/*
NxtWave Communications - NXT6000 demodulator driver
This driver currently supports:
Alps TDME7 (Tuner: MITEL SP5659)
Alps TDED4 (Tuner: TI ALP510, external Nxt6000)
Comtech DVBT-6k07 (PLL IC: SP5730)
Copyright (C) 2002-2003 Florian Schirmer <jolt@tuxbox.org>
Copyright (C) 2003 Paul Andreassen <paul@andreassen.com.au>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/slab.h>
#include "dvb_frontend.h"
#include "nxt6000.h"
static int debug = 0;
MODULE_DESCRIPTION("NxtWave NXT6000 DVB demodulator driver");
MODULE_AUTHOR("Florian Schirmer");
MODULE_LICENSE("GPL");
MODULE_PARM(debug, "i");
static struct dvb_frontend_info nxt6000_info = {
.name = "NxtWave NXT6000",
.type = FE_OFDM,
.frequency_min = 0,
.frequency_max = 863250000,
.frequency_stepsize = 62500,
/*.frequency_tolerance = */ /* FIXME: 12% of SR */
.symbol_rate_min = 0, /* FIXME */
.symbol_rate_max = 9360000, /* FIXME */
.symbol_rate_tolerance = 4000,
.notifier_delay = 0,
.caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 |
FE_CAN_FEC_7_8 | FE_CAN_FEC_8_9 | FE_CAN_FEC_AUTO |
FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO |
FE_CAN_HIERARCHY_AUTO,
};
struct nxt6000_config {
u8 demod_addr;
u8 tuner_addr;
u8 tuner_type;
u8 clock_inversion;
};
#define TUNER_TYPE_ALP510 0
#define TUNER_TYPE_SP5659 1
#define TUNER_TYPE_SP5730 2
#define FE2NXT(fe) ((struct nxt6000_config *)((fe)->data))
#define FREQ2DIV(freq) ((freq + 36166667) / 166667)
#define dprintk if (debug) printk
static int nxt6000_write(struct dvb_i2c_bus *i2c, u8 addr, u8 reg, u8 data)
{
u8 buf[] = {reg, data};
struct i2c_msg msg = {.addr = addr >> 1, .flags = 0, .buf = buf, .len = 2};
int ret;
if ((ret = i2c->xfer(i2c, &msg, 1)) != 1)
dprintk("nxt6000: nxt6000_write error (.addr = 0x%02X, reg: 0x%02X, data: 0x%02X, ret: %d)\n", addr, reg, data, ret);
return (ret != 1) ? -EFAULT : 0;
}
static u8 nxt6000_writereg(struct dvb_frontend *fe, u8 reg, u8 data)
{
struct nxt6000_config *nxt = FE2NXT(fe);
return nxt6000_write(fe->i2c, nxt->demod_addr, reg, data);
}
static u8 nxt6000_read(struct dvb_i2c_bus *i2c, u8 addr, u8 reg)
{
int ret;
u8 b0[] = {reg};
u8 b1[] = {0};
struct i2c_msg msgs[] = {
{.addr = addr >> 1,.flags = 0,.buf = b0,.len = 1},
{.addr = addr >> 1,.flags = I2C_M_RD,.buf = b1,.len = 1}
};
ret = i2c->xfer(i2c, msgs, 2);
if (ret != 2)
dprintk("nxt6000: nxt6000_read error (.addr = 0x%02X, reg: 0x%02X, ret: %d)\n", addr, reg, ret);
return b1[0];
}
static u8 nxt6000_readreg(struct dvb_frontend *fe, u8 reg)
{
struct nxt6000_config *nxt = FE2NXT(fe);
return nxt6000_read(fe->i2c, nxt->demod_addr, reg);
}
static int pll_test(struct dvb_i2c_bus *i2c, u8 demod_addr, u8 tuner_addr)
{
u8 buf [1];
struct i2c_msg msg = {.addr = tuner_addr >> 1,.flags = I2C_M_RD,.buf = buf,.len = 1 };
int ret;
nxt6000_write(i2c, demod_addr, ENABLE_TUNER_IIC, 0x01); /* open i2c bus switch */
ret = i2c->xfer(i2c, &msg, 1);
