/*
Frontend-driver for TwinHan DST Frontend
Copyright (C) 2003 Jamie Honan
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <asm/div64.h>
#include <asm/delay.h>
#include "dvb_frontend.h"
#include "dvb_functions.h"
#include "dst-bt878.h"
unsigned int dst_debug = 0;
unsigned int dst_verbose = 0;
MODULE_PARM(dst_verbose, "i");
MODULE_PARM_DESC(dst_verbose,
"verbose startup messages, default is 1 (yes)");
MODULE_PARM(dst_debug, "i");
MODULE_PARM_DESC(dst_debug, "debug messages, default is 0 (no)");
#define DST_MAX_CARDS 6
unsigned int dst_cur_no = 0;
unsigned int dst_type[DST_MAX_CARDS] = { [0 ... (DST_MAX_CARDS-1)] = (-1U)};
unsigned int dst_type_flags[DST_MAX_CARDS] = { [0 ... (DST_MAX_CARDS-1)] = (-1U)};
MODULE_PARM(dst_type, "1-" __stringify(DST_MAX_CARDS) "i");
MODULE_PARM_DESC(dst_type,
"Type of DST card, 0 Satellite, 1 terrestial TV, 2 Cable, default driver determined");
MODULE_PARM(dst_type_flags, "1-" __stringify(DST_MAX_CARDS) "i");
MODULE_PARM_DESC(dst_type_flags,
"Type flags of DST card, bitfield 1=10 byte tuner, 2=TS is 204, 4=symdiv");
#define dprintk if (dst_debug) printk
#define DST_TYPE_IS_SAT 0
#define DST_TYPE_IS_TERR 1
#define DST_TYPE_IS_CABLE 2
#define DST_TYPE_HAS_NEWTUNE 1
#define DST_TYPE_HAS_TS204 2
#define DST_TYPE_HAS_SYMDIV 4
#define HAS_LOCK 1
#define ATTEMPT_TUNE 2
#define HAS_POWER 4
struct dst_data {
u8 tx_tuna[10];
u8 rx_tuna[10];
u8 rxbuffer[10];
u8 diseq_flags;
u8 dst_type;
u32 type_flags;
u32 frequency; /* intermediate frequency in kHz for QPSK */
fe_spectral_inversion_t inversion;
u32 symbol_rate; /* symbol rate in Symbols per second */
fe_code_rate_t fec;
fe_sec_voltage_t voltage;
fe_sec_tone_mode_t tone;
u32 decode_freq;
u8 decode_lock;
u16 decode_strength;
u16 decode_snr;
unsigned long cur_jiff;
u8 k22;
fe_bandwidth_t bandwidth;
struct bt878 *bt;
struct dvb_i2c_bus *i2c;
} ;
static struct dvb_frontend_info dst_info_sat = {
.name = "DST SAT",
.type = FE_QPSK,
.frequency_min = 950000,
.frequency_max = 2150000,
.frequency_stepsize = 1000, /* kHz for QPSK frontends */
.frequency_tolerance = 29500,
.symbol_rate_min = 1000000,
.symbol_rate_max = 45000000,
/* . symbol_rate_tolerance = ???,*/
.notifier_delay = 50, /* 1/20 s */
.caps = FE_CAN_FEC_AUTO |
FE_CAN_QPSK
};
static struct dvb_frontend_info dst_info_cable = {
.name = "DST CABLE",
.type = FE_QAM,
.frequency_stepsize = 62500,
.frequency_min = 51000000,
.frequency_max = 858000000,
.symbol_rate_min = 1000000,
.symbol_rate_max = 45000000,
/* . symbol_rate_tolerance = ???,*/
.notifier_delay = 50, /* 1/20 s */
.caps = FE_CAN_FEC_AUTO |
FE_CAN_QAM_AUTO
};
static struct dvb_frontend_info dst_info_tv = {
.name = "DST TERR",
.type = FE_OFDM,
.frequency_min = 137000000,
.frequency_max = 858000000,
.frequency_stepsize = 166667,
.caps = FE_CAN_FEC_AUTO |
FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
};
static void dst_packsize(struct dst_data *dst, int psize)
{
union dst_gpio_packet bits;
bits.psize = psize;
bt878_device_control(dst->bt, DST_IG_TS, &bits);
}
static int dst_gpio_outb(struct dst_data *dst, u32 mask, u32 enbb, u32 outhigh)
{
union dst_gpio_packet enb;
union dst_gpio_packet bits;
int err;
enb.enb.mask = mask;
enb.enb.enable = enbb;
if ((err = bt878_device_control(dst->bt, DST_IG_ENABLE, &enb)) < 0) {
dprintk ("%s: dst_gpio_enb error (err == %i, mask == 0x%02x, enb == 0x%02x)\n", __FUNCTION__, err, mask, enbb);
return -EREMOTEIO;
}
/* because complete disabling means no output, no need to do
* output packet */
if (enbb == 0)
return 0;
bits.outp.mask = enbb;
bits.outp.highvals = outhigh;
if ((err = bt878_device_control(dst->bt, DST_IG_WRITE, &bits)) < 0) {
dprintk ("%s: dst_gpio_outb error (err == %i, enbb == 0x%02x, outhigh == 0x%02x)\n", __FUNCTION__, err, enbb, outhigh);
return -EREMOTEIO;
}
return 0;
}
static int dst_gpio_inb(struct dst_data *dst, u8 *result)
{
union dst_gpio_packet rd_packet;
int err;
*result = 0;
