/*
Driver for Philips tda1004xh OFDM Frontend
(c) 2003, 2004 Andrew de Quincey & Robert Schlabbach
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
This driver needs a copy of the DLL "ttlcdacc.dll" from the Haupauge or Technotrend
windows driver saved as '/usr/lib/hotplug/firmware/tda1004x.bin'.
You can also pass the complete file name with the module parameter 'tda1004x_firmware'.
Currently the DLL from v2.15a of the technotrend driver is supported. Other versions can
be added reasonably painlessly.
Windows driver URL: http://www.technotrend.de/
*/
#define __KERNEL_SYSCALLS__
#include <linux/kernel.h>
#include <linux/vmalloc.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/fs.h>
#include <linux/unistd.h>
#include <linux/fcntl.h>
#include <linux/errno.h>
#include <linux/syscalls.h>
#include "dvb_frontend.h"
#include "dvb_functions.h"
#ifndef DVB_TDA1004X_FIRMWARE_FILE
#define DVB_TDA1004X_FIRMWARE_FILE "/usr/lib/hotplug/firmware/tda1004x.bin"
#endif
static int tda1004x_debug = 0;
static char *tda1004x_firmware = DVB_TDA1004X_FIRMWARE_FILE;
#define MC44BC374_ADDRESS 0x65
#define TDA1004X_CHIPID 0x00
#define TDA1004X_AUTO 0x01
#define TDA1004X_IN_CONF1 0x02
#define TDA1004X_IN_CONF2 0x03
#define TDA1004X_OUT_CONF1 0x04
#define TDA1004X_OUT_CONF2 0x05
#define TDA1004X_STATUS_CD 0x06
#define TDA1004X_CONFC4 0x07
#define TDA1004X_DSSPARE2 0x0C
#define TDA10045H_CODE_IN 0x0D
#define TDA10045H_FWPAGE 0x0E
#define TDA1004X_SCAN_CPT 0x10
#define TDA1004X_DSP_CMD 0x11
#define TDA1004X_DSP_ARG 0x12
#define TDA1004X_DSP_DATA1 0x13
#define TDA1004X_DSP_DATA2 0x14
#define TDA1004X_CONFADC1 0x15
#define TDA1004X_CONFC1 0x16
#define TDA10045H_S_AGC 0x1a
#define TDA10046H_AGC_TUN_LEVEL 0x1a
#define TDA1004X_SNR 0x1c
#define TDA1004X_CONF_TS1 0x1e
#define TDA1004X_CONF_TS2 0x1f
#define TDA1004X_CBER_RESET 0x20
#define TDA1004X_CBER_MSB 0x21
#define TDA1004X_CBER_LSB 0x22
#define TDA1004X_CVBER_LUT 0x23
#define TDA1004X_VBER_MSB 0x24
#define TDA1004X_VBER_MID 0x25
#define TDA1004X_VBER_LSB 0x26
#define TDA1004X_UNCOR 0x27
#define TDA10045H_CONFPLL_P 0x2D
#define TDA10045H_CONFPLL_M_MSB 0x2E
#define TDA10045H_CONFPLL_M_LSB 0x2F
#define TDA10045H_CONFPLL_N 0x30
#define TDA10046H_CONFPLL1 0x2D
#define TDA10046H_CONFPLL2 0x2F
#define TDA10046H_CONFPLL3 0x30
#define TDA10046H_TIME_WREF1 0x31
#define TDA10046H_TIME_WREF2 0x32
#define TDA10046H_TIME_WREF3 0x33
#define TDA10046H_TIME_WREF4 0x34
#define TDA10046H_TIME_WREF5 0x35
#define TDA10045H_UNSURW_MSB 0x31
#define TDA10045H_UNSURW_LSB 0x32
#define TDA10045H_WREF_MSB 0x33
#define TDA10045H_WREF_MID 0x34
#define TDA10045H_WREF_LSB 0x35
#define TDA10045H_MUXOUT 0x36
#define TDA1004X_CONFADC2 0x37
#define TDA10045H_IOFFSET 0x38
#define TDA10046H_CONF_TRISTATE1 0x3B
#define TDA10046H_CONF_TRISTATE2 0x3C
#define TDA10046H_CONF_POLARITY 0x3D
#define TDA10046H_FREQ_OFFSET 0x3E
#define TDA10046H_GPIO_OUT_SEL 0x41
#define TDA10046H_GPIO_SELECT 0x42
#define TDA10046H_AGC_CONF 0x43
#define TDA10046H_AGC_GAINS 0x46
#define TDA10046H_AGC_TUN_MIN 0x47
#define TDA10046H_AGC_TUN_MAX 0x48
#define TDA10046H_AGC_IF_MIN 0x49
#define TDA10046H_AGC_IF_MAX 0x4A
#define TDA10046H_FREQ_PHY2_MSB 0x4D
#define TDA10046H_FREQ_PHY2_LSB 0x4E
#define TDA10046H_CVBER_CTRL 0x4F
#define TDA10046H_AGC_IF_LEVEL 0x52
#define TDA10046H_CODE_CPT 0x57
#define TDA10046H_CODE_IN 0x58
#define FE_TYPE_TDA10045H 0
#define FE_TYPE_TDA10046H 1
#define TUNER_TYPE_TD1344 0
#define TUNER_TYPE_TD1316 1
#define dprintk if (tda1004x_debug) printk
static struct dvb_frontend_info tda10045h_info = {
.name = "Philips TDA10045H",
.type = FE_OFDM,
.frequency_min = 51000000,
.frequency_max = 858000000,
.frequency_stepsize = 166667,
.caps =
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
};
static struct dvb_frontend_info tda10046h_info = {
.name = "Philips TDA10046H",
.type = FE_OFDM,
.frequency_min = 51000000,
.frequency_max = 858000000,
.frequency_stepsize = 166667,
.caps =
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
};
struct tda1004x_state {
u8 tda1004x_address;
u8 tuner_address;
u8 initialised:1;
u8 tuner_type:2;
u8 fe_type:2;
};
struct fwinfo {
int file_size;
int fw_offset;
int fw_size;
};
static struct fwinfo tda10045h_fwinfo[] = { {.file_size = 286720,.fw_offset = 0x34cc5,.fw_size = 30555} };
static int tda10045h_fwinfo_count = sizeof(tda10045h_fwinfo) / sizeof(struct fwinfo);
static struct fwinfo tda10046h_fwinfo[] = { {.file_size = 286720,.fw_offset = 0x3c4f9,.fw_size = 24479} };
static int tda10046h_fwinfo_count = sizeof(tda10046h_fwinfo) / sizeof(struct fwinfo);
static int errno;
static int tda1004x_write_byte(struct dvb_i2c_bus *i2c, struct tda1004x_state *tda_state, int reg, int data)
{
int ret;
u8 buf[] = { reg, data };
struct i2c_msg msg = { .addr=0, .flags=0, .buf=buf, .len=2 };
dprintk("%s: reg=0x%x, data=0x%x\n", __FUNCTION__, reg, data);
msg.addr = tda_state->tda1004x_address;
ret = i2c->xfer(i2c, &msg, 1);
if (ret != 1)
dprintk("%s: error reg=0x%x, data=0x%x, ret=%i\n",
__FUNCTION__, reg, data, ret);
dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __FUNCTION__,