nxt6000_write(i2c, demod_addr, ENABLE_TUNER_IIC, 0x00); /* close i2c bus switch */
return (ret != 1) ? -EFAULT : 0;
}
static int pll_write(struct dvb_i2c_bus *i2c, u8 demod_addr, u8 tuner_addr, u8 *buf, u8 len)
{
struct i2c_msg msg = {.addr = tuner_addr >> 1, .flags = 0, .buf = buf, .len = len};
int ret;
nxt6000_write(i2c, demod_addr, ENABLE_TUNER_IIC, 0x01); /* open i2c bus switch */
ret = i2c->xfer(i2c, &msg, 1);
nxt6000_write(i2c, demod_addr, ENABLE_TUNER_IIC, 0x00); /* close i2c bus switch */
if (ret != 1)
dprintk("nxt6000: pll_write error %d\n", ret);
return (ret != 1) ? -EFAULT : 0;
}
static int sp5659_set_tv_freq(struct dvb_frontend *fe, u32 freq)
{
u8 buf[4];
struct nxt6000_config *nxt = FE2NXT(fe);
buf[0] = (FREQ2DIV(freq) >> 8) & 0x7F;
buf[1] = FREQ2DIV(freq) & 0xFF;
buf[2] = (((FREQ2DIV(freq) >> 15) & 0x03) << 5) | 0x85;
if ((freq >= 174000000) && (freq < 230000000))
buf[3] = 0x82;
else if ((freq >= 470000000) && (freq < 782000000))
buf[3] = 0x85;
else if ((freq >= 782000000) && (freq < 863000000))
buf[3] = 0xC5;
else
return -EINVAL;
return pll_write(fe->i2c, nxt->demod_addr, nxt->tuner_addr, buf, 4);
}
static int alp510_set_tv_freq(struct dvb_frontend *fe, u32 freq)
{
u8 buf[4];
struct nxt6000_config *nxt = FE2NXT(fe);
buf[0] = (FREQ2DIV(freq) >> 8) & 0x7F;
buf[1] = FREQ2DIV(freq) & 0xFF;
buf[2] = 0x85;
#if 0
if ((freq >= 47000000) && (freq < 153000000))
buf[3] = 0x01;
else if ((freq >= 153000000) && (freq < 430000000))
buf[3] = 0x02;
else if ((freq >= 430000000) && (freq < 824000000))
buf[3] = 0x08;
else if ((freq >= 824000000) && (freq < 863000000))
buf[3] = 0x88;
else
return -EINVAL;
#else
if ((freq >= 47000000) && (freq < 153000000))
buf[3] = 0x01;
else if ((freq >= 153000000) && (freq < 430000000))
buf[3] = 0x02;
else if ((freq >= 430000000) && (freq < 824000000))
buf[3] = 0x0C;
else if ((freq >= 824000000) && (freq < 863000000))
buf[3] = 0x8C;
else
return -EINVAL;
#endif
return pll_write(fe->i2c, nxt->demod_addr, nxt->tuner_addr, buf, 4);
}
static int sp5730_set_tv_freq(struct dvb_frontend *fe, u32 freq)
{
u8 buf[4];
struct nxt6000_config *nxt = FE2NXT(fe);
buf[0] = (FREQ2DIV(freq) >> 8) & 0x7F;
buf[1] = FREQ2DIV(freq) & 0xFF;
buf[2] = 0x93;
if ((freq >= 51000000) && (freq < 132100000))
buf[3] = 0x05;
else if ((freq >= 132100000) && (freq < 143000000))
buf[3] = 0x45;
else if ((freq >= 146000000) && (freq < 349100000))
buf[3] = 0x06;
else if ((freq >= 349100000) && (freq < 397100000))
buf[3] = 0x46;
else if ((freq >= 397100000) && (freq < 426000000))
buf[3] = 0x86;
else if ((freq >= 430000000) && (freq < 659100000))
buf[3] = 0x03;
else if ((freq >= 659100000) && (freq < 759100000))
buf[3] = 0x43;
else if ((freq >= 759100000) && (freq < 858000000))
buf[3] = 0x83;
else
return -EINVAL;
return pll_write(fe->i2c, nxt->demod_addr, nxt->tuner_addr, buf, 4);
}
static void nxt6000_reset(struct dvb_frontend *fe)
{
u8 val;
