/*
* device driver for Conexant 2388x based TV cards
* video4linux video interface
*
* (c) 2003 Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#define __NO_VERSION__ 1
#include <linux/init.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/kmod.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <asm/div64.h>
#include "cx88.h"
MODULE_DESCRIPTION("v4l2 driver module for cx2388x based TV cards");
MODULE_AUTHOR("Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]");
MODULE_LICENSE("GPL");
/* ------------------------------------------------------------------ */
static unsigned int video_nr[] = {[0 ... (CX88_MAXBOARDS - 1)] = UNSET };
MODULE_PARM(video_nr,"1-" __stringify(CX88_MAXBOARDS) "i");
MODULE_PARM_DESC(video_nr,"video device numbers");
static unsigned int vbi_nr[] = {[0 ... (CX88_MAXBOARDS - 1)] = UNSET };
MODULE_PARM(vbi_nr,"1-" __stringify(CX88_MAXBOARDS) "i");
MODULE_PARM_DESC(vbi_nr,"vbi device numbers");
static unsigned int radio_nr[] = {[0 ... (CX88_MAXBOARDS - 1)] = UNSET };
MODULE_PARM(radio_nr,"1-" __stringify(CX88_MAXBOARDS) "i");
MODULE_PARM_DESC(radio_nr,"radio device numbers");
static unsigned int latency = UNSET;
MODULE_PARM(latency,"i");
MODULE_PARM_DESC(latency,"pci latency timer");
static unsigned int video_debug = 0;
MODULE_PARM(video_debug,"i");
MODULE_PARM_DESC(video_debug,"enable debug messages [video]");
static unsigned int irq_debug = 0;
MODULE_PARM(irq_debug,"i");
MODULE_PARM_DESC(irq_debug,"enable debug messages [IRQ handler]");
static unsigned int vid_limit = 16;
MODULE_PARM(vid_limit,"i");
MODULE_PARM_DESC(vid_limit,"capture memory limit in megabytes");
static unsigned int tuner[] = {[0 ... (CX88_MAXBOARDS - 1)] = UNSET };
MODULE_PARM(tuner,"1-" __stringify(CX88_MAXBOARDS) "i");
MODULE_PARM_DESC(tuner,"tuner type");
static unsigned int card[] = {[0 ... (CX88_MAXBOARDS - 1)] = UNSET };
MODULE_PARM(card,"1-" __stringify(CX88_MAXBOARDS) "i");
MODULE_PARM_DESC(card,"card type");
static unsigned int nicam = 0;
MODULE_PARM(nicam,"i");
MODULE_PARM_DESC(nicam,"tv audio is nicam");
#define dprintk(level,fmt, arg...) if (video_debug >= level) \
printk(KERN_DEBUG "%s: " fmt, dev->name , ## arg)
/* ------------------------------------------------------------------ */
static struct list_head cx8800_devlist;
static unsigned int cx8800_devcount;
/* ------------------------------------------------------------------- */
/* static data */
static unsigned int inline norm_swidth(struct cx8800_tvnorm *norm)
{
return (norm->id & V4L2_STD_625_50) ? 922 : 754;
}
static unsigned int inline norm_hdelay(struct cx8800_tvnorm *norm)
{
return (norm->id & V4L2_STD_625_50) ? 186 : 135;
}
static unsigned int inline norm_vdelay(struct cx8800_tvnorm *norm)
{
return (norm->id & V4L2_STD_625_50) ? 0x24 : 0x18;
}
static unsigned int inline norm_maxw(struct cx8800_tvnorm *norm)
{
return (norm->id & V4L2_STD_625_50) ? 768 : 640;
// return (norm->id & V4L2_STD_625_50) ? 720 : 640;
}
static unsigned int inline norm_maxh(struct cx8800_tvnorm *norm)
{
return (norm->id & V4L2_STD_625_50) ? 576 : 480;
}
static unsigned int inline norm_fsc8(struct cx8800_tvnorm *norm)
{
static const unsigned int ntsc = 28636360;
static const unsigned int pal = 35468950;
return (norm->id & V4L2_STD_625_50) ? pal : ntsc;
}
static unsigned int inline norm_notchfilter(struct cx8800_tvnorm *norm)
{
return (norm->id & V4L2_STD_625_50)
? HLNotchFilter135PAL
: HLNotchFilter135NTSC;
}
static unsigned int inline norm_htotal(struct cx8800_tvnorm *norm)
{
return (norm->id & V4L2_STD_625_50) ? 1135 : 910;
}
static unsigned int inline norm_vbipack(struct cx8800_tvnorm *norm)
{
return (norm->id & V4L2_STD_625_50) ? 511 : 288;
}
static struct cx8800_tvnorm tvnorms[] = {
{
.name = "NTSC-M",
.id = V4L2_STD_NTSC_M,
.cxiformat = VideoFormatNTSC,
.cxoformat = 0x181f0008,
},{
.name = "NTSC-JP",
.id = V4L2_STD_NTSC_M_JP,
.cxiformat = VideoFormatNTSCJapan,
.cxoformat = 0x181f0008,
#if 0
},{
.name = "NTSC-4.43",
.id = FIXME,
.cxiformat = VideoFormatNTSC443,
.cxoformat = 0x181f0008,
#endif
},{
.name = "PAL-BG",
.id = V4L2_STD_PAL_BG,
.cxiformat = VideoFormatPAL,
.cxoformat = 0x181f0008,
},{
.name = "PAL-DK",
.id = V4L2_STD_PAL_DK,
.cxiformat = VideoFormatPAL,
.cxoformat = 0x181f0008,
},{
.name = "PAL-I",
.id = V4L2_STD_PAL_I,
.cxiformat = VideoFormatPAL,
.cxoformat = 0x181f0008,
},{
.name = "PAL-M",
.id = V4L2_STD_PAL_M,
.cxiformat = VideoFormatPALM,
.cxoformat = 0x1c1f0008,
},{
.name = "PAL-N",
.id = V4L2_STD_PAL_N,
.cxiformat = VideoFormatPALN,
.cxoformat = 0x1c1f0008,
},{
.name = "PAL-Nc",
.id = V4L2_STD_PAL_Nc,
.cxiformat = VideoFormatPALNC,
.cxoformat = 0x1c1f0008,
},{
.name = "PAL-60",
.id = V4L2_STD_PAL_60,
.cxiformat = VideoFormatPAL60,
.cxoformat = 0x181f0008,
},{
.name = "SECAM",
.id = V4L2_STD_SECAM,
.cxiformat = VideoFormatSECAM,
.cxoformat = 0x181f0008,
}
};
static struct cx8800_fmt formats[] = {
{
.name = "8 bpp, gray",
.fourcc = V4L2_PIX_FMT_GREY,
.cxformat = ColorFormatY8,
.depth = 8,
.flags = FORMAT_FLAGS_PACKED,
},{
.name = "15 bpp RGB, le",
.fourcc = V4L2_PIX_FMT_RGB555,
.cxformat = ColorFormatRGB15,
.depth = 16,
.flags = FORMAT_FLAGS_PACKED,
},{
.name = "15 bpp RGB, be",
.fourcc = V4L2_PIX_FMT_RGB555X,
.cxformat = ColorFormatRGB15 | ColorFormatBSWAP,
.depth = 16,
.flags = FORMAT_FLAGS_PACKED,
},{
.name = "16 bpp RGB, le",
.fourcc = V4L2_PIX_FMT_RGB565,
.cxformat = ColorFormatRGB16,
.depth = 16,
.flags = FORMAT_FLAGS_PACKED,
},{
.name = "16 bpp RGB, be",
.fourcc = V4L2_PIX_FMT_RGB565X,
.cxformat = ColorFormatRGB16 | ColorFormatBSWAP,
.depth = 16,
.flags = FORMAT_FLAGS_PACKED,
},{
.name = "24 bpp RGB, le",
.fourcc = V4L2_PIX_FMT_BGR24,
.cxformat = ColorFormatRGB24,
.depth = 24,
.flags = FORMAT_FLAGS_PACKED,
},{
.name = "32 bpp RGB, le",
.fourcc = V4L2_PIX_FMT_BGR32,
.cxformat = ColorFormatRGB32,
.depth = 32,
.flags = FORMAT_FLAGS_PACKED,
},{
.name = "32 bpp RGB, be",
.fourcc = V4L2_PIX_FMT_RGB32,
.cxformat = ColorFormatRGB32 | ColorFormatBSWAP | ColorFormatWSWAP,
.depth = 32,
.flags = FORMAT_FLAGS_PACKED,
},{
.name = "4:2:2, packed, YUYV",
.fourcc = V4L2_PIX_FMT_YUYV,
.cxformat = ColorFormatYUY2,
.depth = 16,
.flags = FORMAT_FLAGS_PACKED,
},{
.name = "4:2:2, packed, UYVY",
.fourcc = V4L2_PIX_FMT_UYVY,
.cxformat = ColorFormatYUY2 | ColorFormatBSWAP,
.depth = 16,
.flags = FORMAT_FLAGS_PACKED,
},
};
static struct cx8800_fmt* format_by_fourcc(unsigned int fourcc)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(formats); i++)
if (formats[i].fourcc == fourcc)
return formats+i;
return NULL;
}
/* ------------------------------------------------------------------- */
static const struct v4l2_queryctrl no_ctl = {
.name = "42",
.flags = V4L2_CTRL_FLAG_DISABLED,
};
static struct cx88_ctrl cx8800_ctls[] = {
/* --- video --- */
{
.v = {
.id = V4L2_CID_BRIGHTNESS,
.name = "Brightness",
.minimum = 0x00,
.maximum = 0xff,
.step = 1,
.default_value = 0,
.type = V4L2_CTRL_TYPE_INTEGER,
},
.off = 128,
.reg = MO_CONTR_BRIGHT,
.mask = 0x00ff,
.shift = 0,
},{
.v = {
.id = V4L2_CID_CONTRAST,
.name = "Contrast",
.minimum = 0,
.maximum = 0xff,
.step = 1,
.default_value = 0,
.type = V4L2_CTRL_TYPE_INTEGER,
},
.reg = MO_CONTR_BRIGHT,
.mask = 0xff00,
.shift = 8,
},{
.v = {
.id = V4L2_CID_HUE,
.name = "Hue",
.minimum = 0,
.maximum = 0xff,
.step = 1,
.default_value = 0,
.type = V4L2_CTRL_TYPE_INTEGER,
},
.off = 0,
.reg = MO_HUE,
.mask = 0x00ff,
.shift = 0,
},{
/* strictly, this only describes only U saturation.