reg, data, ret);
return (ret != 1) ? -1 : 0;
}
static int tda1004x_read_byte(struct dvb_i2c_bus *i2c, struct tda1004x_state *tda_state, int reg)
{
int ret;
u8 b0[] = { reg };
u8 b1[] = { 0 };
struct i2c_msg msg[] = {{ .addr=0, .flags=0, .buf=b0, .len=1},
{ .addr=0, .flags=I2C_M_RD, .buf=b1, .len = 1}};
dprintk("%s: reg=0x%x\n", __FUNCTION__, reg);
msg[0].addr = tda_state->tda1004x_address;
msg[1].addr = tda_state->tda1004x_address;
ret = i2c->xfer(i2c, msg, 2);
if (ret != 2) {
dprintk("%s: error reg=0x%x, ret=%i\n", __FUNCTION__, reg,
ret);
return -1;
}
dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __FUNCTION__,
reg, b1[0], ret);
return b1[0];
}
static int tda1004x_write_mask(struct dvb_i2c_bus *i2c, struct tda1004x_state *tda_state, int reg, int mask, int data)
{
int val;
dprintk("%s: reg=0x%x, mask=0x%x, data=0x%x\n", __FUNCTION__, reg,
mask, data);
// read a byte and check
val = tda1004x_read_byte(i2c, tda_state, reg);
if (val < 0)
return val;
// mask if off
val = val & ~mask;
val |= data & 0xff;
// write it out again
return tda1004x_write_byte(i2c, tda_state, reg, val);
}
static int tda1004x_write_buf(struct dvb_i2c_bus *i2c, struct tda1004x_state *tda_state, int reg, unsigned char *buf, int len)
{
int i;
int result;
dprintk("%s: reg=0x%x, len=0x%x\n", __FUNCTION__, reg, len);
result = 0;
for (i = 0; i < len; i++) {
result = tda1004x_write_byte(i2c, tda_state, reg + i, buf[i]);
if (result != 0)
break;
}
return result;
}
static int tda1004x_enable_tuner_i2c(struct dvb_i2c_bus *i2c, struct tda1004x_state *tda_state)
{
int result;
dprintk("%s\n", __FUNCTION__);
result = tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC4, 2, 2);
dvb_delay(1);
return result;
}
static int tda1004x_disable_tuner_i2c(struct dvb_i2c_bus *i2c, struct tda1004x_state *tda_state)
{
dprintk("%s\n", __FUNCTION__);
return tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC4, 2, 0);
}
static int tda10045h_set_bandwidth(struct dvb_i2c_bus *i2c,
struct tda1004x_state *tda_state,
fe_bandwidth_t bandwidth)
{
static u8 bandwidth_6mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x60, 0x1e, 0xa7, 0x45, 0x4f };
static u8 bandwidth_7mhz[] = { 0x02, 0x00, 0x37, 0x00, 0x4a, 0x2f, 0x6d, 0x76, 0xdb };
static u8 bandwidth_8mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x48, 0x17, 0x89, 0xc7, 0x14 };
switch (bandwidth) {
case BANDWIDTH_6_MHZ:
tda1004x_write_byte(i2c, tda_state, TDA1004X_DSSPARE2, 0x14);
tda1004x_write_buf(i2c, tda_state, TDA10045H_CONFPLL_P, bandwidth_6mhz, sizeof(bandwidth_6mhz));
break;
case BANDWIDTH_7_MHZ:
tda1004x_write_byte(i2c, tda_state, TDA1004X_DSSPARE2, 0x80);
tda1004x_write_buf(i2c, tda_state, TDA10045H_CONFPLL_P, bandwidth_7mhz, sizeof(bandwidth_7mhz));
break;
case BANDWIDTH_8_MHZ:
tda1004x_write_byte(i2c, tda_state, TDA1004X_DSSPARE2, 0x14);
tda1004x_write_buf(i2c, tda_state, TDA10045H_CONFPLL_P, bandwidth_8mhz, sizeof(bandwidth_8mhz));
break;
default:
return -EINVAL;
}
tda1004x_write_byte(i2c, tda_state, TDA10045H_IOFFSET, 0);
// done
return 0;
}
static int tda10046h_set_bandwidth(struct dvb_i2c_bus *i2c,
struct tda1004x_state *tda_state,
fe_bandwidth_t bandwidth)
{
static u8 bandwidth_6mhz[] = { 0x80, 0x15, 0xfe, 0xab, 0x8e };
static u8 bandwidth_7mhz[] = { 0x6e, 0x02, 0x53, 0xc8, 0x25 };
static u8 bandwidth_8mhz[] = { 0x60, 0x12, 0xa8, 0xe4, 0xbd };
switch (bandwidth) {
case BANDWIDTH_6_MHZ:
tda1004x_write_buf(i2c, tda_state, TDA10046H_TIME_WREF1, bandwidth_6mhz, sizeof(bandwidth_6mhz));
tda1004x_write_byte(i2c, tda_state, TDA1004X_DSSPARE2, 0);
break;
case BANDWIDTH_7_MHZ:
tda1004x_write_buf(i2c, tda_state, TDA10046H_TIME_WREF1, bandwidth_7mhz, sizeof(bandwidth_7mhz));
tda1004x_write_byte(i2c, tda_state, TDA1004X_DSSPARE2, 0);
break;
case BANDWIDTH_8_MHZ:
tda1004x_write_buf(i2c, tda_state, TDA10046H_TIME_WREF1, bandwidth_8mhz, sizeof(bandwidth_8mhz));
tda1004x_write_byte(i2c, tda_state, TDA1004X_DSSPARE2, 0xFF);
break;
default:
return -EINVAL;
}
// done
return 0;
}
static int tda1004x_fwupload(struct dvb_i2c_bus *i2c, struct tda1004x_state *tda_state)
{
u8 fw_buf[65];
struct i2c_msg fw_msg = {.addr = 0,.flags = 0,.buf = fw_buf,.len = 0 };
unsigned char *firmware = NULL;
int filesize;
int fd;
int fwinfo_idx;
int fw_size = 0;
int fw_pos, fw_offset;
int tx_size;
mm_segment_t fs = get_fs();
int dspCodeCounterReg=0, dspCodeInReg=0, dspVersion=0;
int fwInfoCount=0;
struct fwinfo* fwInfo = NULL;
unsigned long timeout;
// DSP parameters
switch(tda_state->fe_type) {
case FE_TYPE_TDA10045H:
dspCodeCounterReg = TDA10045H_FWPAGE;
dspCodeInReg = TDA10045H_CODE_IN;
dspVersion = 0x2c;
fwInfoCount = tda10045h_fwinfo_count;
fwInfo = tda10045h_fwinfo;
break;
case FE_TYPE_TDA10046H:
dspCodeCounterReg = TDA10046H_CODE_CPT;
dspCodeInReg = TDA10046H_CODE_IN;
dspVersion = 0x20;
fwInfoCount = tda10046h_fwinfo_count;
fwInfo = tda10046h_fwinfo;
break;
}
// Load the firmware
set_fs(get_ds());
fd = open(tda1004x_firmware, 0, 0);
if (fd < 0) {
printk("%s: Unable to open firmware %s\n", __FUNCTION__,
tda1004x_firmware);
return -EIO;
}
filesize = lseek(fd, 0L, 2);
if (filesize <= 0) {