val = nxt6000_readreg(fe, OFDM_COR_CTL);
nxt6000_writereg(fe, OFDM_COR_CTL, val & ~COREACT);
nxt6000_writereg(fe, OFDM_COR_CTL, val | COREACT);
}
static int nxt6000_set_bandwidth(struct dvb_frontend *fe, fe_bandwidth_t bandwidth)
{
u16 nominal_rate;
int result;
switch(bandwidth) {
case BANDWIDTH_6_MHZ:
nominal_rate = 0x55B7;
break;
case BANDWIDTH_7_MHZ:
nominal_rate = 0x6400;
break;
case BANDWIDTH_8_MHZ:
nominal_rate = 0x7249;
break;
default:
return -EINVAL;
}
if ((result = nxt6000_writereg(fe, OFDM_TRL_NOMINALRATE_1, nominal_rate & 0xFF)) < 0)
return result;
return nxt6000_writereg(fe, OFDM_TRL_NOMINALRATE_2, (nominal_rate >> 8) & 0xFF);
}
static int nxt6000_set_guard_interval(struct dvb_frontend *fe, fe_guard_interval_t guard_interval)
{
switch(guard_interval) {
case GUARD_INTERVAL_1_32:
return nxt6000_writereg(fe, OFDM_COR_MODEGUARD, 0x00 | (nxt6000_readreg(fe, OFDM_COR_MODEGUARD) & ~0x03));
case GUARD_INTERVAL_1_16:
return nxt6000_writereg(fe, OFDM_COR_MODEGUARD, 0x01 | (nxt6000_readreg(fe, OFDM_COR_MODEGUARD) & ~0x03));
case GUARD_INTERVAL_AUTO:
case GUARD_INTERVAL_1_8:
return nxt6000_writereg(fe, OFDM_COR_MODEGUARD, 0x02 | (nxt6000_readreg(fe, OFDM_COR_MODEGUARD) & ~0x03));
case GUARD_INTERVAL_1_4:
return nxt6000_writereg(fe, OFDM_COR_MODEGUARD, 0x03 | (nxt6000_readreg(fe, OFDM_COR_MODEGUARD) & ~0x03));
default:
return -EINVAL;
}
}
static int nxt6000_set_inversion(struct dvb_frontend *fe, fe_spectral_inversion_t inversion)
{
switch(inversion) {
case INVERSION_OFF:
return nxt6000_writereg(fe, OFDM_ITB_CTL, 0x00);
case INVERSION_ON:
return nxt6000_writereg(fe, OFDM_ITB_CTL, ITBINV);
default:
return -EINVAL;
}
}
static int nxt6000_set_transmission_mode(struct dvb_frontend *fe, fe_transmit_mode_t transmission_mode)
{
int result;
switch(transmission_mode) {
case TRANSMISSION_MODE_2K:
if ((result = nxt6000_writereg(fe, EN_DMD_RACQ, 0x00 | (nxt6000_readreg(fe, EN_DMD_RACQ) & ~0x03))) < 0)
return result;
return nxt6000_writereg(fe, OFDM_COR_MODEGUARD, (0x00 << 2) | (nxt6000_readreg(fe, OFDM_COR_MODEGUARD) & ~0x04));
case TRANSMISSION_MODE_8K:
case TRANSMISSION_MODE_AUTO:
if ((result = nxt6000_writereg(fe, EN_DMD_RACQ, 0x02 | (nxt6000_readreg(fe, EN_DMD_RACQ) & ~0x03))) < 0)
return result;
return nxt6000_writereg(fe, OFDM_COR_MODEGUARD, (0x01 << 2) | (nxt6000_readreg(fe, OFDM_COR_MODEGUARD) & ~0x04));
default:
return -EINVAL;
}
}
static void nxt6000_setup(struct dvb_frontend *fe)
{
struct nxt6000_config *nxt = FE2NXT(fe);
nxt6000_writereg(fe, RS_COR_SYNC_PARAM, SYNC_PARAM);
nxt6000_writereg(fe, BER_CTRL, /*(1 << 2) |*/ (0x01 << 1) | 0x01);
nxt6000_writereg(fe, VIT_COR_CTL, VIT_COR_RESYNC);
nxt6000_writereg(fe, OFDM_COR_CTL, (0x01 << 5) | (nxt6000_readreg(fe, OFDM_COR_CTL) & 0x0F));
nxt6000_writereg(fe, OFDM_COR_MODEGUARD, FORCEMODE8K | 0x02);
nxt6000_writereg(fe, OFDM_AGC_CTL, AGCLAST | INITIAL_AGC_BW);
nxt6000_writereg(fe, OFDM_ITB_FREQ_1, 0x06);
