: Error: found a client with no"
" channel in the client's hash table\n");
continue;
}
/*update all clients using this src_ip, that are not assigned
* to the team's address (current_slave) and have a known
* unicast mac address.
*/
if ((client_info->ip_src == src_ip) &&
memcmp(client_info->slave->dev->dev_addr,
bond->device->dev_addr, ETH_ALEN) &&
memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
client_info->ntt = 1;
bond_info->rx_ntt = 1;
}
}
_unlock_rx_hashtbl(bond);
}
/* Caller must hold both bond and ptr locks for read */
struct slave*
rlb_choose_channel(struct bonding *bond, struct arp_pkt *arp)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct rlb_client_info *client_info = NULL;
u32 hash_index = 0;
struct slave *assigned_slave = NULL;
u8 mac_bcast[ETH_ALEN] = {0xff,0xff,0xff,0xff,0xff,0xff};
_lock_rx_hashtbl(bond);
if (bond_info->rx_hashtbl == NULL) {
_unlock_rx_hashtbl(bond);
return NULL;
}
hash_index = _simple_hash((u8 *)&arp->ip_dst, 4);
client_info = &(bond_info->rx_hashtbl[hash_index]);
if (client_info->assigned == 1) {
if ((client_info->ip_src == arp->ip_src) &&
(client_info->ip_dst == arp->ip_dst)) {
/* the entry is already assigned to this client */
if (memcmp(arp->mac_dst, mac_bcast, ETH_ALEN)) {
/* update mac address from arp */
memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN);
}
assigned_slave = client_info->slave;
if (assigned_slave) {
_unlock_rx_hashtbl(bond);
return assigned_slave;
}
} else {
/* the entry is already assigned to some other client,
* move the old client to primary (current_slave) so
* that the new client can be assigned to this entry.
*/
if (bond->current_slave &&
client_info->slave != bond->current_slave) {
client_info->slave = bond->current_slave;
rlb_update_client(client_info);
}
}
}
/* assign a new slave */
assigned_slave = rlb_next_rx_slave(bond);
if (assigned_slave) {
client_info->ip_src = arp->ip_src;
client_info->ip_dst = arp->ip_dst;
/* arp->mac_dst is broadcast for arp reqeusts.
* will be updated with clients actual unicast mac address
* upon receiving an arp reply.
*/
memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN);
client_info->slave = assigned_slave;
if (memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
client_info->ntt = 1;
bond->alb_info.rx_ntt = 1;
}
else {
client_info->ntt = 0;
}
if (!client_info->assigned) {
u32 prev_tbl_head = bond_info->rx_hashtbl_head;
bond_info->rx_hashtbl_head = hash_index;
client_info->next = prev_tbl_head;
if (prev_tbl_head != RLB_NULL_INDEX) {
bond_info->rx_hashtbl[prev_tbl_head].prev =
hash_index;
}
client_info->assigned = 1;
}
}
_unlock_rx_hashtbl(bond);
return assigned_slave;
}
/* chooses (and returns) transmit channel for arp reply
* does not choose channel for other arp types since they are
* sent on the current_slave
*/
static struct slave*
rlb_arp_xmit(struct sk_buff *skb, struct bonding *bond)
{
struct arp_pkt *arp = (struct arp_pkt *)skb->nh.raw;
struct slave *tx_slave = NULL;
if (arp->op_code == __constant_htons(ARPOP_REPLY)) {
/* the arp must be sent on the selected
* rx channel
*/
tx_slave = rlb_choose_channel(bond, arp);
if (tx_slave) {
memcpy(arp->mac_src,tx_slave->dev->dev_addr, ETH_ALEN);
}
BOND_PRINT_DBG(("Server sent ARP Reply packet"));
} else if (arp->op_code == __constant_htons(ARPOP_REQUEST)) {
/* Create an entry in the rx_hashtbl for this client as a
* place holder.
* When the arp reply is received the entry will be updated
* with the correct unicast address of the client.
*/
rlb_choose_channel(bond, arp);
/* The ARP relpy packets must be delayed so that
* they can cancel out the influence of the ARP request.
*/
bond->alb_info.rlb_update_delay_counter = RLB_UPDATE_DELAY;
/* arp requests are broadcast and are sent on the primary
* the arp request will collapse all clients on the subnet to
* the primary slave. We must register these clients to be
* updated with their assigned mac.