printk("%s: Firmware %s is empty\n", __FUNCTION__,
tda1004x_firmware);
sys_close(fd);
return -EIO;
}
// find extraction parameters for firmware
for (fwinfo_idx = 0; fwinfo_idx < fwInfoCount; fwinfo_idx++) {
if (fwInfo[fwinfo_idx].file_size == filesize)
break;
}
if (fwinfo_idx >= fwInfoCount) {
printk("%s: Unsupported firmware %s\n", __FUNCTION__, tda1004x_firmware);
sys_close(fd);
return -EIO;
}
fw_size = fwInfo[fwinfo_idx].fw_size;
fw_offset = fwInfo[fwinfo_idx].fw_offset;
// allocate buffer for it
firmware = vmalloc(fw_size);
if (firmware == NULL) {
printk("%s: Out of memory loading firmware\n",
__FUNCTION__);
sys_close(fd);
return -EIO;
}
// read it!
lseek(fd, fw_offset, 0);
if (read(fd, firmware, fw_size) != fw_size) {
printk("%s: Failed to read firmware\n", __FUNCTION__);
vfree(firmware);
sys_close(fd);
return -EIO;
}
sys_close(fd);
set_fs(fs);
// set some valid bandwith parameters before uploading
switch(tda_state->fe_type) {
case FE_TYPE_TDA10045H:
// reset chip
tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC4, 0x10, 0);
tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC4, 8, 8);
tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC4, 8, 0);
dvb_delay(10);
// set parameters
tda10045h_set_bandwidth(i2c, tda_state, BANDWIDTH_8_MHZ);
break;
case FE_TYPE_TDA10046H:
// reset chip
tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC4, 1, 0);
tda1004x_write_mask(i2c, tda_state, TDA10046H_CONF_TRISTATE1, 1, 0);
dvb_delay(10);
// set parameters
tda1004x_write_byte(i2c, tda_state, TDA10046H_CONFPLL2, 10);
tda1004x_write_byte(i2c, tda_state, TDA10046H_CONFPLL3, 0);
tda1004x_write_byte(i2c, tda_state, TDA10046H_FREQ_OFFSET, 99);
tda1004x_write_byte(i2c, tda_state, TDA10046H_FREQ_PHY2_MSB, 0xd4);
tda1004x_write_byte(i2c, tda_state, TDA10046H_FREQ_PHY2_LSB, 0x2c);
tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC4, 8, 8); // going to boot from HOST
break;
}
// do the firmware upload
tda1004x_write_byte(i2c, tda_state, dspCodeCounterReg, 0); // clear code counter
fw_msg.addr = tda_state->tda1004x_address;
fw_pos = 0;
while (fw_pos != fw_size) {
// work out how much to send this time
tx_size = fw_size - fw_pos;
if (tx_size > 0x10) {
tx_size = 0x10;
}
// send the chunk
fw_buf[0] = dspCodeInReg;
memcpy(fw_buf + 1, firmware + fw_pos, tx_size);
fw_msg.len = tx_size + 1;
if (i2c->xfer(i2c, &fw_msg, 1) != 1) {
printk("tda1004x: Error during firmware upload\n");
vfree(firmware);
return -EIO;
}
fw_pos += tx_size;
dprintk("%s: fw_pos=0x%x\n", __FUNCTION__, fw_pos);
}
vfree(firmware);
// wait for DSP to initialise
switch(tda_state->fe_type) {
case FE_TYPE_TDA10045H:
// DSPREADY doesn't seem to work on the TDA10045H
dvb_delay(100);
break;
case FE_TYPE_TDA10046H:
timeout = jiffies + HZ;
while(!(tda1004x_read_byte(i2c, tda_state, TDA1004X_STATUS_CD) & 0x20)) {
if (time_after(jiffies, timeout)) {
printk("tda1004x: DSP failed to initialised.\n");
return -EIO;
}
dvb_delay(1);
}
break;
}
// check upload was OK
tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC4, 0x10, 0); // we want to read from the DSP
tda1004x_write_byte(i2c, tda_state, TDA1004X_DSP_CMD, 0x67);
if ((tda1004x_read_byte(i2c, tda_state, TDA1004X_DSP_DATA1) != 0x67) ||
(tda1004x_read_byte(i2c, tda_state, TDA1004X_DSP_DATA2) != dspVersion)) {
printk("%s: firmware upload failed!\n", __FUNCTION__);
return -EIO;
}
// success
return 0;
}
static int tda10045h_init(struct dvb_i2c_bus *i2c, struct tda1004x_state *tda_state)
{
struct i2c_msg tuner_msg = {.addr = 0,.flags = 0,.buf = 0,.len = 0 };
static u8 disable_mc44BC374c[] = { 0x1d, 0x74, 0xa0, 0x68 };
dprintk("%s\n", __FUNCTION__);
tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFADC1, 0x10, 0); // wake up the ADC
// Disable the MC44BC374C
tda1004x_enable_tuner_i2c(i2c, tda_state);
tuner_msg.addr = MC44BC374_ADDRESS;
tuner_msg.buf = disable_mc44BC374c;
tuner_msg.len = sizeof(disable_mc44BC374c);
if (i2c->xfer(i2c, &tuner_msg, 1) != 1) {
i2c->xfer(i2c, &tuner_msg, 1);
}
tda1004x_disable_tuner_i2c(i2c, tda_state);
// tda setup
tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer
tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 8, 0); // select HP stream
tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC1, 0x40, 0); // no frequency inversion
tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC1, 0x80, 0x80); // enable pulse killer
tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 0x10, 0x10); // enable auto offset
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF2, 0xC0, 0x0); // no frequency offset
tda1004x_write_byte(i2c, tda_state, TDA1004X_CONF_TS1, 0); // setup MPEG2 TS interface
tda1004x_write_byte(i2c, tda_state, TDA1004X_CONF_TS2, 0); // setup MPEG2 TS interface
tda1004x_write_mask(i2c, tda_state, TDA1004X_VBER_MSB, 0xe0, 0xa0); // 10^6 VBER measurement bits
tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC1, 0x10, 0); // VAGC polarity
tda1004x_write_byte(i2c, tda_state, TDA1004X_CONFADC1, 0x2e);
// done
return 0;
}
static int tda10046h_init(struct dvb_i2c_bus *i2c, struct tda1004x_state *tda_state)
{