nxt6000_writereg(fe, OFDM_ITB_FREQ_2, 0x31);
nxt6000_writereg(fe, OFDM_CAS_CTL, (0x01 << 7) | (0x02 << 3) | 0x04);
nxt6000_writereg(fe, CAS_FREQ, 0xBB); /* CHECKME */
nxt6000_writereg(fe, OFDM_SYR_CTL, 1 << 2);
nxt6000_writereg(fe, OFDM_PPM_CTL_1, PPM256);
nxt6000_writereg(fe, OFDM_TRL_NOMINALRATE_1, 0x49);
nxt6000_writereg(fe, OFDM_TRL_NOMINALRATE_2, 0x72);
nxt6000_writereg(fe, ANALOG_CONTROL_0, 1 << 5);
nxt6000_writereg(fe, EN_DMD_RACQ, (1 << 7) | (3 << 4) | 2);
nxt6000_writereg(fe, DIAG_CONFIG, TB_SET);
if (nxt->clock_inversion)
nxt6000_writereg(fe, SUB_DIAG_MODE_SEL, CLKINVERSION);
else
nxt6000_writereg(fe, SUB_DIAG_MODE_SEL, 0);
nxt6000_writereg(fe, TS_FORMAT, 0);
}
static void nxt6000_dump_status(struct dvb_frontend *fe)
{
u8 val;
/*
printk("RS_COR_STAT: 0x%02X\n", nxt6000_readreg(fe, RS_COR_STAT));
printk("VIT_SYNC_STATUS: 0x%02X\n", nxt6000_readreg(fe, VIT_SYNC_STATUS));
printk("OFDM_COR_STAT: 0x%02X\n", nxt6000_readreg(fe, OFDM_COR_STAT));
printk("OFDM_SYR_STAT: 0x%02X\n", nxt6000_readreg(fe, OFDM_SYR_STAT));
printk("OFDM_TPS_RCVD_1: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_1));
printk("OFDM_TPS_RCVD_2: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_2));
printk("OFDM_TPS_RCVD_3: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_3));
printk("OFDM_TPS_RCVD_4: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_4));
printk("OFDM_TPS_RESERVED_1: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RESERVED_1));
printk("OFDM_TPS_RESERVED_2: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RESERVED_2));
*/
printk("NXT6000 status:");
val = nxt6000_readreg(fe, RS_COR_STAT);
printk(" DATA DESCR LOCK: %d,", val & 0x01);
printk(" DATA SYNC LOCK: %d,", (val >> 1) & 0x01);
val = nxt6000_readreg(fe, VIT_SYNC_STATUS);
printk(" VITERBI LOCK: %d,", (val >> 7) & 0x01);
switch((val >> 4) & 0x07) {
case 0x00:
printk(" VITERBI CODERATE: 1/2,");
break;
case 0x01:
printk(" VITERBI CODERATE: 2/3,");
break;
case 0x02:
printk(" VITERBI CODERATE: 3/4,");
break;
case 0x03:
printk(" VITERBI CODERATE: 5/6,");
break;
case 0x04:
printk(" VITERBI CODERATE: 7/8,");
break;
default:
printk(" VITERBI CODERATE: Reserved,");
}
val = nxt6000_readreg(fe, OFDM_COR_STAT);
printk(" CHCTrack: %d,", (val >> 7) & 0x01);
printk(" TPSLock: %d,", (val >> 6) & 0x01);
printk(" SYRLock: %d,", (val >> 5) & 0x01);
printk(" AGCLock: %d,", (val >> 4) & 0x01);
switch(val & 0x0F) {
case 0x00:
printk(" CoreState: IDLE,");
break;
case 0x02:
printk(" CoreState: WAIT_AGC,");
break;
case 0x03:
printk(" CoreState: WAIT_SYR,");
break;
case 0x04:
printk(" CoreState: WAIT_PPM,");
break;
case 0x01:
printk(" CoreState: WAIT_TRL,");
break;
case 0x05:
printk(" CoreState: WAIT_TPS,");
break;
case 0x06:
printk(" CoreState: MONITOR_TPS,");
break;
default:
printk(" CoreState: Reserved,");
}
val = nxt6000_readreg(fe, OFDM_SYR_STAT);
printk(" SYRLock: %d,", (val >> 4) & 0x01);