*/
rlb_req_update_subnet_clients(bond, arp->ip_src);
BOND_PRINT_DBG(("Server sent ARP Request packet"));
}
return tx_slave;
}
/* Caller must hold bond lock for read */
static void
rlb_rebalance(struct bonding *bond)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct slave *assigned_slave = NULL;
u32 hash_index;
struct rlb_client_info *client_info = NULL;
u8 ntt = 0;
_lock_rx_hashtbl(bond);
if (bond_info->rx_hashtbl == NULL) {
_unlock_rx_hashtbl(bond);
return;
}
hash_index = bond_info->rx_hashtbl_head;
for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
client_info = &(bond_info->rx_hashtbl[hash_index]);
assigned_slave = rlb_next_rx_slave(bond);
if (assigned_slave && (client_info->slave != assigned_slave)){
client_info->slave = assigned_slave;
client_info->ntt = 1;
ntt = 1;
}
}
/* update the team's flag only after the whole iteration */
if (ntt) {
bond_info->rx_ntt = 1;
}
_unlock_rx_hashtbl(bond);
}
/* Caller must hold rx_hashtbl lock */
static inline void
rlb_init_table_entry(struct rlb_client_info *entry)
{
entry->next = RLB_NULL_INDEX;
entry->prev = RLB_NULL_INDEX;
entry->assigned = 0;
entry->ntt = 0;
}
static int
rlb_initialize(struct bonding *bond)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct packet_type *pk_type = &(BOND_ALB_INFO(bond).rlb_pkt_type);
int i;
size_t size;
spin_lock_init(&(bond_info->rx_hashtbl_lock));
_lock_rx_hashtbl(bond);
if (bond_info->rx_hashtbl != NULL) {
printk (KERN_ERR "%s: RLB hash table is not NULL\n",
bond->device->name);
_unlock_rx_hashtbl(bond);
return -1;
}
size = RLB_HASH_TABLE_SIZE * sizeof(struct rlb_client_info);
bond_info->rx_hashtbl = kmalloc(size, GFP_KERNEL);
if (bond_info->rx_hashtbl == NULL) {
printk (KERN_ERR "%s: Failed to allocate"
" RLB hash table\n", bond->device->name);
_unlock_rx_hashtbl(bond);
return -1;
}
bond_info->rx_hashtbl_head = RLB_NULL_INDEX;
for (i=0; i<RLB_HASH_TABLE_SIZE; i++) {
rlb_init_table_entry(bond_info->rx_hashtbl + i);
}
_unlock_rx_hashtbl(bond);
/* register to receive ARPs */
/*initialize packet type*/
pk_type->type = __constant_htons(ETH_P_ARP);
pk_type->dev = bond->device;
pk_type->func = rlb_arp_recv;
dev_add_pack(pk_type);
return 0;
}
static void
rlb_deinitialize(struct bonding *bond)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
dev_remove_pack(&(bond_info->rlb_pkt_type));
_lock_rx_hashtbl(bond);
if (bond_info->rx_hashtbl == NULL) {
_unlock_rx_hashtbl(bond);
return;
}
kfree(bond_info->rx_hashtbl);
bond_info->rx_hashtbl = NULL;
_unlock_rx_hashtbl(bond);
}
/*********************** tlb/rlb shared functions *********************/
static void
alb_send_learning_packets(struct slave *slave, u8 mac_addr[])
{
struct sk_buff *skb = NULL;
struct learning_pkt pkt;
char *data = NULL;
int i;
unsigned int size = sizeof(struct learning_pkt);
memset(&pkt, 0, size);
memcpy(pkt.mac_dst, mac_addr, ETH_ALEN);
memcpy(pkt.mac_src, mac_addr, ETH_ALEN);
pkt.type = __constant_htons(ETH_P_LOOP);
for (i=0; i < MAX_LP_RETRY; i++) {
skb = NULL;
skb = dev_alloc_skb(size);
if (!skb) {
return;
}
data = skb_put(skb, size);
memcpy(data, &pkt, size);
skb->mac.raw = data;
skb->nh.raw = data + ETH_HLEN;
skb->protocol = pkt.type;
skb->priority = TC_PRIO_CONTROL;
skb->dev = slave->dev;
dev_queue_xmit(skb);
}
}
/* hw is a boolean parameter that determines whether we should try and
* set the hw address of the device as well as the hw address of the
* net_device
*/
static int
alb_set_slave_mac_addr(struct slave *slave, u8 addr[], int hw)
{
struct net_device *dev = NULL;
struct sockaddr s_addr;
dev = slave->dev;
if (!hw) {
memcpy(dev->dev_addr, addr, dev->addr_len);
return 0;
}
/* for rlb each slave must have a unique hw mac addresses so that */
/* each slave will receive packets destined to a different mac */
memcpy(s_addr.sa_data, addr, dev->addr_len);
s_addr.sa_family = dev->type;
if (dev->set_mac_address(dev, &s_addr)) {
printk(KERN_DEBUG "bonding: Error: alb_set_slave_mac_addr:"
" dev->set_mac_address of dev %s failed!"