* V saturation is handled specially through code.
*/
.v = {
.id = V4L2_CID_SATURATION,
.name = "Saturation",
.minimum = 0,
.maximum = 0xff,
.step = 1,
.default_value = 0,
.type = V4L2_CTRL_TYPE_INTEGER,
},
.off = 0,
.reg = MO_UV_SATURATION,
.mask = 0x00ff,
.shift = 0,
},{
/* --- audio --- */
.v = {
.id = V4L2_CID_AUDIO_MUTE,
.name = "Mute",
.minimum = 0,
.maximum = 1,
.type = V4L2_CTRL_TYPE_BOOLEAN,
},
.reg = AUD_VOL_CTL,
.sreg = SHADOW_AUD_VOL_CTL,
.mask = (1 << 6),
.shift = 6,
},{
.v = {
.id = V4L2_CID_AUDIO_VOLUME,
.name = "Volume",
.minimum = 0,
.maximum = 0x3f,
.step = 1,
.default_value = 0,
.type = V4L2_CTRL_TYPE_INTEGER,
},
.reg = AUD_VOL_CTL,
.sreg = SHADOW_AUD_VOL_CTL,
.mask = 0x3f,
.shift = 0,
},{
.v = {
.id = V4L2_CID_AUDIO_BALANCE,
.name = "Balance",
.minimum = 0,
.maximum = 0x7f,
.step = 1,
.default_value = 0x40,
.type = V4L2_CTRL_TYPE_INTEGER,
},
.reg = AUD_BAL_CTL,
.sreg = SHADOW_AUD_BAL_CTL,
.mask = 0x7f,
.shift = 0,
}
};
const int CX8800_CTLS = ARRAY_SIZE(cx8800_ctls);
/* ------------------------------------------------------------------- */
/* resource management */
static int res_get(struct cx8800_dev *dev, struct cx8800_fh *fh, unsigned int bit)
{
if (fh->resources & bit)
/* have it already allocated */
return 1;
/* is it free? */
down(&dev->lock);
if (dev->resources & bit) {
/* no, someone else uses it */
up(&dev->lock);
return 0;
}
/* it's free, grab it */
fh->resources |= bit;
dev->resources |= bit;
dprintk(1,"res: get %d\n",bit);
up(&dev->lock);
return 1;
}
static
int res_check(struct cx8800_fh *fh, unsigned int bit)
{
return (fh->resources & bit);
}
static
int res_locked(struct cx8800_dev *dev, unsigned int bit)
{
return (dev->resources & bit);
}
static
void res_free(struct cx8800_dev *dev, struct cx8800_fh *fh, unsigned int bits)
{
if ((fh->resources & bits) != bits)
BUG();
down(&dev->lock);
fh->resources &= ~bits;
dev->resources &= ~bits;
dprintk(1,"res: put %d\n",bits);
up(&dev->lock);
}
/* ------------------------------------------------------------------ */
static const u32 xtal = 28636363;
static int set_pll(struct cx8800_dev *dev, int prescale, u32 ofreq)
{
static u32 pre[] = { 0, 0, 0, 3, 2, 1 };
u64 pll;
u32 reg;
int i;
if (prescale < 2)
prescale = 2;
if (prescale > 5)
prescale = 5;
pll = ofreq * 8 * prescale * (u64)(1 << 20);
do_div(pll,xtal);
reg = (pll & 0x3ffffff) | (pre[prescale] << 26);
if (((reg >> 20) & 0x3f) < 14) {
printk("%s: pll out of range\n",dev->name);
return -1;
}
dprintk(1,"set_pll: MO_PLL_REG 0x%08x [old=0x%08x,freq=%d]\n",
reg, cx_read(MO_PLL_REG), ofreq);
cx_write(MO_PLL_REG, reg);
for (i = 0; i < 10; i++) {
reg = cx_read(MO_DEVICE_STATUS);
if (reg & (1<<2)) {
dprintk(1,"pll locked [pre=%d,ofreq=%d]\n",
prescale,ofreq);
return 0;
}
dprintk(1,"pll not locked yet, waiting ...\n");
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(HZ/10);
}
dprintk(1,"pll NOT locked [pre=%d,ofreq=%d]\n",prescale,ofreq);
return -1;
}
static int set_tvaudio(struct cx8800_dev *dev)
{
if (CX88_VMUX_TELEVISION != INPUT(dev->input)->type)
return 0;
switch (dev->tvnorm->id) {
case V4L2_STD_PAL_BG:
dev->tvaudio = nicam ? WW_NICAM_BGDKL : WW_A2_BG;
break;
case V4L2_STD_PAL_DK:
dev->tvaudio = nicam ? WW_NICAM_BGDKL : WW_A2_DK;
break;
case V4L2_STD_PAL_I:
dev->tvaudio = WW_NICAM_I;
break;
case V4L2_STD_SECAM:
dev->tvaudio = WW_SYSTEM_L_AM; /* FIXME: fr != ru */
break;
case V4L2_STD_NTSC_M:
dev->tvaudio = WW_BTSC;
break;
case V4L2_STD_NTSC_M_JP:
dev->tvaudio = WW_EIAJ;
break;
default:
dprintk(1,"tvaudio support needs work for this tv norm [%s], sorry\n",
dev->tvnorm->name);
dev->tvaudio = 0;
return 0;
}
cx_andor(MO_AFECFG_IO, 0x1f, 0x0);
cx88_set_tvaudio(dev);
cx88_set_stereo(dev,V4L2_TUNER_MODE_STEREO);
cx_write(MO_AUDD_LNGTH, 128/8); /* fifo size */
cx_write(MO_AUDR_LNGTH, 128/8); /* fifo size */
cx_write(MO_AUD_DMACNTRL, 0x03); /* need audio fifo */
return 0;
}
static int set_tvnorm(struct cx8800_dev *dev, struct cx8800_tvnorm *norm)
{
u32 fsc8;
u32 adc_clock;
u32 vdec_clock;
u64 tmp64;
u32 bdelay,agcdelay,htotal;
struct video_channel c;
dev->tvnorm = norm;
fsc8 = norm_fsc8(norm);
adc_clock = xtal;
vdec_clock = fsc8;
dprintk(1,"set_tvnorm: \"%s\" fsc8=%d adc=%d vdec=%d\n",
norm->name, fsc8, adc_clock, vdec_clock);
set_pll(dev,2,vdec_clock);
dprintk(1,"set_tvnorm: MO_INPUT_FORMAT 0x%08x [old=0x%08x]\n",
norm->cxiformat, cx_read(MO_INPUT_FORMAT) & 0x0f);
cx_andor(MO_INPUT_FORMAT, 0xf, norm->cxiformat);
#if 1
// FIXME: as-is from DScaler
dprintk(1,"set_tvnorm: MO_OUTPUT_FORMAT 0x%08x [old=0x%08x]\n",
norm->cxoformat, cx_read(MO_OUTPUT_FORMAT));
cx_write(MO_OUTPUT_FORMAT, norm->cxoformat);
#endif
// MO_SCONV_REG = adc clock / video dec clock * 2^17
tmp64 = adc_clock * (u64)(1 << 17);
do_div(tmp64, vdec_clock);
dprintk(1,"set_tvnorm: MO_SCONV_REG 0x%08x [old=0x%08x]\n",
(u32)tmp64, cx_read(MO_SCONV_REG));
cx_write(MO_SCONV_REG, (u32)tmp64);
// MO_SUB_STEP = 8 * fsc / video dec clock * 2^22
tmp64 = fsc8 * (u64)(1 << 22);
do_div(tmp64, vdec_clock);
dprintk(1,"set_tvnorm: MO_SUB_STEP 0x%08x [old=0x%08x]\n",
(u32)tmp64, cx_read(MO_SUB_STEP));
cx_write(MO_SUB_STEP, (u32)tmp64);
// MO_SUB_STEP_DR = 8 * 4406250 / video dec clock * 2^22
tmp64 = 4406250 * 8 * (u64)(1 << 22);
do_div(tmp64, vdec_clock);
dprintk(1,"set_tvnorm: MO_SUB_STEP_DR 0x%08x [old=0x%08x]\n",
(u32)tmp64, cx_read(MO_SUB_STEP_DR));
cx_write(MO_SUB_STEP_DR, (u32)tmp64);
// bdelay + agcdelay
bdelay = vdec_clock * 65 / 20000000 + 21;
agcdelay = vdec_clock * 68 / 20000000 + 15;
dprintk(1,"set_tvnorm: MO_AGC_BURST 0x%08x [old=0x%08x,bdelay=%d,agcdelay=%d]\n",
(bdelay << 8) | agcdelay, cx_read(MO_AGC_BURST), bdelay, agcdelay);
cx_write(MO_AGC_BURST, (bdelay << 8) | agcdelay);
// htotal
tmp64 = norm_htotal(norm) * (u64)vdec_clock;
do_div(tmp64, fsc8);
htotal = (u32)tmp64 | (norm_notchfilter(norm) << 11);
dprintk(1,"set_tvnorm: MO_HTOTAL 0x%08x [old=0x%08x,htotal=%d]\n",
htotal, cx_read(MO_HTOTAL), (u32)tmp64);
cx_write(MO_HTOTAL, htotal);
// vbi stuff
cx_write(MO_VBI_PACKET, ((1 << 11) | /* (norm_vdelay(norm) << 11) | */
norm_vbipack(norm)));
// audio
set_tvaudio(dev);
// tell i2c chips
memset(&c,0,sizeof(c));
c.channel = dev->input;
c.norm = VIDEO_MODE_PAL;
if ((norm->id & (V4L2_STD_NTSC_M|V4L2_STD_NTSC_M_JP)))
c.norm = VIDEO_MODE_NTSC;
if (norm->id & V4L2_STD_SECAM)
c.norm = VIDEO_MODE_SECAM;
cx8800_call_i2c_clients(dev,VIDIOCSCHAN,&c);
// done
return 0;
}
static int set_scale(struct cx8800_dev *dev, unsigned int width, unsigned int height,
int interlaced)
{
unsigned int swidth = norm_swidth(dev->tvnorm);
unsigned int sheight = norm_maxh(dev->tvnorm);
u32 value;
dprintk(1,"set_scale: %dx%d [%s]\n", width, height, dev->tvnorm->name);
// recalc H delay and scale registers
value = (width * norm_hdelay(dev->tvnorm)) / swidth;
cx_write(MO_HDELAY_EVEN, value);
cx_write(MO_HDELAY_ODD, value);
dprintk(1,"set_scale: hdelay 0x%04x\n", value);
value = (swidth * 4096 / width) - 4096;
cx_write(MO_HSCALE_EVEN, value);
cx_write(MO_HSCALE_ODD, value);