struct i2c_msg tuner_msg = {.addr = 0,.flags = 0,.buf = 0,.len = 0 };
static u8 disable_mc44BC374c[] = { 0x1d, 0x74, 0xa0, 0x68 };
dprintk("%s\n", __FUNCTION__);
tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC4, 1, 0); // wake up the chip
// Disable the MC44BC374C
tda1004x_enable_tuner_i2c(i2c, tda_state);
tuner_msg.addr = MC44BC374_ADDRESS;
tuner_msg.buf = disable_mc44BC374c;
tuner_msg.len = sizeof(disable_mc44BC374c);
if (i2c->xfer(i2c, &tuner_msg, 1) != 1) {
i2c->xfer(i2c, &tuner_msg, 1);
}
tda1004x_disable_tuner_i2c(i2c, tda_state);
// tda setup
tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer
tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC1, 0x40, 0x40); // TT TDA10046H needs inversion ON
tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 8, 0); // select HP stream
tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC1, 0x80, 0); // disable pulse killer
tda1004x_write_byte(i2c, tda_state, TDA10046H_CONFPLL2, 10); // PLL M = 10
tda1004x_write_byte(i2c, tda_state, TDA10046H_CONFPLL3, 0); // PLL P = N = 0
tda1004x_write_byte(i2c, tda_state, TDA10046H_FREQ_OFFSET, 99); // FREQOFFS = 99
tda1004x_write_byte(i2c, tda_state, TDA10046H_FREQ_PHY2_MSB, 0xd4); // } PHY2 = -11221
tda1004x_write_byte(i2c, tda_state, TDA10046H_FREQ_PHY2_LSB, 0x2c); // }
tda1004x_write_byte(i2c, tda_state, TDA10046H_AGC_CONF, 0); // AGC setup
tda1004x_write_mask(i2c, tda_state, TDA10046H_CONF_POLARITY, 0x60, 0x60); // set AGC polarities
tda1004x_write_byte(i2c, tda_state, TDA10046H_AGC_TUN_MIN, 0); // }
tda1004x_write_byte(i2c, tda_state, TDA10046H_AGC_TUN_MAX, 0xff); // } AGC min/max values
tda1004x_write_byte(i2c, tda_state, TDA10046H_AGC_IF_MIN, 0); // }
tda1004x_write_byte(i2c, tda_state, TDA10046H_AGC_IF_MAX, 0xff); // }
tda1004x_write_mask(i2c, tda_state, TDA10046H_CVBER_CTRL, 0x30, 0x10); // 10^6 VBER measurement bits
tda1004x_write_byte(i2c, tda_state, TDA10046H_AGC_GAINS, 1); // IF gain 2, TUN gain 1
tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 0x80, 0); // crystal is 50ppm
tda1004x_write_byte(i2c, tda_state, TDA1004X_CONF_TS1, 7); // MPEG2 interface config
tda1004x_write_mask(i2c, tda_state, TDA1004X_CONF_TS2, 0x31, 0); // MPEG2 interface config
tda1004x_write_mask(i2c, tda_state, TDA10046H_CONF_TRISTATE1, 0x9e, 0); // disable AGC_TUN
tda1004x_write_byte(i2c, tda_state, TDA10046H_CONF_TRISTATE2, 0xe1); // tristate setup
tda1004x_write_byte(i2c, tda_state, TDA10046H_GPIO_OUT_SEL, 0xcc); // GPIO output config
tda1004x_write_mask(i2c, tda_state, TDA10046H_GPIO_SELECT, 8, 8); // GPIO select
tda10046h_set_bandwidth(i2c, tda_state, BANDWIDTH_8_MHZ); // default bandwidth 8 MHz
// done
return 0;
}
static int tda1004x_encode_fec(int fec)
{
// convert known FEC values
switch (fec) {
case FEC_1_2:
return 0;
case FEC_2_3:
return 1;
case FEC_3_4:
return 2;
case FEC_5_6:
return 3;
case FEC_7_8:
return 4;
}
// unsupported
return -EINVAL;
}
static int tda1004x_decode_fec(int tdafec)
{
// convert known FEC values
switch (tdafec) {
case 0:
return FEC_1_2;
case 1:
return FEC_2_3;
case 2:
return FEC_3_4;
case 3:
return FEC_5_6;
case 4:
return FEC_7_8;
}
// unsupported
return -1;
}
static int tda1004x_set_frequency(struct dvb_i2c_bus *i2c,
struct tda1004x_state *tda_state,
struct dvb_frontend_parameters *fe_params)
{
u8 tuner_buf[4];
struct i2c_msg tuner_msg = {.addr=0, .flags=0, .buf=tuner_buf, .len=sizeof(tuner_buf) };
int tuner_frequency = 0;
u8 band, cp, filter;
int counter, counter2;
dprintk("%s\n", __FUNCTION__);
// setup the frequency buffer
switch (tda_state->tuner_type) {
case TUNER_TYPE_TD1344:
// setup tuner buffer
// ((Fif+((1000000/6)/2)) + Finput)/(1000000/6)
tuner_frequency =
(((fe_params->frequency / 1000) * 6) + 217502) / 1000;
tuner_buf[0] = tuner_frequency >> 8;
tuner_buf[1] = tuner_frequency & 0xff;
tuner_buf[2] = 0x88;
if (fe_params->frequency < 550000000) {
tuner_buf[3] = 0xab;
} else {
tuner_buf[3] = 0xeb;
}
// tune it
tda1004x_enable_tuner_i2c(i2c, tda_state);
tuner_msg.addr = tda_state->tuner_address;
tuner_msg.len = 4;
i2c->xfer(i2c, &tuner_msg, 1);
// wait for it to finish
tuner_msg.len = 1;
tuner_msg.flags = I2C_M_RD;
counter = 0;
counter2 = 0;
while (counter++ < 100) {
if (i2c->xfer(i2c, &tuner_msg, 1) == 1) {
if (tuner_buf[0] & 0x40) {
counter2++;
} else {
counter2 = 0;
}
}
if (counter2 > 10) {
break;
}
}
tda1004x_disable_tuner_i2c(i2c, tda_state);
break;
case TUNER_TYPE_TD1316:
// determine charge pump
tuner_frequency = fe_params->frequency + 36130000;
if (tuner_frequency < 87000000) {
return -EINVAL;
} else if (tuner_frequency < 130000000) {
cp = 3;
} else if (tuner_frequency < 160000000) {
cp = 5;
} else if (tuner_frequency < 200000000) {
cp = 6;
} else if (tuner_frequency < 290000000) {
cp = 3;
} else if (tuner_frequency < 420000000) {
cp = 5;
} else if (tuner_frequency < 480000000) {
cp = 6;
} else if (tuner_frequency < 620000000) {
cp = 3;
} else if (tuner_frequency < 830000000) {
cp = 5;
} else if (tuner_frequency < 895000000) {
cp = 7;
} else {
return -EINVAL;
}
// determine band
if (fe_params->frequency < 49000000) {
return -EINVAL;
} else if (fe_params->frequency < 159000000) {