" ALB mode requires that the base driver"
" support setting the hw address also when"
" the network device's interface is open\n",
dev->name);
return -EOPNOTSUPP;
}
return 0;
}
/* Caller must hold bond lock for write or ptrlock for write*/
static void
alb_swap_mac_addr(struct bonding *bond,
struct slave *slave1,
struct slave *slave2)
{
u8 tmp_mac_addr[ETH_ALEN];
struct slave *disabled_slave = NULL;
u8 slaves_state_differ;
slaves_state_differ = (SLAVE_IS_OK(slave1) != SLAVE_IS_OK(slave2));
memcpy(tmp_mac_addr, slave1->dev->dev_addr, ETH_ALEN);
alb_set_slave_mac_addr(slave1, slave2->dev->dev_addr, bond->alb_info.rlb_enabled);
alb_set_slave_mac_addr(slave2, tmp_mac_addr, bond->alb_info.rlb_enabled);
/* fasten the change in the switch */
if (SLAVE_IS_OK(slave1)) {
alb_send_learning_packets(slave1, slave1->dev->dev_addr);
if (bond->alb_info.rlb_enabled) {
/* inform the clients that the mac address
* has changed
*/
rlb_req_update_slave_clients(bond, slave1);
}
}
else {
disabled_slave = slave1;
}
if (SLAVE_IS_OK(slave2)) {
alb_send_learning_packets(slave2, slave2->dev->dev_addr);
if (bond->alb_info.rlb_enabled) {
/* inform the clients that the mac address
* has changed
*/
rlb_req_update_slave_clients(bond, slave2);
}
}
else {
disabled_slave = slave2;
}
if (bond->alb_info.rlb_enabled && slaves_state_differ) {
/* A disabled slave was assigned an active mac addr */
rlb_teach_disabled_mac_on_primary(bond,
disabled_slave->dev->dev_addr);
}
}
/**
* alb_change_hw_addr_on_detach
* @bond: bonding we're working on
* @slave: the slave that was just detached
*
* We assume that @slave was already detached from the slave list.
*
* If @slave's permanent hw address is different both from its current
* address and from @bond's address, then somewhere in the bond there's
* a slave that has @slave's permanet address as its current address.
* We'll make sure that that slave no longer uses @slave's permanent address.
*
* Caller must hold bond lock
*/
static void
alb_change_hw_addr_on_detach(struct bonding *bond, struct slave *slave)
{
struct slave *tmp_slave;
int perm_curr_diff;
int perm_bond_diff;
perm_curr_diff = memcmp(slave->perm_hwaddr,
slave->dev->dev_addr,
ETH_ALEN);
perm_bond_diff = memcmp(slave->perm_hwaddr,
bond->device->dev_addr,
ETH_ALEN);
if (perm_curr_diff && perm_bond_diff) {
tmp_slave = bond_get_first_slave(bond);
while (tmp_slave) {
if (!memcmp(slave->perm_hwaddr,
tmp_slave->dev->dev_addr,
ETH_ALEN)) {
break;
}
tmp_slave = bond_get_next_slave(bond, tmp_slave);
}
if (tmp_slave) {
alb_swap_mac_addr(bond, slave, tmp_slave);
}
}
}
/**
* alb_handle_addr_collision_on_attach
* @bond: bonding we're working on
* @slave: the slave that was just attached
*
* checks uniqueness of slave's mac address and handles the case the
* new slave uses the bonds mac address.