printk(" SYRMode: %s,", (val >> 2) & 0x01 ? "8K" : "2K");
switch((val >> 4) & 0x03) {
case 0x00:
printk(" SYRGuard: 1/32,");
break;
case 0x01:
printk(" SYRGuard: 1/16,");
break;
case 0x02:
printk(" SYRGuard: 1/8,");
break;
case 0x03:
printk(" SYRGuard: 1/4,");
break;
}
val = nxt6000_readreg(fe, OFDM_TPS_RCVD_3);
switch((val >> 4) & 0x07) {
case 0x00:
printk(" TPSLP: 1/2,");
break;
case 0x01:
printk(" TPSLP: 2/3,");
break;
case 0x02:
printk(" TPSLP: 3/4,");
break;
case 0x03:
printk(" TPSLP: 5/6,");
break;
case 0x04:
printk(" TPSLP: 7/8,");
break;
default:
printk(" TPSLP: Reserved,");
}
switch(val & 0x07) {
case 0x00:
printk(" TPSHP: 1/2,");
break;
case 0x01:
printk(" TPSHP: 2/3,");
break;
case 0x02:
printk(" TPSHP: 3/4,");
break;
case 0x03:
printk(" TPSHP: 5/6,");
break;
case 0x04:
printk(" TPSHP: 7/8,");
break;
default:
printk(" TPSHP: Reserved,");
}
val = nxt6000_readreg(fe, OFDM_TPS_RCVD_4);
printk(" TPSMode: %s,", val & 0x01 ? "8K" : "2K");
switch((val >> 4) & 0x03) {
case 0x00:
printk(" TPSGuard: 1/32,");
break;
case 0x01:
printk(" TPSGuard: 1/16,");
break;
case 0x02:
printk(" TPSGuard: 1/8,");
break;
case 0x03:
printk(" TPSGuard: 1/4,");
break;
}
/* Strange magic required to gain access to RF_AGC_STATUS */
nxt6000_readreg(fe, RF_AGC_VAL_1);
val = nxt6000_readreg(fe, RF_AGC_STATUS);
val = nxt6000_readreg(fe, RF_AGC_STATUS);
printk(" RF AGC LOCK: %d,", (val >> 4) & 0x01);
printk("\n");
}
static int nxt6000_ioctl(struct dvb_frontend *fe, unsigned int cmd, void *arg)
{
switch (cmd) {
case FE_GET_INFO:
memcpy(arg, &nxt6000_info, sizeof (struct dvb_frontend_info));
return 0;
case FE_READ_STATUS:
{
fe_status_t *status = (fe_status_t *)arg;
u8 core_status;
*status = 0;
core_status = nxt6000_readreg(fe, OFDM_COR_STAT);
if (core_status & AGCLOCKED)
*status |= FE_HAS_SIGNAL;
if (nxt6000_readreg(fe, OFDM_SYR_STAT) & GI14_SYR_LOCK)
*status |= FE_HAS_CARRIER;
if (nxt6000_readreg(fe, VIT_SYNC_STATUS) & VITINSYNC)
*status |= FE_HAS_VITERBI;
if (nxt6000_readreg(fe, RS_COR_STAT) & RSCORESTATUS)
*status |= FE_HAS_SYNC;
if ((core_status & TPSLOCKED) && (*status == (FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC)))
*status |= FE_HAS_LOCK;
if (debug)
nxt6000_dump_status(fe);
return 0;
}
case FE_READ_BER:
{
u32 *ber = (u32 *)arg;
*ber=0;
return 0;
}
case FE_READ_SIGNAL_STRENGTH:
{
s16 *signal = (s16 *) arg;
/*
*signal=(((signed char)readreg(client, 0x16))+128)<<8;
*/
*signal = 0;
return 0;
}
case FE_READ_SNR:
{
s16 *snr = (s16 *) arg;
/*
*snr=readreg(client, 0x24)<<8;
*snr|=readreg(client, 0x25);
*/
*snr = 0;
break;
}
case FE_READ_UNCORRECTED_BLOCKS:
{
u32 *ublocks = (u32 *)arg;
*ublocks = 0;
break;
}
case FE_INIT:
nxt6000_reset(fe);
nxt6000_setup(fe);
break;
case FE_SET_FRONTEND:
{
struct nxt6000_config *nxt = FE2NXT(fe);
struct dvb_frontend_parameters *param = (struct dvb_frontend_parameters *)arg;
int result;
switch(nxt->tuner_type) {