dprintk(1,"set_scale: hscale 0x%04x\n", value);
cx_write(MO_HACTIVE_EVEN, width);
cx_write(MO_HACTIVE_ODD, width);
dprintk(1,"set_scale: hactive 0x%04x\n", width);
// recalc V scale Register (delay is constant)
cx_write(MO_VDELAY_EVEN, norm_vdelay(dev->tvnorm));
cx_write(MO_VDELAY_ODD, norm_vdelay(dev->tvnorm));
dprintk(1,"set_scale: vdelay 0x%04x\n", norm_vdelay(dev->tvnorm));
value = (0x10000 - (sheight * 512 / height - 512)) & 0x1fff;
cx_write(MO_VSCALE_EVEN, value);
cx_write(MO_VSCALE_ODD, value);
dprintk(1,"set_scale: vscale 0x%04x\n", value);
cx_write(MO_VACTIVE_EVEN, sheight);
cx_write(MO_VACTIVE_ODD, sheight);
dprintk(1,"set_scale: vactive 0x%04x\n", sheight);
// setup filters
value = 0;
value |= (1 << 19); // CFILT (default)
if (interlaced)
value |= (1 << 3); // VINT (interlaced vertical scaling)
if (width < 385)
value |= (1 << 0); // 3-tap interpolation
if (width < 193)
value |= (1 << 1); // 5-tap interpolation
cx_write(MO_FILTER_EVEN, value);
cx_write(MO_FILTER_ODD, value);
dprintk(1,"set_scale: filter 0x%04x\n", value);
return 0;
}
static int video_mux(struct cx8800_dev *dev, unsigned int input)
{
dprintk(1,"video_mux: %d [vmux=%d,gpio=0x%x,0x%x,0x%x,0x%x]\n",
input, INPUT(input)->vmux,
INPUT(input)->gpio0,INPUT(input)->gpio1,
INPUT(input)->gpio2,INPUT(input)->gpio3);
dev->input = input;
cx_andor(MO_INPUT_FORMAT, 0x03 << 14, INPUT(input)->vmux << 14);
cx_write(MO_GP0_IO, INPUT(input)->gpio0);
cx_write(MO_GP1_IO, INPUT(input)->gpio1);
cx_write(MO_GP2_IO, INPUT(input)->gpio2);
cx_write(MO_GP3_IO, INPUT(input)->gpio3);
switch (INPUT(input)->type) {
case CX88_VMUX_SVIDEO:
cx_andor(MO_AFECFG_IO, 0x01, 0x01);
break;
default:
cx_andor(MO_AFECFG_IO, 0x01, 0x00);
break;
}
return 0;
}
/* ------------------------------------------------------------------ */
static int start_video_dma(struct cx8800_dev *dev,
struct cx88_dmaqueue *q,
struct cx88_buffer *buf)
{
/* setup fifo + format */
cx88_sram_channel_setup(dev, &cx88_sram_channels[SRAM_CH21],
buf->bpl, buf->risc.dma);
set_scale(dev, buf->vb.width, buf->vb.height, 1);
cx_write(MO_COLOR_CTRL, buf->fmt->cxformat | ColorFormatGamma);
/* reset counter */
cx_write(MO_VIDY_GPCNTRL,0x3);
q->count = 1;
/* enable irqs */
cx_set(MO_PCI_INTMSK, 0x00fc01);
cx_set(MO_VID_INTMSK, 0x0f0011);
/* enable capture */
cx_set(VID_CAPTURE_CONTROL,0x06);
/* start dma */
cx_set(MO_DEV_CNTRL2, (1<<5));
cx_set(MO_VID_DMACNTRL, 0x11);
return 0;
}
static int restart_video_queue(struct cx8800_dev *dev,
struct cx88_dmaqueue *q)
{
struct cx88_buffer *buf, *prev;
struct list_head *item;
if (!list_empty(&q->active)) {
buf = list_entry(q->active.next, struct cx88_buffer, vb.queue);
dprintk(2,"restart_queue [%p/%d]: restart dma\n",
buf, buf->vb.i);
start_video_dma(dev, q, buf);
list_for_each(item,&q->active) {
buf = list_entry(item, struct cx88_buffer, vb.queue);
buf->count = q->count++;
}
mod_timer(&q->timeout, jiffies+BUFFER_TIMEOUT);
return 0;
}
prev = NULL;
for (;;) {
if (list_empty(&q->queued))
return 0;
buf = list_entry(q->queued.next, struct cx88_buffer, vb.queue);
if (NULL == prev) {
list_del(&buf->vb.queue);
list_add_tail(&buf->vb.queue,&q->active);
start_video_dma(dev, q, buf);
buf->vb.state = STATE_ACTIVE;
buf->count = q->count++;
mod_timer(&q->timeout, jiffies+BUFFER_TIMEOUT);
dprintk(2,"[%p/%d] restart_queue - first active\n",
buf,buf->vb.i);
} else if (prev->vb.width == buf->vb.width &&
prev->vb.height == buf->vb.height &&
prev->fmt == buf->fmt) {
list_del(&buf->vb.queue);
list_add_tail(&buf->vb.queue,&q->active);
buf->vb.state = STATE_ACTIVE;
buf->count = q->count++;
prev->risc.jmp[1] = cpu_to_le32(buf->risc.dma);
dprintk(2,"[%p/%d] restart_queue - move to active\n",
buf,buf->vb.i);
} else {
return 0;
}
prev = buf;
}
}
/* ------------------------------------------------------------------ */
static int
buffer_setup(struct file *file, unsigned int *count, unsigned int *size)
{
struct cx8800_fh *fh = file->private_data;
*size = fh->fmt->depth*fh->width*fh->height >> 3;
if (0 == *count)
*count = 32;
while (*size * *count > vid_limit * 1024 * 1024)
(*count)--;
return 0;
}
static int
buffer_prepare(struct file *file, struct videobuf_buffer *vb,
enum v4l2_field field)
{
struct cx8800_fh *fh = file->private_data;
struct cx8800_dev *dev = fh->dev;
struct cx88_buffer *buf = (struct cx88_buffer*)vb;
int rc, init_buffer = 0;
BUG_ON(NULL == fh->fmt);
if (fh->width < 48 || fh->width > norm_maxw(dev->tvnorm) ||
fh->height < 32 || fh->height > norm_maxh(dev->tvnorm))
return -EINVAL;
buf->vb.size = (fh->width * fh->height * fh->fmt->depth) >> 3;
if (0 != buf->vb.baddr && buf->vb.bsize < buf->vb.size)
return -EINVAL;
if (buf->fmt != fh->fmt ||
buf->vb.width != fh->width ||
buf->vb.height != fh->height ||
buf->vb.field != field) {
buf->fmt = fh->fmt;
buf->vb.width = fh->width;
buf->vb.height = fh->height;
buf->vb.field = field;
init_buffer = 1;
}
if (STATE_NEEDS_INIT == buf->vb.state) {
init_buffer = 1;
if (0 != (rc = videobuf_iolock(dev->pci,&buf->vb,NULL)))
goto fail;
}
if (init_buffer) {
buf->bpl = buf->vb.width * buf->fmt->depth >> 3;
switch (buf->vb.field) {
case V4L2_FIELD_TOP:
cx88_risc_buffer(dev->pci, &buf->risc,
buf->vb.dma.sglist, 0, UNSET,
buf->bpl, 0, buf->vb.height);
break;
case V4L2_FIELD_BOTTOM:
cx88_risc_buffer(dev->pci, &buf->risc,
buf->vb.dma.sglist, UNSET, 0,
buf->bpl, 0, buf->vb.height);
break;
case V4L2_FIELD_INTERLACED:
cx88_risc_buffer(dev->pci, &buf->risc,
buf->vb.dma.sglist, 0, buf->bpl,
buf->bpl, buf->bpl,
buf->vb.height >> 1);
break;
case V4L2_FIELD_SEQ_TB:
cx88_risc_buffer(dev->pci, &buf->risc,
buf->vb.dma.sglist,
0, buf->bpl * (buf->vb.height >> 1),
buf->bpl, 0,
buf->vb.height >> 1);
break;
case V4L2_FIELD_SEQ_BT:
cx88_risc_buffer(dev->pci, &buf->risc,
buf->vb.dma.sglist,
buf->bpl * (buf->vb.height >> 1), 0,
buf->bpl, 0,
buf->vb.height >> 1);
break;
default:
BUG();
}
}
dprintk(2,"[%p/%d] buffer_prepare - %dx%d %dbpp \"%s\" - dma=0x%08lx\n",
buf, buf->vb.i,
fh->width, fh->height, fh->fmt->depth, fh->fmt->name,
(unsigned long)buf->risc.dma);
buf->vb.state = STATE_PREPARED;
return 0;
fail:
cx88_free_buffer(dev->pci,buf);
return rc;
}
static void
buffer_queue(struct file *file, struct videobuf_buffer *vb)
{
struct cx88_buffer *buf = (struct cx88_buffer*)vb;
struct cx88_buffer *prev;
struct cx8800_fh *fh = file->private_data;
struct cx8800_dev *dev = fh->dev;
struct cx88_dmaqueue *q = &dev->vidq;
/* add jump to stopper */
buf->risc.jmp[0] = cpu_to_le32(RISC_JUMP | RISC_IRQ1 | 0x10000);
buf->risc.jmp[1] = cpu_to_le32(q->stopper.dma);
if (!list_empty(&q->queued)) {
list_add_tail(&buf->vb.queue,&q->queued);
buf->vb.state = STATE_QUEUED;
dprintk(2,"[%p/%d] buffer_queue - append to queued\n",
buf, buf->vb.i);
} else if (list_empty(&q->active)) {
list_add_tail(&buf->vb.queue,&q->active);
start_video_dma(dev, q, buf);
buf->vb.state = STATE_ACTIVE;
buf->count = q->count++;
mod_timer(&q->timeout, jiffies+BUFFER_TIMEOUT);
dprintk(2,"[%p/%d] buffer_queue - first active\n",
buf, buf->vb.i);
} else {