*
* If the permanent hw address of @slave is @bond's hw address, we need to
* find a different hw address to give @slave, that isn't in use by any other
* slave in the bond. This address must be, of course, one of the premanent
* addresses of the other slaves.
*
* We go over the slave list, and for each slave there we compare its
* permanent hw address with the current address of all the other slaves.
* If no match was found, then we've found a slave with a permanent address
* that isn't used by any other slave in the bond, so we can assign it to
* @slave.
*
* assumption: this function is called before @slave is attached to the
* bond slave list.
*
* caller must hold the bond lock for write since the mac addresses are compared
* and may be swapped.
*/
static int
alb_handle_addr_collision_on_attach(struct bonding *bond, struct slave *slave)
{
struct slave *tmp_slave1, *tmp_slave2;
if (bond->slave_cnt == 0) {
/* this is the first slave */
return 0;
}
/* if slave's mac address differs from bond's mac address
* check uniqueness of slave's mac address against the other
* slaves in the bond.
*/
if (memcmp(slave->perm_hwaddr, bond->device->dev_addr, ETH_ALEN)) {
tmp_slave1 = bond_get_first_slave(bond);
for (; tmp_slave1; tmp_slave1 = bond_get_next_slave(bond, tmp_slave1)) {
if (!memcmp(tmp_slave1->dev->dev_addr, slave->dev->dev_addr,
ETH_ALEN)) {
break;
}
}
if (tmp_slave1) {
/* a slave was found that is using the mac address
* of the new slave
*/
printk(KERN_ERR "bonding: Warning: the hw address "
"of slave %s is not unique - cannot enslave it!"
, slave->dev->name);
return -EINVAL;
}
return 0;
}
/* the slave's address is equal to the address of the bond
* search for a spare address in the bond for this slave.
*/
tmp_slave1 = bond_get_first_slave(bond);
for (; tmp_slave1; tmp_slave1 = bond_get_next_slave(bond, tmp_slave1)) {
tmp_slave2 = bond_get_first_slave(bond);
for (; tmp_slave2; tmp_slave2 = bond_get_next_slave(bond, tmp_slave2)) {
if (!memcmp(tmp_slave1->perm_hwaddr,
tmp_slave2->dev->dev_addr,
ETH_ALEN)) {
break;
}
}
if (!tmp_slave2) {
/* no slave has tmp_slave1's perm addr
* as its curr addr
*/
break;
}
}
if (tmp_slave1) {
alb_set_slave_mac_addr(slave, tmp_slave1->perm_hwaddr,
bond->alb_info.rlb_enabled);
printk(KERN_WARNING "bonding: Warning: the hw address "
"of slave %s is in use by the bond; "
"giving it the hw address of %s\n",
slave->dev->name, tmp_slave1->dev->name);
} else {
printk(KERN_CRIT "bonding: Error: the hw address "
"of slave %s is in use by the bond; "
"couldn't find a slave with a free hw "
"address to give it (this should not have "
"happened)\n", slave->dev->name);
return -EFAULT;
}
return 0;
}
/**
* alb_set_mac_address
* @bond:
* @addr:
*
* In TLB mode all slaves are configured to the bond's hw address, but set
* their dev_addr field to different addresses (based on their permanent hw
* addresses).
*
* For each slave, this function sets the interface to the new address and then
* changes its dev_addr field to its previous value.
*
* Unwinding assumes bond's mac address has not yet changed.