band = 1;
} else if (fe_params->frequency < 444000000) {
band = 2;
} else if (fe_params->frequency < 861000000) {
band = 4;
} else {
return -EINVAL;
}
// work out filter
switch (fe_params->u.ofdm.bandwidth) {
case BANDWIDTH_6_MHZ:
filter = 0;
break;
case BANDWIDTH_7_MHZ:
filter = 0;
break;
case BANDWIDTH_8_MHZ:
filter = 1;
break;
default:
return -EINVAL;
}
// calculate divisor
// ((36130000+((1000000/6)/2)) + Finput)/(1000000/6)
tuner_frequency =
(((fe_params->frequency / 1000) * 6) + 217280) / 1000;
// setup tuner buffer
tuner_buf[0] = tuner_frequency >> 8;
tuner_buf[1] = tuner_frequency & 0xff;
tuner_buf[2] = 0xca;
tuner_buf[3] = (cp << 5) | (filter << 3) | band;
// tune it
if (tda_state->fe_type == FE_TYPE_TDA10046H) {
// setup auto offset
tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 0x10, 0x10);
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x80, 0);
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF2, 0xC0, 0);
// disable agc_conf[2]
tda1004x_write_mask(i2c, tda_state, TDA10046H_AGC_CONF, 4, 0);
}
tda1004x_enable_tuner_i2c(i2c, tda_state);
tuner_msg.addr = tda_state->tuner_address;
tuner_msg.len = 4;
if (i2c->xfer(i2c, &tuner_msg, 1) != 1) {
return -EIO;
}
dvb_delay(1);
tda1004x_disable_tuner_i2c(i2c, tda_state);
if (tda_state->fe_type == FE_TYPE_TDA10046H)
tda1004x_write_mask(i2c, tda_state, TDA10046H_AGC_CONF, 4, 4);
break;
default:
return -EINVAL;
}
dprintk("%s: success\n", __FUNCTION__);
// done
return 0;
}
static int tda1004x_set_fe(struct dvb_i2c_bus *i2c,
struct tda1004x_state *tda_state,
struct dvb_frontend_parameters *fe_params)
{
int tmp;
int inversion;
dprintk("%s\n", __FUNCTION__);
// set frequency
if ((tmp = tda1004x_set_frequency(i2c, tda_state, fe_params)) < 0)
return tmp;
// hardcoded to use auto as much as possible
fe_params->u.ofdm.code_rate_HP = FEC_AUTO;
fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_AUTO;
fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_AUTO;
// Set standard params.. or put them to auto
if ((fe_params->u.ofdm.code_rate_HP == FEC_AUTO) ||
(fe_params->u.ofdm.code_rate_LP == FEC_AUTO) ||
(fe_params->u.ofdm.constellation == QAM_AUTO) ||
(fe_params->u.ofdm.hierarchy_information == HIERARCHY_AUTO)) {
tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 1, 1); // enable auto
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x03, 0); // turn off constellation bits
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x60, 0); // turn off hierarchy bits
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF2, 0x3f, 0); // turn off FEC bits
} else {
tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 1, 0); // disable auto
// set HP FEC
tmp = tda1004x_encode_fec(fe_params->u.ofdm.code_rate_HP);
if (tmp < 0) return tmp;
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF2, 7, tmp);
// set LP FEC
if (fe_params->u.ofdm.code_rate_LP != FEC_NONE) {
tmp = tda1004x_encode_fec(fe_params->u.ofdm.code_rate_LP);
if (tmp < 0) return tmp;
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF2, 0x38, tmp << 3);
}
// set constellation
switch (fe_params->u.ofdm.constellation) {
case QPSK:
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 3, 0);
break;
case QAM_16:
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 3, 1);
break;
case QAM_64:
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 3, 2);
break;
default:
return -EINVAL;
}
// set hierarchy
switch (fe_params->u.ofdm.hierarchy_information) {
case HIERARCHY_NONE:
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x60, 0 << 5);
break;
case HIERARCHY_1:
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x60, 1 << 5);
break;
case HIERARCHY_2:
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x60, 2 << 5);
break;
case HIERARCHY_4:
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x60, 3 << 5);
break;
default:
return -EINVAL;
}
}
// set bandwidth
switch(tda_state->fe_type) {
case FE_TYPE_TDA10045H:
tda10045h_set_bandwidth(i2c, tda_state, fe_params->u.ofdm.bandwidth);
break;
case FE_TYPE_TDA10046H:
tda10046h_set_bandwidth(i2c, tda_state, fe_params->u.ofdm.bandwidth);
break;
}
// need to invert the inversion for TT TDA10046H
inversion = fe_params->inversion;
if (tda_state->fe_type == FE_TYPE_TDA10046H) {
inversion = inversion ? INVERSION_OFF : INVERSION_ON;
}
// set inversion
switch (inversion) {
case INVERSION_OFF:
tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC1, 0x20, 0);
break;
case INVERSION_ON:
tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC1, 0x20, 0x20);
break;
default:
return -EINVAL;
}
// set guard interval
switch (fe_params->u.ofdm.guard_interval) {
case GUARD_INTERVAL_1_32:
tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 2, 0);
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x0c, 0 << 2);
break;
case GUARD_INTERVAL_1_16:
tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 2, 0);
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x0c, 1 << 2);
break;
case GUARD_INTERVAL_1_8:
tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 2, 0);
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x0c, 2 << 2);