prev = list_entry(q->active.prev, struct cx88_buffer, vb.queue);
if (prev->vb.width == buf->vb.width &&
prev->vb.height == buf->vb.height &&
prev->fmt == buf->fmt) {
list_add_tail(&buf->vb.queue,&q->active);
buf->vb.state = STATE_ACTIVE;
buf->count = q->count++;
prev->risc.jmp[1] = cpu_to_le32(buf->risc.dma);
dprintk(2,"[%p/%d] buffer_queue - append to active\n",
buf, buf->vb.i);
} else {
list_add_tail(&buf->vb.queue,&q->queued);
buf->vb.state = STATE_QUEUED;
dprintk(2,"[%p/%d] buffer_queue - first queued\n",
buf, buf->vb.i);
}
}
}
static void buffer_release(struct file *file, struct videobuf_buffer *vb)
{
struct cx88_buffer *buf = (struct cx88_buffer*)vb;
struct cx8800_fh *fh = file->private_data;
cx88_free_buffer(fh->dev->pci,buf);
}
struct videobuf_queue_ops cx8800_video_qops = {
.buf_setup = buffer_setup,
.buf_prepare = buffer_prepare,
.buf_queue = buffer_queue,
.buf_release = buffer_release,
};
/* ------------------------------------------------------------------ */
#if 0 /* overlay support not finished yet */
static u32* ov_risc_field(struct cx8800_dev *dev, struct cx8800_fh *fh,
u32 *rp, struct btcx_skiplist *skips,
u32 sync_line, int skip_even, int skip_odd)
{
int line,maxy,start,end,skip,nskips;
u32 ri,ra;
u32 addr;
/* sync instruction */
*(rp++) = cpu_to_le32(RISC_RESYNC | sync_line);
addr = (unsigned long)dev->fbuf.base;
addr += dev->fbuf.fmt.bytesperline * fh->win.w.top;
addr += (fh->fmt->depth >> 3) * fh->win.w.left;
/* scan lines */
for (maxy = -1, line = 0; line < fh->win.w.height;
line++, addr += dev->fbuf.fmt.bytesperline) {
if ((line%2) == 0 && skip_even)
continue;
if ((line%2) == 1 && skip_odd)
continue;
/* calculate clipping */
if (line > maxy)
btcx_calc_skips(line, fh->win.w.width, &maxy,
skips, &nskips, fh->clips, fh->nclips);
/* write out risc code */
for (start = 0, skip = 0; start < fh->win.w.width; start = end) {
if (skip >= nskips) {
ri = RISC_WRITE;
end = fh->win.w.width;
} else if (start < skips[skip].start) {
ri = RISC_WRITE;
end = skips[skip].start;
} else {
ri = RISC_SKIP;
end = skips[skip].end;
skip++;
}
if (RISC_WRITE == ri)
ra = addr + (fh->fmt->depth>>3)*start;
else
ra = 0;
if (0 == start)
ri |= RISC_SOL;
if (fh->win.w.width == end)
ri |= RISC_EOL;
ri |= (fh->fmt->depth>>3) * (end-start);
*(rp++)=cpu_to_le32(ri);
if (0 != ra)
*(rp++)=cpu_to_le32(ra);
}
}
kfree(skips);
return rp;
}
static int ov_risc_frame(struct cx8800_dev *dev, struct cx8800_fh *fh,
struct cx88_buffer *buf)
{
struct btcx_skiplist *skips;
u32 instructions,fields;
u32 *rp;
int rc;
/* skip list for window clipping */
if (NULL == (skips = kmalloc(sizeof(*skips) * fh->nclips,GFP_KERNEL)))
return -ENOMEM;
fields = 0;
if (V4L2_FIELD_HAS_TOP(fh->win.field))
fields++;
if (V4L2_FIELD_HAS_BOTTOM(fh->win.field))
fields++;
/* estimate risc mem: worst case is (clip+1) * lines instructions
+ syncs + jump (all 2 dwords) */
instructions = (fh->nclips+1) * fh->win.w.height;
instructions += 3 + 4;
if ((rc = btcx_riscmem_alloc(dev->pci,&buf->risc,instructions*8)) < 0) {
kfree(skips);
return rc;
}
/* write risc instructions */
rp = buf->risc.cpu;
switch (fh->win.field) {
case V4L2_FIELD_TOP:
rp = ov_risc_field(dev, fh, rp, skips, 0, 0, 0);
break;
case V4L2_FIELD_BOTTOM:
rp = ov_risc_field(dev, fh, rp, skips, 0x200, 0, 0);
break;
case V4L2_FIELD_INTERLACED:
rp = ov_risc_field(dev, fh, rp, skips, 0, 0, 1);
rp = ov_risc_field(dev, fh, rp, skips, 0x200, 1, 0);
break;
default:
BUG();
}
/* save pointer to jmp instruction address */
buf->risc.jmp = rp;
kfree(skips);
return 0;
}
static int verify_window(struct cx8800_dev *dev, struct v4l2_window *win)
{
enum v4l2_field field;
int maxw, maxh;
if (NULL == dev->fbuf.base)
return -EINVAL;
if (win->w.width < 48 || win->w.height < 32)
return -EINVAL;
if (win->clipcount > 2048)
return -EINVAL;
field = win->field;
maxw = norm_maxw(dev->tvnorm);
maxh = norm_maxh(dev->tvnorm);
if (V4L2_FIELD_ANY == field) {
field = (win->w.height > maxh/2)
? V4L2_FIELD_INTERLACED
: V4L2_FIELD_TOP;
}
switch (field) {
case V4L2_FIELD_TOP:
case V4L2_FIELD_BOTTOM:
maxh = maxh / 2;
break;
case V4L2_FIELD_INTERLACED:
break;
default:
return -EINVAL;
}
win->field = field;
if (win->w.width > maxw)
win->w.width = maxw;
if (win->w.height > maxh)
win->w.height = maxh;
return 0;
}
static int setup_window(struct cx8800_dev *dev, struct cx8800_fh *fh,
struct v4l2_window *win)
{
struct v4l2_clip *clips = NULL;
int n,size,retval = 0;
if (NULL == fh->fmt)
return -EINVAL;
retval = verify_window(dev,win);
if (0 != retval)
return retval;
/* copy clips -- luckily v4l1 + v4l2 are binary
compatible here ...*/
n = win->clipcount;
size = sizeof(*clips)*(n+4);
clips = kmalloc(size,GFP_KERNEL);
if (NULL == clips)
return -ENOMEM;
if (n > 0) {
if (copy_from_user(clips,win->clips,sizeof(struct v4l2_clip)*n)) {
kfree(clips);
return -EFAULT;
}
}
/* clip against screen */
if (NULL != dev->fbuf.base)
n = btcx_screen_clips(dev->fbuf.fmt.width, dev->fbuf.fmt.height,
&win->w, clips, n);
btcx_sort_clips(clips,n);
/* 4-byte alignments */
switch (fh->fmt->depth) {
case 8:
case 24:
btcx_align(&win->w, clips, n, 3);
break;
case 16:
btcx_align(&win->w, clips, n, 1);
break;
case 32:
/* no alignment fixups needed */
break;
default:
BUG();
}
down(&fh->vidq.lock);
if (fh->clips)
kfree(fh->clips);
fh->clips = clips;
fh->nclips = n;
fh->win = *win;
#if 0
fh->ov.setup_ok = 1;
#endif
/* update overlay if needed */
retval = 0;
#if 0
if (check_btres(fh, RESOURCE_OVERLAY)) {
struct bttv_buffer *new;
new = videobuf_alloc(sizeof(*new));
bttv_overlay_risc(btv, &fh->ov, fh->ovfmt, new);
retval = bttv_switch_overlay(btv,fh,new);
}
#endif
up(&fh->vidq.lock);
return retval;
}
#endif
/* ------------------------------------------------------------------ */
static struct videobuf_queue* get_queue(struct cx8800_fh *fh)
{
switch (fh->type) {
case V4L2_BUF_TYPE_VIDEO_CAPTURE:
return &fh->vidq;
case V4L2_BUF_TYPE_VBI_CAPTURE:
return &fh->vbiq;
default:
BUG();
return NULL;
}
}
static int get_ressource(struct cx8800_fh *fh)
{
switch (fh->type) {
case V4L2_BUF_TYPE_VIDEO_CAPTURE:
return RESOURCE_VIDEO;
case V4L2_BUF_TYPE_VBI_CAPTURE:
return RESOURCE_VBI;
default:
BUG();
return 0;
}
}
static int video_open(struct inode *inode, struct file *file)
{
int minor = iminor(inode);
struct cx8800_dev *h,*dev = NULL;
struct cx8800_fh *fh;
struct list_head *list;
enum v4l2_buf_type type = 0;
int radio = 0;
list_for_each(list,&cx8800_devlist) {
h = list_entry(list, struct cx8800_dev, devlist);
if (h->video_dev->minor == minor) {
dev = h;
type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
}
if (h->vbi_dev->minor == minor) {
dev = h;
type = V4L2_BUF_TYPE_VBI_CAPTURE;
}
if (h->radio_dev &&
h->radio_dev->minor == minor) {
radio = 1;
dev = h;
}
}
if (NULL == dev)
return -ENODEV;
dprintk(1,"open minor=%d radio=%d type=%s\n",
minor,radio,v4l2_type_names[type]);
/* allocate + initialize per filehandle data */
fh = kmalloc(sizeof(*fh),GFP_KERNEL);
if (NULL == fh)
return -ENOMEM;
memset(fh,0,sizeof(*fh));
file->private_data = fh;