*/
static inline int
alb_set_mac_address(struct bonding *bond, void *addr)
{
struct sockaddr sa;
struct slave *slave;
char tmp_addr[ETH_ALEN];
int error;
if (bond->alb_info.rlb_enabled) {
return 0;
}
slave = bond_get_first_slave(bond);
for (; slave; slave = bond_get_next_slave(bond, slave)) {
if (slave->dev->set_mac_address == NULL) {
error = -EOPNOTSUPP;
goto unwind;
}
/* save net_device's current hw address */
memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN);
error = slave->dev->set_mac_address(slave->dev, addr);
/* restore net_device's hw address */
memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN);
if (error) {
goto unwind;
}
}
return 0;
unwind:
memcpy(sa.sa_data, bond->device->dev_addr, bond->device->addr_len);
sa.sa_family = bond->device->type;
slave = bond_get_first_slave(bond);
for (; slave; slave = bond_get_next_slave(bond, slave)) {
memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN);
slave->dev->set_mac_address(slave->dev, &sa);
memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN);
}
return error;
}
/************************ exported alb funcions ************************/
int
bond_alb_initialize(struct bonding *bond, int rlb_enabled)
{
int res;
res = tlb_initialize(bond);
if (res) {
return res;
}
if (rlb_enabled) {
bond->alb_info.rlb_enabled = 1;
/* initialize rlb */
res = rlb_initialize(bond);
if (res) {
tlb_deinitialize(bond);
return res;
}
}
return 0;
}
void
bond_alb_deinitialize(struct bonding *bond)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
tlb_deinitialize(bond);
if (bond_info->rlb_enabled) {
rlb_deinitialize(bond);
}
}
int
bond_alb_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct bonding *bond = (struct bonding *) dev->priv;
struct ethhdr *eth_data = (struct ethhdr *)skb->data;
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct slave *tx_slave = NULL;
char do_tx_balance = 1;
int hash_size = 0;
u32 hash_index = 0;
u8 *hash_start = NULL;
u8 mac_bcast[ETH_ALEN] = {0xff,0xff,0xff,0xff,0xff,0xff};
if (!IS_UP(dev)) { /* bond down */
dev_kfree_skb(skb);
return 0;
}
/* make sure that the current_slave and the slaves list do
* not change during tx
*/
read_lock(&bond->lock);
if (bond->slave_cnt == 0) {
/* no suitable interface, frame not sent */
dev_kfree_skb(skb);
read_unlock(&bond->lock);
return 0;
}
read_lock(&bond->ptrlock);
switch (ntohs(skb->protocol)) {
case ETH_P_IP:
if ((memcmp(eth_data->h_dest, mac_bcast, ETH_ALEN) == 0) ||
(skb->nh.iph->daddr == 0xffffffff)) {
do_tx_balance = 0;
break;
}
hash_start = (char*)&(skb->nh.iph->daddr);
hash_size = 4;
break;
case ETH_P_IPV6:
if (memcmp(eth_data->h_dest, mac_bcast, ETH_ALEN) == 0) {
do_tx_balance = 0;
break;
}
hash_start = (char*)&(skb->nh.ipv6h->daddr);
hash_size = 16;
break;
case ETH_P_IPX:
if (ipx_hdr(skb)->ipx_checksum !=
__constant_htons(IPX_NO_CHECKSUM)) {
/* something is wrong with this packet */
do_tx_balance = 0;
break;
}
if (ipx_hdr(skb)->ipx_type !=
__constant_htons(IPX_TYPE_NCP)) {
/* The only protocol worth balancing in
* this family since it has an "ARP" like
* mechanism
*/
do_tx_balance = 0;
break;
}
hash_start = (char*)eth_data->h_dest;
hash_size = ETH_ALEN;
break;
case ETH_P_ARP:
do_tx_balance = 0;
if (bond_info->rlb_enabled) {
tx_slave = rlb_arp_xmit(skb, bond);
}
break;
default:
do_tx_balance = 0;
break;
}
if (do_tx_balance) {
hash_index = _simple_hash(hash_start, hash_size);
tx_slave = tlb_choose_channel(bond, hash_index, skb->len);
}
if (!tx_slave) {
/* unbalanced or unassigned, send through primary */
tx_slave = bond->current_slave;
bond_info->unbalanced_load += skb->len;
}
if (tx_slave && SLAVE_IS_OK(tx_slave)) {
skb->dev = tx_slave->dev;
if (tx_slave != bond->current_slave) {
memcpy(eth_data->h_source,
tx_slave->dev->dev_addr,
ETH_ALEN);
}
dev_queue_xmit(skb);
} else {
/* no suitable interface, frame not sent */
if (tx_slave) {
tlb_clear_slave(bond, tx_slave, 0);
}
dev_kfree_skb(skb);
}
read_unlock(&bond->ptrlock);
read_unlock(&bond->lock);
return 0;
}
void
bond_alb_monitor(struct bonding *bond)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct slave *slave = NULL;
read_lock(&bond->lock);
if ((bond->slave_cnt == 0) || !(bond->device->flags & IFF_UP)) {
bond_info->tx_rebalance_counter = 0;
bond_info->lp_counter = 0;
goto out;
}
bond_info->tx_rebalance_counter++;
bond_info->lp_counter++;
/* send learning packets */
if (bond_info->lp_counter >= BOND_ALB_LP_TICKS) {
/* change of current_slave involves swapping of mac addresses.