break;
case GUARD_INTERVAL_1_4:
tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 2, 0);
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x0c, 3 << 2);
break;
case GUARD_INTERVAL_AUTO:
tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 2, 2);
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x0c, 0 << 2);
break;
default:
return -EINVAL;
}
// set transmission mode
switch (fe_params->u.ofdm.transmission_mode) {
case TRANSMISSION_MODE_2K:
tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 4, 0);
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x10, 0 << 4);
break;
case TRANSMISSION_MODE_8K:
tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 4, 0);
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x10, 1 << 4);
break;
case TRANSMISSION_MODE_AUTO:
tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 4, 4);
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x10, 0);
break;
default:
return -EINVAL;
}
// start the lock
switch(tda_state->fe_type) {
case FE_TYPE_TDA10045H:
tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC4, 8, 8);
tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC4, 8, 0);
dvb_delay(10);
break;
case FE_TYPE_TDA10046H:
tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 0x40, 0x40);
dvb_delay(10);
break;
}
// done
return 0;
}
static int tda1004x_get_fe(struct dvb_i2c_bus *i2c, struct tda1004x_state* tda_state, struct dvb_frontend_parameters *fe_params)
{
dprintk("%s\n", __FUNCTION__);
// inversion status
fe_params->inversion = INVERSION_OFF;
if (tda1004x_read_byte(i2c, tda_state, TDA1004X_CONFC1) & 0x20) {
fe_params->inversion = INVERSION_ON;
}
// need to invert the inversion for TT TDA10046H
if (tda_state->fe_type == FE_TYPE_TDA10046H) {
fe_params->inversion = fe_params->inversion ? INVERSION_OFF : INVERSION_ON;
}
// bandwidth
switch(tda_state->fe_type) {
case FE_TYPE_TDA10045H:
switch (tda1004x_read_byte(i2c, tda_state, TDA10045H_WREF_LSB)) {
case 0x14:
fe_params->u.ofdm.bandwidth = BANDWIDTH_8_MHZ;
break;
case 0xdb:
fe_params->u.ofdm.bandwidth = BANDWIDTH_7_MHZ;
break;
case 0x4f:
fe_params->u.ofdm.bandwidth = BANDWIDTH_6_MHZ;
break;
}
break;
case FE_TYPE_TDA10046H:
switch (tda1004x_read_byte(i2c, tda_state, TDA10046H_TIME_WREF1)) {
case 0x60:
fe_params->u.ofdm.bandwidth = BANDWIDTH_8_MHZ;
break;
case 0x6e:
fe_params->u.ofdm.bandwidth = BANDWIDTH_7_MHZ;
break;
case 0x80:
fe_params->u.ofdm.bandwidth = BANDWIDTH_6_MHZ;
break;
}
break;
}
// FEC
fe_params->u.ofdm.code_rate_HP =
tda1004x_decode_fec(tda1004x_read_byte(i2c, tda_state, TDA1004X_OUT_CONF2) & 7);
fe_params->u.ofdm.code_rate_LP =
tda1004x_decode_fec((tda1004x_read_byte(i2c, tda_state, TDA1004X_OUT_CONF2) >> 3) & 7);
// constellation
switch (tda1004x_read_byte(i2c, tda_state, TDA1004X_OUT_CONF1) & 3) {
case 0:
fe_params->u.ofdm.constellation = QPSK;
break;
case 1:
fe_params->u.ofdm.constellation = QAM_16;
break;
case 2:
fe_params->u.ofdm.constellation = QAM_64;
break;
}
// transmission mode
fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K;
if (tda1004x_read_byte(i2c, tda_state, TDA1004X_OUT_CONF1) & 0x10) {
fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K;
}
// guard interval
switch ((tda1004x_read_byte(i2c, tda_state, TDA1004X_OUT_CONF1) & 0x0c) >> 2) {
case 0:
fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_32;
break;
case 1:
fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_16;
break;
case 2:
fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_8;
break;
case 3:
fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_4;
break;
}
// hierarchy
switch ((tda1004x_read_byte(i2c, tda_state, TDA1004X_OUT_CONF1) & 0x60) >> 5) {
case 0:
fe_params->u.ofdm.hierarchy_information = HIERARCHY_NONE;
break;
case 1:
fe_params->u.ofdm.hierarchy_information = HIERARCHY_1;
break;
case 2:
fe_params->u.ofdm.hierarchy_information = HIERARCHY_2;
break;
case 3:
fe_params->u.ofdm.hierarchy_information = HIERARCHY_4;
break;
}
// done
return 0;
}
static int tda1004x_read_status(struct dvb_i2c_bus *i2c, struct tda1004x_state* tda_state, fe_status_t * fe_status)
{
int status;
int cber;
int vber;
dprintk("%s\n", __FUNCTION__);
// read status
status = tda1004x_read_byte(i2c, tda_state, TDA1004X_STATUS_CD);
if (status == -1) {
return -EIO;
}
// decode
*fe_status = 0;
if (status & 4) *fe_status |= FE_HAS_SIGNAL;
if (status & 2) *fe_status |= FE_HAS_CARRIER;
if (status & 8) *fe_status |= FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK;
// if we don't already have VITERBI (i.e. not LOCKED), see if the viterbi
// is getting anything valid
if (!(*fe_status & FE_HAS_VITERBI)) {
// read the CBER
cber = tda1004x_read_byte(i2c, tda_state, TDA1004X_CBER_LSB);
if (cber == -1) return -EIO;
status = tda1004x_read_byte(i2c, tda_state, TDA1004X_CBER_MSB);
if (status == -1) return -EIO;
cber |= (status << 8);
tda1004x_read_byte(i2c, tda_state, TDA1004X_CBER_RESET);
if (cber != 65535) {
*fe_status |= FE_HAS_VITERBI;
}
}
// if we DO have some valid VITERBI output, but don't already have SYNC
// bytes (i.e. not LOCKED), see if the RS decoder is getting anything valid.