fh->dev = dev;
fh->radio = radio;
fh->type = type;
fh->width = 320;
fh->height = 240;
fh->fmt = format_by_fourcc(V4L2_PIX_FMT_BGR24);
videobuf_queue_init(&fh->vidq, &cx8800_video_qops,
dev->pci, &dev->slock,
V4L2_BUF_TYPE_VIDEO_CAPTURE,
V4L2_FIELD_INTERLACED,
sizeof(struct cx88_buffer));
videobuf_queue_init(&fh->vbiq, &cx8800_vbi_qops,
dev->pci, &dev->slock,
V4L2_BUF_TYPE_VBI_CAPTURE,
V4L2_FIELD_SEQ_TB,
sizeof(struct cx88_buffer));
init_MUTEX(&fh->vidq.lock);
init_MUTEX(&fh->vbiq.lock);
if (fh->radio) {
dprintk(1,"video_open: setting radio device\n");
cx_write(MO_GP0_IO, cx88_boards[dev->board].radio.gpio0);
cx_write(MO_GP1_IO, cx88_boards[dev->board].radio.gpio1);
cx_write(MO_GP2_IO, cx88_boards[dev->board].radio.gpio2);
cx_write(MO_GP3_IO, cx88_boards[dev->board].radio.gpio3);
dev->tvaudio = WW_FM;
cx88_set_tvaudio(dev);
cx88_set_stereo(dev,V4L2_TUNER_MODE_STEREO);
cx8800_call_i2c_clients(dev,AUDC_SET_RADIO,NULL);
}
return 0;
}
static ssize_t
video_read(struct file *file, char *data, size_t count, loff_t *ppos)
{
struct cx8800_fh *fh = file->private_data;
switch (fh->type) {
case V4L2_BUF_TYPE_VIDEO_CAPTURE:
if (res_locked(fh->dev,RESOURCE_VIDEO))
return -EBUSY;
return videobuf_read_one(file, &fh->vidq, data, count, ppos);
case V4L2_BUF_TYPE_VBI_CAPTURE:
if (!res_get(fh->dev,fh,RESOURCE_VBI))
return -EBUSY;
return videobuf_read_stream(file, &fh->vbiq, data, count, ppos, 1);
default:
BUG();
return 0;
}
}
static unsigned int
video_poll(struct file *file, struct poll_table_struct *wait)
{
struct cx8800_fh *fh = file->private_data;
if (V4L2_BUF_TYPE_VBI_CAPTURE == fh->type)
return videobuf_poll_stream(file, &fh->vbiq, wait);
/* FIXME */
return POLLERR;
}
static int video_release(struct inode *inode, struct file *file)
{
struct cx8800_fh *fh = file->private_data;
struct cx8800_dev *dev = fh->dev;
/* turn off overlay */
if (res_check(fh, RESOURCE_OVERLAY)) {
/* FIXME */
res_free(dev,fh,RESOURCE_OVERLAY);
}
/* stop video capture */
if (res_check(fh, RESOURCE_VIDEO)) {
videobuf_queue_cancel(file,&fh->vidq);
res_free(dev,fh,RESOURCE_VIDEO);
}
if (fh->vidq.read_buf) {
buffer_release(file,fh->vidq.read_buf);
kfree(fh->vidq.read_buf);
}
/* stop vbi capture */
if (res_check(fh, RESOURCE_VBI)) {
if (fh->vbiq.streaming)
videobuf_streamoff(file,&fh->vbiq);
if (fh->vbiq.reading)
videobuf_read_stop(file,&fh->vbiq);
res_free(dev,fh,RESOURCE_VBI);
}
file->private_data = NULL;
kfree(fh);
return 0;
}
static int
video_mmap(struct file *file, struct vm_area_struct * vma)
{
struct cx8800_fh *fh = file->private_data;
return videobuf_mmap_mapper(vma, get_queue(fh));
}
/* ------------------------------------------------------------------ */
static int get_control(struct cx8800_dev *dev, struct v4l2_control *ctl)
{
struct cx88_ctrl *c = NULL;
u32 value;
int i;
for (i = 0; i < CX8800_CTLS; i++)
if (cx8800_ctls[i].v.id == ctl->id)
c = &cx8800_ctls[i];
if (NULL == c)
return -EINVAL;
value = c->sreg ? cx_sread(c->sreg) : cx_read(c->reg);
switch (ctl->id) {
case V4L2_CID_AUDIO_BALANCE:
ctl->value = (value & 0x40) ? (value & 0x3f) : (0x40 - (value & 0x3f));
break;
default:
ctl->value = ((value + (c->off << c->shift)) & c->mask) >> c->shift;
break;
}
return 0;
}
static int set_control(struct cx8800_dev *dev, struct v4l2_control *ctl)
{
struct cx88_ctrl *c = NULL;
u32 v_sat_value;
u32 value;
int i;
for (i = 0; i < CX8800_CTLS; i++)
if (cx8800_ctls[i].v.id == ctl->id)
c = &cx8800_ctls[i];
if (NULL == c)
return -EINVAL;
if (ctl->value < c->v.minimum)
return -ERANGE;
if (ctl->value > c->v.maximum)
return -ERANGE;
switch (ctl->id) {
case V4L2_CID_AUDIO_BALANCE:
value = (ctl->value < 0x40) ? (0x40 - ctl->value) : ctl->value;
break;
case V4L2_CID_SATURATION:
/* special v_sat handling */
v_sat_value = ctl->value - (0x7f - 0x5a);
if (v_sat_value > 0xff)
v_sat_value = 0xff;
if (v_sat_value < 0x00)
v_sat_value = 0x00;
cx_andor(MO_UV_SATURATION, 0xff00, v_sat_value << 8);
/* fall through to default route for u_sat */
default:
value = ((ctl->value - c->off) << c->shift) & c->mask;
break;
}
dprintk(1,"set_control id=0x%X reg=0x%x val=0x%x%s\n",
ctl->id, c->reg, value, c->sreg ? " [shadowed]" : "");
if (c->sreg) {
cx_sandor(c->sreg, c->reg, c->mask, value);
} else {
cx_andor(c->reg, c->mask, value);
}
return 0;
}
static void init_controls(struct cx8800_dev *dev)
{
static struct v4l2_control mute = {
.id = V4L2_CID_AUDIO_MUTE,
.value = 1,
};
static struct v4l2_control volume = {
.id = V4L2_CID_AUDIO_VOLUME,
.value = 0,
};
set_control(dev,&mute);
set_control(dev,&volume);
}
/* ------------------------------------------------------------------ */
static int cx8800_g_fmt(struct cx8800_dev *dev, struct cx8800_fh *fh,
struct v4l2_format *f)
{
switch (f->type) {
case V4L2_BUF_TYPE_VIDEO_CAPTURE:
memset(&f->fmt.pix,0,sizeof(f->fmt.pix));
f->fmt.pix.width = fh->width;
f->fmt.pix.height = fh->height;
f->fmt.pix.field = fh->vidq.field;
f->fmt.pix.pixelformat = fh->fmt->fourcc;
f->fmt.pix.bytesperline =
(f->fmt.pix.width * fh->fmt->depth) >> 3;
f->fmt.pix.sizeimage =
f->fmt.pix.height * f->fmt.pix.bytesperline;
return 0;
case V4L2_BUF_TYPE_VBI_CAPTURE:
cx8800_vbi_fmt(dev, f);
return 0;
default:
return -EINVAL;
}
}
static int cx8800_try_fmt(struct cx8800_dev *dev, struct cx8800_fh *fh,
struct v4l2_format *f)
{
switch (f->type) {
case V4L2_BUF_TYPE_VIDEO_CAPTURE:
{
struct cx8800_fmt *fmt;
enum v4l2_field field;
unsigned int maxw, maxh;
fmt = format_by_fourcc(f->fmt.pix.pixelformat);
if (NULL == fmt)
return -EINVAL;
field = f->fmt.pix.field;
maxw = norm_maxw(dev->tvnorm);
maxh = norm_maxh(dev->tvnorm);
#if 0
if (V4L2_FIELD_ANY == field) {
field = (f->fmt.pix.height > maxh/2)
? V4L2_FIELD_INTERLACED
: V4L2_FIELD_BOTTOM;
}
#else
field = V4L2_FIELD_INTERLACED;
#endif
switch (field) {
case V4L2_FIELD_TOP:
case V4L2_FIELD_BOTTOM:
maxh = maxh / 2;
break;
case V4L2_FIELD_INTERLACED:
break;
default:
return -EINVAL;
}
f->fmt.pix.field = field;
if (f->fmt.pix.width < 48)
f->fmt.pix.width = 48;
if (f->fmt.pix.height < 32)
f->fmt.pix.height = 32;
if (f->fmt.pix.width > maxw)
f->fmt.pix.width = maxw;
if (f->fmt.pix.height > maxh)
f->fmt.pix.height = maxh;
f->fmt.pix.bytesperline =
(f->fmt.pix.width * fmt->depth) >> 3;
f->fmt.pix.sizeimage =
f->fmt.pix.height * f->fmt.pix.bytesperline;
return 0;
}
case V4L2_BUF_TYPE_VBI_CAPTURE:
cx8800_vbi_fmt(dev, f);
return 0;
default:
return -EINVAL;
}
}
static int cx8800_s_fmt(struct cx8800_dev *dev, struct cx8800_fh *fh,
struct v4l2_format *f)
{
int err;
switch (f->type) {
case V4L2_BUF_TYPE_VIDEO_CAPTURE:
err = cx8800_try_fmt(dev,fh,f);
if (0 != err)
return err;
fh->fmt = format_by_fourcc(f->fmt.pix.pixelformat);
fh->width = f->fmt.pix.width;
fh->height = f->fmt.pix.height;
fh->vidq.field = f->fmt.pix.field;
return 0;
case V4L2_BUF_TYPE_VBI_CAPTURE:
cx8800_vbi_fmt(dev, f);
return 0;
default:
return -EINVAL;
}
}
/*
* This function is _not_ called directly, but from
* video_generic_ioctl (and maybe others). userspace
* copying is done already, arg is a kernel pointer.