* in order to avoid this swapping from happening while
* sending the learning packets, the ptrlock must be held for
* read.
*/
read_lock(&bond->ptrlock);
slave = bond_get_first_slave(bond);
while (slave) {
alb_send_learning_packets(slave,slave->dev->dev_addr);
slave = bond_get_next_slave(bond, slave);
}
read_unlock(&bond->ptrlock);
bond_info->lp_counter = 0;
}
/* rebalance tx traffic */
if (bond_info->tx_rebalance_counter >= BOND_TLB_REBALANCE_TICKS) {
read_lock(&bond->ptrlock);
slave = bond_get_first_slave(bond);
while (slave) {
tlb_clear_slave(bond, slave, 1);
if (slave == bond->current_slave) {
SLAVE_TLB_INFO(slave).load =
bond_info->unbalanced_load /
BOND_TLB_REBALANCE_INTERVAL;
bond_info->unbalanced_load = 0;
}
slave = bond_get_next_slave(bond, slave);
}
read_unlock(&bond->ptrlock);
bond_info->tx_rebalance_counter = 0;
}
/* handle rlb stuff */
if (bond_info->rlb_enabled) {
/* the following code changes the promiscuity of the
* the current_slave. It needs to be locked with a
* write lock to protect from other code that also
* sets the promiscuity.
*/
write_lock(&bond->ptrlock);
if (bond_info->primary_is_promisc &&
(++bond_info->rlb_promisc_timeout_counter >=
RLB_PROMISC_TIMEOUT)) {
bond_info->rlb_promisc_timeout_counter = 0;
/* If the primary was set to promiscuous mode
* because a slave was disabled then
* it can now leave promiscuous mode.
*/
dev_set_promiscuity(bond->current_slave->dev, -1);
bond_info->primary_is_promisc = 0;
}
write_unlock(&bond->ptrlock);
if (bond_info->rlb_rebalance == 1) {
bond_info->rlb_rebalance = 0;
rlb_rebalance(bond);
}
/* check if clients need updating */
if (bond_info->rx_ntt) {
if (bond_info->rlb_update_delay_counter) {
--bond_info->rlb_update_delay_counter;
} else {
rlb_update_rx_clients(bond);
if (bond_info->rlb_update_retry_counter) {
--bond_info->rlb_update_retry_counter;
} else {
bond_info->rx_ntt = 0;
}
}
}
}
out:
read_unlock(&bond->lock);
if (bond->device->flags & IFF_UP) {
/* re-arm the timer */
mod_timer(&(bond_info->alb_timer),
jiffies + (HZ/ALB_TIMER_TICKS_PER_SEC));
}
}
/* assumption: called before the slave is attched to the bond
* and not locked by the bond lock
*/
int
bond_alb_init_slave(struct bonding *bond, struct slave *slave)
{
int err = 0;
err = alb_set_slave_mac_addr(slave, slave->perm_hwaddr,
bond->alb_info.rlb_enabled);
if (err) {
return err;
}
/* caller must hold the bond lock for write since the mac addresses
* are compared and may be swapped.