if ((*fe_status & FE_HAS_VITERBI) && (!(*fe_status & FE_HAS_SYNC))) {
// read the VBER
vber = tda1004x_read_byte(i2c, tda_state, TDA1004X_VBER_LSB);
if (vber == -1) return -EIO;
status = tda1004x_read_byte(i2c, tda_state, TDA1004X_VBER_MID);
if (status == -1) return -EIO;
vber |= (status << 8);
status = tda1004x_read_byte(i2c, tda_state, TDA1004X_VBER_MSB);
if (status == -1) return -EIO;
vber |= ((status << 16) & 0x0f);
tda1004x_read_byte(i2c, tda_state, TDA1004X_CVBER_LUT);
// if RS has passed some valid TS packets, then we must be
// getting some SYNC bytes
if (vber < 16632) {
*fe_status |= FE_HAS_SYNC;
}
}
// success
dprintk("%s: fe_status=0x%x\n", __FUNCTION__, *fe_status);
return 0;
}
static int tda1004x_read_signal_strength(struct dvb_i2c_bus *i2c, struct tda1004x_state* tda_state, u16 * signal)
{
int tmp;
int reg = 0;
dprintk("%s\n", __FUNCTION__);
// determine the register to use
switch(tda_state->fe_type) {
case FE_TYPE_TDA10045H:
reg = TDA10045H_S_AGC;
break;
case FE_TYPE_TDA10046H:
reg = TDA10046H_AGC_IF_LEVEL;
break;
}
// read it
tmp = tda1004x_read_byte(i2c, tda_state, reg);
if (tmp < 0)
return -EIO;
// done
*signal = (tmp << 8) | tmp;
dprintk("%s: signal=0x%x\n", __FUNCTION__, *signal);
return 0;
}
static int tda1004x_read_snr(struct dvb_i2c_bus *i2c, struct tda1004x_state* tda_state, u16 * snr)
{
int tmp;
dprintk("%s\n", __FUNCTION__);
// read it
tmp = tda1004x_read_byte(i2c, tda_state, TDA1004X_SNR);
if (tmp < 0)
return -EIO;
if (tmp) {
tmp = 255 - tmp;
}
// done
*snr = ((tmp << 8) | tmp);
dprintk("%s: snr=0x%x\n", __FUNCTION__, *snr);
return 0;
}
static int tda1004x_read_ucblocks(struct dvb_i2c_bus *i2c, struct tda1004x_state* tda_state, u32* ucblocks)
{
int tmp;
int tmp2;
int counter;
dprintk("%s\n", __FUNCTION__);
// read the UCBLOCKS and reset
counter = 0;
tmp = tda1004x_read_byte(i2c, tda_state, TDA1004X_UNCOR);
if (tmp < 0)
return -EIO;
tmp &= 0x7f;
while (counter++ < 5) {
tda1004x_write_mask(i2c, tda_state, TDA1004X_UNCOR, 0x80, 0);
tda1004x_write_mask(i2c, tda_state, TDA1004X_UNCOR, 0x80, 0);
tda1004x_write_mask(i2c, tda_state, TDA1004X_UNCOR, 0x80, 0);
tmp2 = tda1004x_read_byte(i2c, tda_state, TDA1004X_UNCOR);
if (tmp2 < 0)
return -EIO;
tmp2 &= 0x7f;
if ((tmp2 < tmp) || (tmp2 == 0))
break;
}
// done
if (tmp != 0x7f) {
*ucblocks = tmp;
} else {
*ucblocks = 0xffffffff;
}
dprintk("%s: ucblocks=0x%x\n", __FUNCTION__, *ucblocks);
return 0;
}
static int tda1004x_read_ber(struct dvb_i2c_bus *i2c, struct tda1004x_state* tda_state, u32* ber)
{
int tmp;
dprintk("%s\n", __FUNCTION__);
// read it in
tmp = tda1004x_read_byte(i2c, tda_state, TDA1004X_CBER_LSB);
if (tmp < 0) return -EIO;
*ber = tmp << 1;
tmp = tda1004x_read_byte(i2c, tda_state, TDA1004X_CBER_MSB);
if (tmp < 0) return -EIO;
*ber |= (tmp << 9);
tda1004x_read_byte(i2c, tda_state, TDA1004X_CBER_RESET);
// done
dprintk("%s: ber=0x%x\n", __FUNCTION__, *ber);
return 0;
}
static int tda1004x_sleep(struct dvb_i2c_bus *i2c, struct tda1004x_state* tda_state)
{
switch(tda_state->fe_type) {
case FE_TYPE_TDA10045H:
tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFADC1, 0x10, 0x10);
break;
case FE_TYPE_TDA10046H:
tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC4, 1, 1);
break;
}
return 0;
}
static int tda1004x_ioctl(struct dvb_frontend *fe, unsigned int cmd, void *arg)
{
int status = 0;
struct dvb_i2c_bus *i2c = fe->i2c;
struct tda1004x_state *tda_state = (struct tda1004x_state *) fe->data;
dprintk("%s: cmd=0x%x\n", __FUNCTION__, cmd);
switch (cmd) {
case FE_GET_INFO:
switch(tda_state->fe_type) {
case FE_TYPE_TDA10045H:
memcpy(arg, &tda10045h_info, sizeof(struct dvb_frontend_info));
break;
case FE_TYPE_TDA10046H:
memcpy(arg, &tda10046h_info, sizeof(struct dvb_frontend_info));
break;
}
break;
case FE_READ_STATUS:
return tda1004x_read_status(i2c, tda_state, (fe_status_t *) arg);
case FE_READ_BER:
return tda1004x_read_ber(i2c, tda_state, (u32 *) arg);
case FE_READ_SIGNAL_STRENGTH:
return tda1004x_read_signal_strength(i2c, tda_state, (u16 *) arg);
case FE_READ_SNR:
return tda1004x_read_snr(i2c, tda_state, (u16 *) arg);
case FE_READ_UNCORRECTED_BLOCKS:
return tda1004x_read_ucblocks(i2c, tda_state, (u32 *) arg);
case FE_SET_FRONTEND:
return tda1004x_set_fe(i2c, tda_state, (struct dvb_frontend_parameters*) arg);
case FE_GET_FRONTEND:
return tda1004x_get_fe(i2c, tda_state, (struct dvb_frontend_parameters*) arg);
case FE_SLEEP:
tda_state->initialised = 0;
return tda1004x_sleep(i2c, tda_state);
case FE_INIT:
// don't bother reinitialising
if (tda_state->initialised)