*/
static int video_do_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, void *arg)
{
struct cx8800_fh *fh = file->private_data;
struct cx8800_dev *dev = fh->dev;
#if 0
unsigned long flags;
#endif
int err;
if (video_debug > 1)
cx88_print_ioctl(dev->name,cmd);
switch (cmd) {
case VIDIOC_QUERYCAP:
{
struct v4l2_capability *cap = arg;
memset(cap,0,sizeof(*cap));
strcpy(cap->driver, "cx8800");
strlcpy(cap->card, cx88_boards[dev->board].name,
sizeof(cap->card));
sprintf(cap->bus_info,"PCI:%s",pci_name(dev->pci));
cap->version = CX88_VERSION_CODE;
cap->capabilities =
V4L2_CAP_VIDEO_CAPTURE |
V4L2_CAP_READWRITE |
V4L2_CAP_STREAMING |
V4L2_CAP_VBI_CAPTURE |
#if 0
V4L2_CAP_VIDEO_OVERLAY |
#endif
0;
if (UNSET != dev->tuner_type)
cap->capabilities |= V4L2_CAP_TUNER;
return 0;
}
/* ---------- tv norms ---------- */
case VIDIOC_ENUMSTD:
{
struct v4l2_standard *e = arg;
unsigned int i;
i = e->index;
if (i >= ARRAY_SIZE(tvnorms))
return -EINVAL;
err = v4l2_video_std_construct(e, tvnorms[e->index].id,
tvnorms[e->index].name);
e->index = i;
if (err < 0)
return err;
return 0;
}
case VIDIOC_G_STD:
{
v4l2_std_id *id = arg;
*id = dev->tvnorm->id;
return 0;
}
case VIDIOC_S_STD:
{
v4l2_std_id *id = arg;
unsigned int i;
for(i = 0; i < ARRAY_SIZE(tvnorms); i++)
if (*id & tvnorms[i].id)
break;
if (i == ARRAY_SIZE(tvnorms))
return -EINVAL;
down(&dev->lock);
set_tvnorm(dev,&tvnorms[i]);
up(&dev->lock);
return 0;
}
/* ------ input switching ---------- */
case VIDIOC_ENUMINPUT:
{
static const char *iname[] = {
[ CX88_VMUX_COMPOSITE1 ] = "Composite1",
[ CX88_VMUX_COMPOSITE2 ] = "Composite2",
[ CX88_VMUX_COMPOSITE3 ] = "Composite3",
[ CX88_VMUX_COMPOSITE4 ] = "Composite4",
[ CX88_VMUX_TELEVISION ] = "Television",
[ CX88_VMUX_SVIDEO ] = "S-Video",
[ CX88_VMUX_DEBUG ] = "for debug only",
};
struct v4l2_input *i = arg;
unsigned int n;
n = i->index;
if (n >= 4)
return -EINVAL;
if (0 == INPUT(n)->type)
return -EINVAL;
memset(i,0,sizeof(*i));
i->index = n;
i->type = V4L2_INPUT_TYPE_CAMERA;
strcpy(i->name,iname[INPUT(n)->type]);
if (CX88_VMUX_TELEVISION == INPUT(n)->type)
i->type = V4L2_INPUT_TYPE_TUNER;
for (n = 0; n < ARRAY_SIZE(tvnorms); n++)
i->std |= tvnorms[n].id;
return 0;
}
case VIDIOC_G_INPUT:
{
unsigned int *i = arg;
*i = dev->input;
return 0;
}
case VIDIOC_S_INPUT:
{
unsigned int *i = arg;
if (*i >= 4)
return -EINVAL;
down(&dev->lock);
video_mux(dev,*i);
up(&dev->lock);
return 0;
}
/* --- capture ioctls ---------------------------------------- */
case VIDIOC_ENUM_FMT:
{
struct v4l2_fmtdesc *f = arg;
enum v4l2_buf_type type;
unsigned int index;
index = f->index;
type = f->type;
switch (type) {
case V4L2_BUF_TYPE_VIDEO_CAPTURE:
if (index >= ARRAY_SIZE(formats))
return -EINVAL;
memset(f,0,sizeof(*f));
f->index = index;
f->type = type;
strlcpy(f->description,formats[index].name,sizeof(f->description));
f->pixelformat = formats[index].fourcc;
break;
default:
return -EINVAL;
}
return 0;
}
case VIDIOC_G_FMT:
{
struct v4l2_format *f = arg;
return cx8800_g_fmt(dev,fh,f);
}
case VIDIOC_S_FMT:
{
struct v4l2_format *f = arg;
return cx8800_s_fmt(dev,fh,f);
}
case VIDIOC_TRY_FMT:
{
struct v4l2_format *f = arg;
return cx8800_try_fmt(dev,fh,f);
}
/* --- controls ---------------------------------------------- */
case VIDIOC_QUERYCTRL:
{
struct v4l2_queryctrl *c = arg;
int i;
if (c->id < V4L2_CID_BASE ||
c->id >= V4L2_CID_LASTP1)
return -EINVAL;
for (i = 0; i < CX8800_CTLS; i++)
if (cx8800_ctls[i].v.id == c->id)
break;
if (i == CX8800_CTLS) {
*c = no_ctl;
return 0;
}
*c = cx8800_ctls[i].v;
return 0;
}
case VIDIOC_G_CTRL:
return get_control(dev,arg);
case VIDIOC_S_CTRL:
return set_control(dev,arg);
/* --- tuner ioctls ------------------------------------------ */
case VIDIOC_G_TUNER:
{
struct v4l2_tuner *t = arg;
u32 reg;
if (UNSET == dev->tuner_type)
return -EINVAL;
if (0 != t->index)
return -EINVAL;
memset(t,0,sizeof(*t));
strcpy(t->name, "Television");
t->type = V4L2_TUNER_ANALOG_TV;
t->capability = V4L2_TUNER_CAP_NORM;
t->rangehigh = 0xffffffffUL;
cx88_get_stereo(dev ,t);
reg = cx_read(MO_DEVICE_STATUS);
t->signal = (reg & (1<<5)) ? 0xffff : 0x0000;
return 0;
}
case VIDIOC_S_TUNER:
{
struct v4l2_tuner *t = arg;
if (UNSET == dev->tuner_type)
return -EINVAL;
if (0 != t->index)
return -EINVAL;
cx88_set_stereo(dev,t->audmode);
return 0;
}
case VIDIOC_G_FREQUENCY:
{
struct v4l2_frequency *f = arg;
if (UNSET == dev->tuner_type)
return -EINVAL;
if (f->tuner != 0)
return -EINVAL;
memset(f,0,sizeof(*f));
f->type = fh->radio ? V4L2_TUNER_RADIO : V4L2_TUNER_ANALOG_TV;
f->frequency = dev->freq;
return 0;
}
case VIDIOC_S_FREQUENCY:
{
struct v4l2_frequency *f = arg;
if (UNSET == dev->tuner_type)
return -EINVAL;
if (f->tuner != 0)
return -EINVAL;
if (0 == fh->radio && f->type != V4L2_TUNER_ANALOG_TV)
return -EINVAL;
if (1 == fh->radio && f->type != V4L2_TUNER_RADIO)
return -EINVAL;
down(&dev->lock);
dev->freq = f->frequency;
cx8800_call_i2c_clients(dev,VIDIOCSFREQ,&dev->freq);
up(&dev->lock);
return 0;
}
/* --- streaming capture ------------------------------------- */
case VIDIOCGMBUF:
{
struct video_mbuf *mbuf = arg;
struct videobuf_queue *q;
struct v4l2_requestbuffers req;
unsigned int i;
q = get_queue(fh);
memset(&req,0,sizeof(req));
req.type = q->type;
req.count = 8;
req.memory = V4L2_MEMORY_MMAP;
err = videobuf_reqbufs(file,q,&req);
if (err < 0)
return err;
memset(mbuf,0,sizeof(*mbuf));
mbuf->frames = req.count;
mbuf->size = 0;
for (i = 0; i < mbuf->frames; i++) {
mbuf->offsets[i] = q->bufs[i]->boff;
mbuf->size += q->bufs[i]->bsize;
}
return 0;
}
case VIDIOC_REQBUFS:
return videobuf_reqbufs(file, get_queue(fh), arg);
case VIDIOC_QUERYBUF:
return videobuf_querybuf(get_queue(fh), arg);
case VIDIOC_QBUF:
return videobuf_qbuf(file, get_queue(fh), arg);
case VIDIOC_DQBUF:
return videobuf_dqbuf(file, get_queue(fh), arg);
case VIDIOC_STREAMON:
{
int res = get_ressource(fh);
if (!res_get(dev,fh,res))
return -EBUSY;
return videobuf_streamon(file, get_queue(fh));
}
case VIDIOC_STREAMOFF:
{
int res = get_ressource(fh);
err = videobuf_streamoff(file, get_queue(fh));
if (err < 0)
return err;
res_free(dev,fh,res);
return 0;
}
default:
return v4l_compat_translate_ioctl(inode,file,cmd,arg,
video_do_ioctl);
}
return 0;
}
static int video_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)
{
return video_usercopy(inode, file, cmd, arg, video_do_ioctl);
}
/* ----------------------------------------------------------- */
static int radio_do_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, void *arg)
{
struct cx8800_fh *fh = file->private_data;
struct cx8800_dev *dev = fh->dev;
if (video_debug > 1)
cx88_print_ioctl(dev->name,cmd);
switch (cmd) {
case VIDIOC_QUERYCAP:
{
struct v4l2_capability *cap = arg;
memset(cap,0,sizeof(*cap));
strcpy(cap->driver, "cx8800");
strlcpy(cap->card, cx88_boards[dev->board].name,
sizeof(cap->card));
sprintf(cap->bus_info,"PCI:%s", pci_name(dev->pci));
cap->version = CX88_VERSION_CODE;
cap->capabilities = V4L2_CAP_TUNER;
return 0;
}
case VIDIOC_G_TUNER:
{
struct v4l2_tuner *t = arg;
struct video_tuner vt;
if (t->index > 0)
return -EINVAL;
memset(t,0,sizeof(*t));
strcpy(t->name, "Radio");
t->rangelow = (int)(65*16);
t->rangehigh = (int)(108*16);
memset(&vt,0,sizeof(vt));
cx8800_call_i2c_clients(dev,VIDIOCGTUNER,&vt);
t->signal = vt.signal;
return 0;
}
case VIDIOC_ENUMINPUT:
{
struct v4l2_input *i = arg;
if (i->index != 0)
return -EINVAL;
strcpy(i->name,"Radio");
i->type = V4L2_INPUT_TYPE_TUNER;
return 0;
}
case VIDIOC_G_INPUT:
{
int *i = arg;
*i = 0;
return 0;
}
case VIDIOC_G_AUDIO:
{
struct v4l2_audio *a = arg;
memset(a,0,sizeof(*a));
strcpy(a->name,"Radio");
return 0;
}
case VIDIOC_G_STD:
{
v4l2_std_id *id = arg;
*id = 0;
return 0;
}
case VIDIOC_S_AUDIO:
case VIDIOC_S_TUNER:
case VIDIOC_S_INPUT:
case VIDIOC_S_STD:
return 0;
case VIDIOC_QUERYCTRL:
{
struct v4l2_queryctrl *c = arg;
int i;
if (c->id < V4L2_CID_BASE ||
c->id >= V4L2_CID_LASTP1)
return -EINVAL;
if (c->id == V4L2_CID_AUDIO_MUTE) {
for (i = 0; i < CX8800_CTLS; i++)
if (cx8800_ctls[i].v.id == c->id)
break;
*c = cx8800_ctls[i].v;
} else
*c = no_ctl;
return 0;
}
case VIDIOC_G_CTRL:
case VIDIOC_S_CTRL:
case VIDIOC_G_FREQUENCY:
case VIDIOC_S_FREQUENCY:
return video_do_ioctl(inode,file,cmd,arg);
default:
return v4l_compat_translate_ioctl(inode,file,cmd,arg,
radio_do_ioctl);
}
return 0;
};
static int radio_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)
{
return video_usercopy(inode, file, cmd, arg, radio_do_ioctl);
};
/* ----------------------------------------------------------- */
static void cx8800_vid_timeout(unsigned long data)
{
struct cx8800_dev *dev = (struct cx8800_dev*)data;
struct cx88_dmaqueue *q = &dev->vidq;
struct cx88_buffer *buf;
unsigned long flags;
cx88_sram_channel_dump(dev, &cx88_sram_channels[SRAM_CH21]);