case TUNER_TYPE_ALP510:
if ((result = alp510_set_tv_freq(fe, param->frequency)) < 0)
return result;
break;
case TUNER_TYPE_SP5659:
if ((result = sp5659_set_tv_freq(fe, param->frequency)) < 0)
return result;
break;
case TUNER_TYPE_SP5730:
if ((result = sp5730_set_tv_freq(fe, param->frequency)) < 0)
return result;
break;
default:
return -EFAULT;
}
if ((result = nxt6000_set_bandwidth(fe, param->u.ofdm.bandwidth)) < 0)
return result;
if ((result = nxt6000_set_guard_interval(fe, param->u.ofdm.guard_interval)) < 0)
return result;
if ((result = nxt6000_set_transmission_mode(fe, param->u.ofdm.transmission_mode)) < 0)
return result;
if ((result = nxt6000_set_inversion(fe, param->inversion)) < 0)
return result;
break;
}
default:
return -EOPNOTSUPP;
}
return 0;
}
static u8 demod_addr_tbl[] = {0x14, 0x18, 0x24, 0x28};
static int nxt6000_attach(struct dvb_i2c_bus *i2c, void **data)
{
u8 addr_nr;
u8 fe_count = 0;
struct nxt6000_config *pnxt;
dprintk("nxt6000: attach\n");
pnxt = kmalloc(sizeof(demod_addr_tbl)*sizeof(struct nxt6000_config), GFP_KERNEL);
if (NULL == pnxt) {
dprintk("nxt6000: no memory for private data.\n");
return -ENOMEM;
}
*data = pnxt;
for (addr_nr = 0; addr_nr < sizeof(demod_addr_tbl); addr_nr++) {
struct nxt6000_config *nxt = &pnxt[addr_nr];
if (nxt6000_read(i2c, demod_addr_tbl[addr_nr], OFDM_MSC_REV) != NXT6000ASICDEVICE)
continue;
if (pll_test(i2c, demod_addr_tbl[addr_nr], 0xC0) == 0) {
nxt->tuner_addr = 0xC0;
nxt->tuner_type = TUNER_TYPE_ALP510;
nxt->clock_inversion = 1;
dprintk("nxt6000: detected TI ALP510 tuner at 0x%02X\n", nxt->tuner_addr);
} else if (pll_test(i2c, demod_addr_tbl[addr_nr], 0xC2) == 0) {
nxt->tuner_addr = 0xC2;
nxt->tuner_type = TUNER_TYPE_SP5659;
nxt->clock_inversion = 0;
dprintk("nxt6000: detected MITEL SP5659 tuner at 0x%02X\n", nxt->tuner_addr);
} else if (pll_test(i2c, demod_addr_tbl[addr_nr], 0xC0) == 0) {
nxt->tuner_addr = 0xC0;
nxt->tuner_type = TUNER_TYPE_SP5730;
nxt->clock_inversion = 0;
dprintk("nxt6000: detected SP5730 tuner at 0x%02X\n", nxt->tuner_addr);
} else {
printk("nxt6000: unable to detect tuner\n");
continue;
}
nxt->demod_addr = demod_addr_tbl[addr_nr];
dprintk("nxt6000: attached at %d:%d\n", i2c->adapter->num, i2c->id);
dvb_register_frontend(nxt6000_ioctl, i2c, (void *)nxt, &nxt6000_info);
fe_count++;
}
if (fe_count == 0) {
kfree(pnxt);
return -ENODEV;
}
return 0;
}
static void nxt6000_detach(struct dvb_i2c_bus *i2c, void *data)
{
struct nxt6000_config *pnxt = (struct nxt6000_config *)data;
dprintk("nxt6000: detach\n");
dvb_unregister_frontend(nxt6000_ioctl, i2c);
kfree(pnxt);
}
static __init int nxt6000_init(void)
{
dprintk("nxt6000: init\n");
return dvb_register_i2c_device(THIS_MODULE, nxt6000_attach, nxt6000_detach);
}
static __exit void nxt6000_exit(void)
{
dprintk("nxt6000: cleanup\n");
dvb_unregister_i2c_device(nxt6000_attach);
}
module_init(nxt6000_init);
module_exit(nxt6000_exit);