return 0;
// OK, perform initialisation
switch(tda_state->fe_type) {
case FE_TYPE_TDA10045H:
status = tda10045h_init(i2c, tda_state);
break;
case FE_TYPE_TDA10046H:
status = tda10046h_init(i2c, tda_state);
break;
}
if (status == 0)
tda_state->initialised = 1;
return status;
case FE_GET_TUNE_SETTINGS:
{
struct dvb_frontend_tune_settings* fesettings = (struct dvb_frontend_tune_settings*) arg;
fesettings->min_delay_ms = 800;
fesettings->step_size = 166667;
fesettings->max_drift = 166667*2;
return 0;
}
default:
return -EOPNOTSUPP;
}
return 0;
}
static int tda1004x_attach(struct dvb_i2c_bus *i2c, void **data)
{
int tda1004x_address = -1;
int tuner_address = -1;
int fe_type = -1;
int tuner_type = -1;
struct tda1004x_state tda_state;
struct tda1004x_state* ptda_state;
struct i2c_msg tuner_msg = {.addr=0, .flags=0, .buf=0, .len=0 };
static u8 td1344_init[] = { 0x0b, 0xf5, 0x88, 0xab };
static u8 td1316_init[] = { 0x0b, 0xf5, 0x85, 0xab };
static u8 td1316_init_tda10046h[] = { 0x0b, 0xf5, 0x80, 0xab };
int status;
dprintk("%s\n", __FUNCTION__);
// probe for tda10045h
if (tda1004x_address == -1) {
tda_state.tda1004x_address = 0x08;
if (tda1004x_read_byte(i2c, &tda_state, TDA1004X_CHIPID) == 0x25) {
tda1004x_address = 0x08;
fe_type = FE_TYPE_TDA10045H;
printk("tda1004x: Detected Philips TDA10045H.\n");
}
}
// probe for tda10046h
if (tda1004x_address == -1) {
tda_state.tda1004x_address = 0x08;
if (tda1004x_read_byte(i2c, &tda_state, TDA1004X_CHIPID) == 0x46) {
tda1004x_address = 0x08;
fe_type = FE_TYPE_TDA10046H;
printk("tda1004x: Detected Philips TDA10046H.\n");
}
}
// did we find a frontend?
if (tda1004x_address == -1) {
return -ENODEV;
}
// enable access to the tuner
tda1004x_enable_tuner_i2c(i2c, &tda_state);
// check for a TD1344 first
if (tuner_address == -1) {
tuner_msg.addr = 0x61;
tuner_msg.buf = td1344_init;
tuner_msg.len = sizeof(td1344_init);
if (i2c->xfer(i2c, &tuner_msg, 1) == 1) {
dvb_delay(1);
tuner_address = 0x61;
tuner_type = TUNER_TYPE_TD1344;
printk("tda1004x: Detected Philips TD1344 tuner.\n");
}
}
// OK, try a TD1316 on address 0x63
if (tuner_address == -1) {
tuner_msg.addr = 0x63;
tuner_msg.buf = td1316_init;
tuner_msg.len = sizeof(td1316_init);
if (i2c->xfer(i2c, &tuner_msg, 1) == 1) {
dvb_delay(1);
tuner_address = 0x63;
tuner_type = TUNER_TYPE_TD1316;
printk("tda1004x: Detected Philips TD1316 tuner.\n");
}
}
// OK, TD1316 again, on address 0x60 (TDA10046H)
if (tuner_address == -1) {
tuner_msg.addr = 0x60;
tuner_msg.buf = td1316_init_tda10046h;
tuner_msg.len = sizeof(td1316_init_tda10046h);
if (i2c->xfer(i2c, &tuner_msg, 1) == 1) {
dvb_delay(1);
tuner_address = 0x60;
tuner_type = TUNER_TYPE_TD1316;
printk("tda1004x: Detected Philips TD1316 tuner.\n");
}
}
tda1004x_disable_tuner_i2c(i2c, &tda_state);
// did we find a tuner?
if (tuner_address == -1) {
printk("tda1004x: Detected, but with unknown tuner.\n");
return -ENODEV;
}
// create state
tda_state.tda1004x_address = tda1004x_address;
tda_state.fe_type = fe_type;
tda_state.tuner_address = tuner_address;
tda_state.tuner_type = tuner_type;
tda_state.initialised = 0;
// upload firmware
if ((status = tda1004x_fwupload(i2c, &tda_state)) != 0) return status;
// create the real state we'll be passing about
if ((ptda_state = (struct tda1004x_state*) kmalloc(sizeof(struct tda1004x_state), GFP_KERNEL)) == NULL) {
return -ENOMEM;
}
memcpy(ptda_state, &tda_state, sizeof(struct tda1004x_state));
*data = ptda_state;
// register
switch(tda_state.fe_type) {
case FE_TYPE_TDA10045H:
return dvb_register_frontend(tda1004x_ioctl, i2c, ptda_state, &tda10045h_info);
case FE_TYPE_TDA10046H:
return dvb_register_frontend(tda1004x_ioctl, i2c, ptda_state, &tda10046h_info);
}
// should not get here
return -EINVAL;
}
static
void tda1004x_detach(struct dvb_i2c_bus *i2c, void *data)
{
dprintk("%s\n", __FUNCTION__);
kfree(data);
dvb_unregister_frontend(tda1004x_ioctl, i2c);
}
static
int __init init_tda1004x(void)
{
return dvb_register_i2c_device(THIS_MODULE, tda1004x_attach, tda1004x_detach);
}
static
void __exit exit_tda1004x(void)
{
dvb_unregister_i2c_device(tda1004x_attach);
}
module_init(init_tda1004x);
module_exit(exit_tda1004x);
MODULE_DESCRIPTION("Philips TDA10045H & TDA10046H DVB-T Frontend");
MODULE_AUTHOR("Andrew de Quincey & Robert Schlabbach");
MODULE_LICENSE("GPL");
MODULE_PARM(tda1004x_debug, "i");
MODULE_PARM_DESC(tda1004x_debug, "enable verbose debug messages");
MODULE_PARM(tda1004x_firmware, "s");
MODULE_PARM_DESC(tda1004x_firmware, "Where to find the firmware file");