//cx88_risc_disasm(dev,&dev->vidq.stopper);
cx_clear(MO_VID_DMACNTRL, 0x11);
cx_clear(VID_CAPTURE_CONTROL, 0x06);
spin_lock_irqsave(&dev->slock,flags);
while (!list_empty(&q->active)) {
buf = list_entry(q->active.next, struct cx88_buffer, vb.queue);
list_del(&buf->vb.queue);
buf->vb.state = STATE_ERROR;
wake_up(&buf->vb.done);
printk("%s: [%p/%d] timeout - dma=0x%08lx\n", dev->name,
buf, buf->vb.i, (unsigned long)buf->risc.dma);
}
restart_video_queue(dev,q);
spin_unlock_irqrestore(&dev->slock,flags);
}
static void cx8800_wakeup(struct cx8800_dev *dev,
struct cx88_dmaqueue *q, u32 count)
{
struct cx88_buffer *buf;
for (;;) {
if (list_empty(&q->active))
break;
buf = list_entry(q->active.next,
struct cx88_buffer, vb.queue);
if (buf->count > count)
break;
do_gettimeofday(&buf->vb.ts);
dprintk(2,"[%p/%d] wakeup reg=%d buf=%d\n",buf,buf->vb.i,
count, buf->count);
buf->vb.state = STATE_DONE;
list_del(&buf->vb.queue);
wake_up(&buf->vb.done);
}
if (list_empty(&q->active)) {
del_timer(&q->timeout);
} else {
mod_timer(&q->timeout, jiffies+BUFFER_TIMEOUT);
}
}
static void cx8800_vid_irq(struct cx8800_dev *dev)
{
u32 status, mask, count;
status = cx_read(MO_VID_INTSTAT);
mask = cx_read(MO_VID_INTMSK);
if (0 == (status & mask))
return;
cx_write(MO_VID_INTSTAT, status);
if (irq_debug || (status & mask & ~0xff))
cx88_print_irqbits(dev->name, "irq vid",
cx88_vid_irqs, status, mask);
/* risc op code error */
if (status & (1 << 16)) {
printk(KERN_WARNING "%s: video risc op code error\n",dev->name);
cx_clear(MO_VID_DMACNTRL, 0x11);
cx_clear(VID_CAPTURE_CONTROL, 0x06);
cx88_sram_channel_dump(dev, &cx88_sram_channels[SRAM_CH21]);
}
/* risc1 y */
if (status & 0x01) {
spin_lock(&dev->slock);
count = cx_read(MO_VIDY_GPCNT);
cx8800_wakeup(dev, &dev->vidq, count);
spin_unlock(&dev->slock);
}
/* risc1 vbi */
if (status & 0x08) {
spin_lock(&dev->slock);
count = cx_read(MO_VBI_GPCNT);
cx8800_wakeup(dev, &dev->vbiq, count);
spin_unlock(&dev->slock);
}
/* risc2 y */
if (status & 0x10) {
dprintk(2,"stopper video\n");
spin_lock(&dev->slock);
restart_video_queue(dev,&dev->vidq);
spin_unlock(&dev->slock);
}
/* risc2 vbi */
if (status & 0x80) {
dprintk(2,"stopper vbi\n");
spin_lock(&dev->slock);
cx8800_restart_vbi_queue(dev,&dev->vbiq);
spin_unlock(&dev->slock);
}
}
static irqreturn_t cx8800_irq(int irq, void *dev_id, struct pt_regs *regs)
{
struct cx8800_dev *dev = dev_id;
u32 status, mask;
int loop, handled = 0;
for (loop = 0; loop < 10; loop++) {
status = cx_read(MO_PCI_INTSTAT);
mask = cx_read(MO_PCI_INTMSK);
if (0 == (status & mask))
goto out;
handled = 1;
cx_write(MO_PCI_INTSTAT, status);
if (irq_debug || (status & mask & ~0x1f))
cx88_print_irqbits(dev->name, "irq pci",
cx88_pci_irqs, status, mask);
if (status & 1)
cx8800_vid_irq(dev);
};
if (10 == loop) {
printk(KERN_WARNING "%s: irq loop -- clearing mask\n",
dev->name);
cx_write(MO_PCI_INTMSK,0);
}
out:
return IRQ_RETVAL(handled);
}
/* ----------------------------------------------------------- */
/* exported stuff */
static struct file_operations video_fops =
{
.owner = THIS_MODULE,
.open = video_open,
.release = video_release,
.read = video_read,
.poll = video_poll,
.mmap = video_mmap,
.ioctl = video_ioctl,
.llseek = no_llseek,
};
struct video_device cx8800_video_template =
{
.name = "cx8800-video",
.type = VID_TYPE_CAPTURE|VID_TYPE_TUNER|VID_TYPE_SCALES,
.hardware = 0,
.fops = &video_fops,
.minor = -1,
};
struct video_device cx8800_vbi_template =
{
.name = "cx8800-vbi",
.type = VID_TYPE_TELETEXT|VID_TYPE_TUNER,
.hardware = 0,
.fops = &video_fops,
.minor = -1,
};
static struct file_operations radio_fops =
{
.owner = THIS_MODULE,
.open = video_open,
.release = video_release,
.ioctl = radio_ioctl,
.llseek = no_llseek,
};
struct video_device cx8800_radio_template =
{
.name = "cx8800-radio",
.type = VID_TYPE_TUNER,
.hardware = 0,
.fops = &radio_fops,
.minor = -1,
};
/* ----------------------------------------------------------- */
static void cx8800_shutdown(struct cx8800_dev *dev)
{
/* disable RISC controller + IRQs */
cx_write(MO_DEV_CNTRL2, 0);
/* stop dma transfers */
cx_write(MO_VID_DMACNTRL, 0x0);
cx_write(MO_AUD_DMACNTRL, 0x0);
cx_write(MO_TS_DMACNTRL, 0x0);
cx_write(MO_VIP_DMACNTRL, 0x0);
cx_write(MO_GPHST_DMACNTRL, 0x0);
/* stop interupts */
cx_write(MO_PCI_INTMSK, 0x0);
cx_write(MO_VID_INTMSK, 0x0);
cx_write(MO_AUD_INTMSK, 0x0);
cx_write(MO_TS_INTMSK, 0x0);
cx_write(MO_VIP_INTMSK, 0x0);
cx_write(MO_GPHST_INTMSK, 0x0);
/* stop capturing */
cx_write(VID_CAPTURE_CONTROL, 0);
}
static int cx8800_reset(struct cx8800_dev *dev)
{
dprintk(1,"cx8800_reset\n");
cx8800_shutdown(dev);
/* clear irq status */
cx_write(MO_VID_INTSTAT, 0xFFFFFFFF); // Clear PIV int
cx_write(MO_PCI_INTSTAT, 0xFFFFFFFF); // Clear PCI int
cx_write(MO_INT1_STAT, 0xFFFFFFFF); // Clear RISC int
/* wait a bit */
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(HZ/10);
/* init sram */
cx88_sram_channel_setup(dev, &cx88_sram_channels[SRAM_CH21], 720*4, 0);
cx88_sram_channel_setup(dev, &cx88_sram_channels[SRAM_CH22], 128, 0);
cx88_sram_channel_setup(dev, &cx88_sram_channels[SRAM_CH23], 128, 0);
cx88_sram_channel_setup(dev, &cx88_sram_channels[SRAM_CH24], 128, 0);
cx88_sram_channel_setup(dev, &cx88_sram_channels[SRAM_CH25], 128, 0);
cx88_sram_channel_setup(dev, &cx88_sram_channels[SRAM_CH26], 128, 0);
/* misc init ... */
cx_write(MO_INPUT_FORMAT, ((1 << 13) | // agc enable
(1 << 12) | // agc gain
(1 << 11) | // adaptibe agc
(0 << 10) | // chroma agc
(0 << 9) | // ckillen
(7)));
/* setup image format */
cx_andor(MO_COLOR_CTRL, 0x4000, 0x4000);
/* setup FIFO Threshholds */
cx_write(MO_PDMA_STHRSH, 0x0807);
cx_write(MO_PDMA_DTHRSH, 0x0807);
/* fixes flashing of image */
cx_write(MO_AGC_SYNC_TIP1, 0x0380000F);
cx_write(MO_AGC_BACK_VBI, 0x00E00555);
cx_write(MO_VID_INTSTAT, 0xFFFFFFFF); // Clear PIV int
cx_write(MO_PCI_INTSTAT, 0xFFFFFFFF); // Clear PCI int
cx_write(MO_INT1_STAT, 0xFFFFFFFF); // Clear RISC int
return 0;
}
static struct video_device *vdev_init(struct cx8800_dev *dev,
struct video_device *template,
char *type)
{
struct video_device *vfd;
vfd = video_device_alloc();
if (NULL == vfd)
return NULL;
*vfd = *template;
vfd->minor = -1;
vfd->dev = &dev->pci->dev;
vfd->release = video_device_release;
snprintf(vfd->name, sizeof(vfd->name), "%s %s (%s)",
dev->name, type, cx88_boards[dev->board].name);
return vfd;
}
static void cx8800_unregister_video(struct cx8800_dev *dev)
{
if (dev->radio_dev) {
if (-1 != dev->radio_dev->minor)
video_unregister_device(dev->radio_dev);
else
video_device_release(dev->radio_dev);
dev->radio_dev = NULL;
}
if (dev->vbi_dev) {
if (-1 != dev->vbi_dev->minor)
video_unregister_device(dev->vbi_dev);
else
video_device_release(dev->vbi_dev);
dev->vbi_dev = NULL;
}
if (dev->video_dev) {
if (-1 != dev->video_dev->minor)
video_unregister_device(dev->video_dev);
else
video_device_release(dev->video_dev);
dev->video_dev = NULL;
}
}
/* debug that damn oops ... */
static unsigned int oops = 0;
MODULE_PARM(oops,"i");
#define OOPS(msg) if (oops) printk("%s: %s\n",__FUNCTION__,msg);
static int __devinit cx8800_initdev(struct pci_dev *pci_dev,
const struct pci_device_id *pci_id)
{
struct cx8800_dev *dev;
unsigned int i;
int err;
dev = kmalloc(sizeof(*dev),GFP_KERNEL);
if (NULL == dev)
return -ENOMEM;
memset(dev,0,sizeof(*dev));
/* pci init */
OOPS("pci init");
dev->pci = pci_dev;
if (pci_enable_device(pci_dev)) {
err = -EIO;
goto fail1;
}
sprintf(dev->name,"cx%x[%d]",pci_dev->device,cx8800_devcount);
/* pci quirks */
OOPS("pci quirks");
cx88_pci_quirks(dev->name, dev->pci, &latency);
if (UNSET != latency) {
printk(KERN_INFO "%s: setting pci latency timer to %d\n",
dev->name,latency);
pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
}
/* print pci info */
OOPS("pci info");
pci_read_config_byte(pci_dev, PCI_CLASS_REVISION, &dev->pci_rev);
pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &dev->pci_lat);
printk(KERN_INFO "%s: found at %s, rev: %d, irq: %d, "
"latency: %d, mmio: 0x%lx\n", dev->name,
pci_name(pci_dev), dev->pci_rev, pci_dev->irq,
dev->pci_lat,pci_resource_start(pci_dev,0));
pci_set_master(pci_dev);
if (!pci_dma_supported(pci_dev,0xffffffff)) {
printk("%s: Oops: no 32bit PCI DMA ???\n",dev->name);
err = -EIO;
goto fail1;
}
/* board config */
OOPS("board config");
dev->board = card[cx8800_devcount];
for (i = 0; UNSET == dev->board && i < cx88_idcount; i++)
if (pci_dev->subsystem_vendor == cx88_subids[i].subvendor &&
pci_dev->subsystem_device == cx88_subids[i].subdevice)
dev->board = cx88_subids[i].card;
if (UNSET == dev->board)
dev->board = CX88_BOARD_UNKNOWN;
printk(KERN_INFO "%s: subsystem: %04x:%04x, board: %s [card=%d,%s]\n",
dev->name,pci_dev->subsystem_vendor,
pci_dev->subsystem_device,cx88_boards[dev->board].name,
dev->board, card[cx8800_devcount] == dev->board ?