*/
write_lock_bh(&bond->lock);
err = alb_handle_addr_collision_on_attach(bond, slave);
write_unlock_bh(&bond->lock);
if (err) {
return err;
}
tlb_init_slave(slave);
/* order a rebalance ASAP */
bond->alb_info.tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS;
if (bond->alb_info.rlb_enabled) {
bond->alb_info.rlb_rebalance = 1;
}
return 0;
}
/* Caller must hold bond lock for write */
void
bond_alb_deinit_slave(struct bonding *bond, struct slave *slave)
{
if (bond->slave_cnt > 1) {
alb_change_hw_addr_on_detach(bond, slave);
}
tlb_clear_slave(bond, slave, 0);
if (bond->alb_info.rlb_enabled) {
bond->alb_info.next_rx_slave = NULL;
rlb_clear_slave(bond, slave);
}
}
/* Caller must hold bond lock for read */
void
bond_alb_handle_link_change(struct bonding *bond, struct slave *slave,
char link)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
if (link == BOND_LINK_DOWN) {
tlb_clear_slave(bond, slave, 0);
if (bond->alb_info.rlb_enabled) {
rlb_clear_slave(bond, slave);
}
} else if (link == BOND_LINK_UP) {
/* order a rebalance ASAP */
bond_info->tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS;
if (bond->alb_info.rlb_enabled) {
bond->alb_info.rlb_rebalance = 1;
/* If the updelay module parameter is smaller than the
* forwarding delay of the switch the rebalance will
* not work because the rebalance arp replies will
* not be forwarded to the clients..
*/
}
}
}
/**
* bond_alb_assign_current_slave - assign new current_slave
* @bond: our bonding struct
* @new_slave: new slave to assign
*
* Set the bond->current_slave to @new_slave and handle
* mac address swapping and promiscuity changes as needed.
*
* Caller must hold bond ptrlock for write (or bond lock for write)
*/
void
bond_alb_assign_current_slave(struct bonding *bond, struct slave *new_slave)
{
struct slave *swap_slave = bond->current_slave;
if (bond->current_slave == new_slave) {
return;
}
if (bond->current_slave && bond->alb_info.primary_is_promisc) {
dev_set_promiscuity(bond->current_slave->dev, -1);
bond->alb_info.primary_is_promisc = 0;
bond->alb_info.rlb_promisc_timeout_counter = 0;
}
bond->current_slave = new_slave;
if (!new_slave || (bond->slave_cnt == 0)) {
return;
}
/* set the new current_slave to the bonds mac address
* i.e. swap mac addresses of old current_slave and new current_slave
*/
if (!swap_slave) {
/* find slave that is holding the bond's mac address */
swap_slave = bond_get_first_slave(bond);
while (swap_slave) {
if (!memcmp(swap_slave->dev->dev_addr,
bond->device->dev_addr, ETH_ALEN)) {
break;
}
swap_slave = bond_get_next_slave(bond, swap_slave);
}
}
/* current_slave must be set before calling alb_swap_mac_addr */
if (swap_slave) {
/* swap mac address */
alb_swap_mac_addr(bond, swap_slave, new_slave);
} else {
/* set the new_slave to the bond mac address */
alb_set_slave_mac_addr(new_slave, bond->device->dev_addr,
bond->alb_info.rlb_enabled);
/* fasten bond mac on new current slave */
alb_send_learning_packets(new_slave, bond->device->dev_addr);
}
}
int
bond_alb_set_mac_address(struct net_device *dev, void *addr)
{
struct bonding *bond = dev->priv;
struct sockaddr *sa = addr;
struct slave *swap_slave = NULL;
int error = 0;
if (!is_valid_ether_addr(sa->sa_data)) {
return -EADDRNOTAVAIL;
}
error = alb_set_mac_address(bond, addr);
if (error) {
return error;
}
memcpy(dev->dev_addr, sa->sa_data, dev->addr_len);
/* If there is no current_slave there is nothing else to do.
* Otherwise we'll need to pass the new address to it and handle
* duplications.
*/
if (bond->current_slave == NULL) {
return 0;
}
swap_slave = bond_get_first_slave(bond);
while (swap_slave) {
if (!memcmp(swap_slave->dev->dev_addr, dev->dev_addr, ETH_ALEN)) {
break;
}
swap_slave = bond_get_next_slave(bond, swap_slave);
}
if (swap_slave) {
alb_swap_mac_addr(bond, swap_slave, bond->current_slave);
} else {
alb_set_slave_mac_addr(bond->current_slave, dev->dev_addr,
bond->alb_info.rlb_enabled);
alb_send_learning_packets(bond->current_slave, dev->dev_addr);
if (bond->alb_info.rlb_enabled) {
/* inform clients mac address has changed */
rlb_req_update_slave_clients(bond, bond->current_slave);
}
}
return 0;
}