"insmod option" : "autodetected");
dev->tuner_type = tuner[cx8800_devcount];
if (UNSET == dev->tuner_type)
dev->tuner_type = cx88_boards[dev->board].tuner_type;
/* get mmio */
OOPS("get mmio");
if (!request_mem_region(pci_resource_start(pci_dev,0),
pci_resource_len(pci_dev,0),
dev->name)) {
err = -EBUSY;
printk(KERN_ERR "%s: can't get MMIO memory @ 0x%lx\n",
dev->name,pci_resource_start(pci_dev,0));
goto fail1;
}
dev->lmmio = ioremap(pci_resource_start(pci_dev,0),
pci_resource_len(pci_dev,0));
dev->bmmio = (u8*)dev->lmmio;
/* initialize driver struct */
OOPS("init structs");
init_MUTEX(&dev->lock);
dev->slock = SPIN_LOCK_UNLOCKED;
dev->tvnorm = tvnorms;
/* init video dma queues */
INIT_LIST_HEAD(&dev->vidq.active);
INIT_LIST_HEAD(&dev->vidq.queued);
dev->vidq.timeout.function = cx8800_vid_timeout;
dev->vidq.timeout.data = (unsigned long)dev;
init_timer(&dev->vidq.timeout);
cx88_risc_stopper(dev->pci,&dev->vidq.stopper,
MO_VID_DMACNTRL,0x11,0x00);
/* init vbi dma queues */
INIT_LIST_HEAD(&dev->vbiq.active);
INIT_LIST_HEAD(&dev->vbiq.queued);
dev->vbiq.timeout.function = cx8800_vbi_timeout;
dev->vbiq.timeout.data = (unsigned long)dev;
init_timer(&dev->vbiq.timeout);
cx88_risc_stopper(dev->pci,&dev->vbiq.stopper,
MO_VID_DMACNTRL,0x88,0x00);
/* initialize hardware */
OOPS("reset hardware");
cx8800_reset(dev);
/* get irq */
OOPS("install irq handler");
err = request_irq(pci_dev->irq, cx8800_irq,
SA_SHIRQ | SA_INTERRUPT, dev->name, dev);
if (err < 0) {
printk(KERN_ERR "%s: can't get IRQ %d\n",
dev->name,pci_dev->irq);
goto fail2;
}
/* register i2c bus + load i2c helpers */
OOPS("i2c setup");
cx8800_i2c_init(dev);
OOPS("card setup");
cx88_card_setup(dev);
/* load and configure helper modules */
OOPS("configure i2c clients");
if (TUNER_ABSENT != dev->tuner_type)
request_module("tuner");
if (cx88_boards[dev->board].needs_tda9887)
request_module("tda9887");
if (dev->tuner_type != UNSET)
cx8800_call_i2c_clients(dev,TUNER_SET_TYPE,&dev->tuner_type);
/* register v4l devices */
OOPS("register video");
dev->video_dev = vdev_init(dev,&cx8800_video_template,"video");
err = video_register_device(dev->video_dev,VFL_TYPE_GRABBER,
video_nr[cx8800_devcount]);
if (err < 0) {
printk(KERN_INFO "%s: can't register video device\n",
dev->name);
goto fail3;
}
printk(KERN_INFO "%s: registered device video%d [v4l2]\n",
dev->name,dev->video_dev->minor & 0x1f);
OOPS("register vbi");
dev->vbi_dev = vdev_init(dev,&cx8800_vbi_template,"vbi");
err = video_register_device(dev->vbi_dev,VFL_TYPE_VBI,
vbi_nr[cx8800_devcount]);
if (err < 0) {
printk(KERN_INFO "%s: can't register vbi device\n",
dev->name);
goto fail3;
}
printk(KERN_INFO "%s: registered device vbi%d\n",
dev->name,dev->vbi_dev->minor & 0x1f);
if (dev->has_radio) {
OOPS("register radio");
dev->radio_dev = vdev_init(dev,&cx8800_radio_template,"radio");
err = video_register_device(dev->radio_dev,VFL_TYPE_RADIO,
radio_nr[cx8800_devcount]);
if (err < 0) {
printk(KERN_INFO "%s: can't register radio device\n",
dev->name);
goto fail3;
}
printk(KERN_INFO "%s: registered device radio%d\n",
dev->name,dev->radio_dev->minor & 0x1f);
}
/* everything worked */
OOPS("finalize");
list_add_tail(&dev->devlist,&cx8800_devlist);
pci_set_drvdata(pci_dev,dev);
cx8800_devcount++;
/* initial device configuration */
OOPS("init device");
down(&dev->lock);
init_controls(dev);
set_tvnorm(dev,tvnorms);
video_mux(dev,0);
up(&dev->lock);
return 0;
fail3:
OOPS("fail3");
cx8800_unregister_video(dev);
if (0 == dev->i2c_rc)
i2c_bit_del_bus(&dev->i2c_adap);
free_irq(pci_dev->irq, dev);
fail2:
OOPS("fail2");
release_mem_region(pci_resource_start(pci_dev,0),
pci_resource_len(pci_dev,0));
fail1:
OOPS("fail1");
kfree(dev);
return err;
}
static void __devexit cx8800_finidev(struct pci_dev *pci_dev)
{
struct cx8800_dev *dev = pci_get_drvdata(pci_dev);
cx8800_shutdown(dev);
pci_disable_device(pci_dev);
/* unregister stuff */
if (0 == dev->i2c_rc)
i2c_bit_del_bus(&dev->i2c_adap);
free_irq(pci_dev->irq, dev);
release_mem_region(pci_resource_start(pci_dev,0),
pci_resource_len(pci_dev,0));
cx8800_unregister_video(dev);
pci_set_drvdata(pci_dev, NULL);
/* free memory */
btcx_riscmem_free(dev->pci,&dev->vidq.stopper);
list_del(&dev->devlist);
cx8800_devcount--;
kfree(dev);
}
static int cx8800_suspend(struct pci_dev *pci_dev, u32 state)
{
struct cx8800_dev *dev = pci_get_drvdata(pci_dev);
printk("%s: suspend %d\n", dev->name, state);
cx8800_shutdown(dev);
del_timer(&dev->vidq.timeout);
pci_save_state(pci_dev, dev->state.pci_cfg);
if (0 != pci_set_power_state(pci_dev, state)) {
pci_disable_device(pci_dev);
dev->state.disabled = 1;
}
return 0;
}
static int cx8800_resume(struct pci_dev *pci_dev)
{
struct cx8800_dev *dev = pci_get_drvdata(pci_dev);
printk("%s: resume\n", dev->name);
if (dev->state.disabled) {
pci_enable_device(pci_dev);
dev->state.disabled = 0;
}
pci_set_power_state(pci_dev, 0);
pci_restore_state(pci_dev, dev->state.pci_cfg);
/* re-initialize hardware */
cx8800_reset(dev);
/* restart video capture */
spin_lock(&dev->slock);
restart_video_queue(dev,&dev->vidq);
spin_unlock(&dev->slock);
return 0;
}
/* ----------------------------------------------------------- */
struct pci_device_id cx8800_pci_tbl[] = {
{
.vendor = 0x14f1,
.device = 0x8800,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
},{
/* --- end of list --- */
}
};
MODULE_DEVICE_TABLE(pci, cx8800_pci_tbl);
static struct pci_driver cx8800_pci_driver = {
.name = "cx8800",
.id_table = cx8800_pci_tbl,
.probe = cx8800_initdev,
.remove = cx8800_finidev,
.suspend = cx8800_suspend,
.resume = cx8800_resume,
};
static int cx8800_init(void)
{
INIT_LIST_HEAD(&cx8800_devlist);
printk(KERN_INFO "cx2388x v4l2 driver version %d.%d.%d loaded\n",
(CX88_VERSION_CODE >> 16) & 0xff,
(CX88_VERSION_CODE >> 8) & 0xff,
CX88_VERSION_CODE & 0xff);
#ifdef SNAPSHOT
printk(KERN_INFO "cx2388x: snapshot date %04d-%02d-%02d\n",
SNAPSHOT/10000, (SNAPSHOT/100)%100, SNAPSHOT%100);
#endif
return pci_module_init(&cx8800_pci_driver);
}
static void cx8800_fini(void)
{
pci_unregister_driver(&cx8800_pci_driver);
}
module_init(cx8800_init);
module_exit(cx8800_fini);
/* ----------------------------------------------------------- */
/*
* Local variables:
* c-basic-offset: 8
* End:
*/