if ((err = bt878_device_control(dst->bt, DST_IG_READ, &rd_packet)) < 0) {
dprintk ("%s: dst_gpio_inb error (err == %i)\n", __FUNCTION__, err);
return -EREMOTEIO;
}
*result = (u8)rd_packet.rd.value;
return 0;
}
#define DST_I2C_ENABLE 1
#define DST_8820 2
static int
dst_reset8820(struct dst_data *dst)
{
int retval;
/* pull 8820 gpio pin low, wait, high, wait, then low */
// dprintk ("%s: reset 8820\n", __FUNCTION__);
retval = dst_gpio_outb(dst, DST_8820, DST_8820, 0);
if (retval < 0)
return retval;
dvb_delay(10);
retval = dst_gpio_outb(dst, DST_8820, DST_8820, DST_8820);
if (retval < 0)
return retval;
/* wait for more feedback on what works here *
dvb_delay(10);
retval = dst_gpio_outb(dst, DST_8820, DST_8820, 0);
if (retval < 0)
return retval;
*/
return 0;
}
static int
dst_i2c_enable(struct dst_data *dst)
{
int retval;
/* pull I2C enable gpio pin low, wait */
// dprintk ("%s: i2c enable\n", __FUNCTION__);
retval = dst_gpio_outb(dst, ~0, DST_I2C_ENABLE, 0);
if (retval < 0)
return retval;
// dprintk ("%s: i2c enable delay\n", __FUNCTION__);
dvb_delay(33);
return 0;
}
static int
dst_i2c_disable(struct dst_data *dst)
{
int retval;
/* release I2C enable gpio pin, wait */
// dprintk ("%s: i2c disable\n", __FUNCTION__);
retval = dst_gpio_outb(dst, ~0, 0, 0);
if (retval < 0)
return retval;
// dprintk ("%s: i2c disable delay\n", __FUNCTION__);
dvb_delay(33);
return 0;
}
static int
dst_wait_dst_ready(struct dst_data *dst)
{
u8 reply;
int retval;
int i;
for (i = 0; i < 200; i++) {
retval = dst_gpio_inb(dst, &reply);
if (retval < 0)
return retval;
if ((reply & DST_I2C_ENABLE) == 0) {
dprintk ("%s: dst wait ready after %d\n", __FUNCTION__, i);
return 1;
}
dvb_delay(5);
}
dprintk ("%s: dst wait NOT ready after %d\n", __FUNCTION__, i);
return 0;
}
#define DST_I2C_ADDR 0x55
static int write_dst (struct dst_data *dst, u8 *data, u8 len)
{
struct i2c_msg msg = {
.addr = DST_I2C_ADDR, .flags = 0, .buf = data, .len = len };
int err;
int cnt;
if (dst_debug && dst_verbose) {
u8 i;
dprintk("%s writing",__FUNCTION__);
for (i = 0 ; i < len ; i++) {
dprintk(" 0x%02x", data[i]);
}
dprintk("\n");
}
dvb_delay(30);
for (cnt = 0; cnt < 4; cnt++) {
if ((err = dst->i2c->xfer (dst->i2c, &msg, 1)) < 0) {
dprintk ("%s: write_dst error (err == %i, len == 0x%02x, b0 == 0x%02x)\n", __FUNCTION__, err, len, data[0]);
dst_i2c_disable(dst);
dvb_delay(500);
dst_i2c_enable(dst);
dvb_delay(500);
continue;
} else
break;
}
if (cnt >= 4)
return -EREMOTEIO;
return 0;
}
static int read_dst (struct dst_data *dst, u8 *ret, u8 len)
{
struct i2c_msg msg =
{ .addr = DST_I2C_ADDR, .flags = I2C_M_RD, .buf = ret, .len = len };
int err;
int cnt;
for (cnt = 0; cnt < 4; cnt++) {
if ((err = dst->i2c->xfer (dst->i2c, &msg, 1)) < 0) {
dprintk ("%s: read_dst error (err == %i, len == 0x%02x, b0 == 0x%02x)\n", __FUNCTION__, err, len, ret[0]);
dst_i2c_disable(dst);
dst_i2c_enable(dst);
continue;
} else
break;
}
if (cnt >= 4)
return -EREMOTEIO;
dprintk("%s reply is 0x%x\n", __FUNCTION__, ret[0]);
if (dst_debug && dst_verbose) {
for (err = 1; err < len; err++)
dprintk(" 0x%x", ret[err]);
if (err > 1)
dprintk("\n");
}
return 0;
}
static int dst_set_freq(struct dst_data *dst, u32 freq)
{
u8 *val;
dst->frequency = freq;
// dprintk("%s: set frequency %u\n", __FUNCTION__, freq);
if (dst->dst_type == DST_TYPE_IS_SAT) {
freq = freq / 1000;
if (freq < 950 || freq > 2150)
return -EINVAL;
val = &dst->tx_tuna[0];
val[2] = (freq >> 8) & 0x7f;
val[3] = (u8)freq;
val[4] = 1;
val[8] &= ~4;
if (freq < 1531)
val[8] |= 4;
} else if (dst->dst_type == DST_TYPE_IS_TERR) {
freq = freq / 1000;
if (freq < 137000 || freq > 858000)
return -EINVAL;
val = &dst->tx_tuna[0];
val[2] = (freq >> 16) & 0xff;
val[3] = (freq >> 8) & 0xff;
val[4] = (u8)freq;
val[5] = 0;
switch (dst->bandwidth) {
case BANDWIDTH_6_MHZ:
val[6] = 6;
break;
case BANDWIDTH_7_MHZ:
case BANDWIDTH_AUTO:
val[6] = 7;
break;
case BANDWIDTH_8_MHZ:
val[6] = 8;
break;
}
val[7] = 0;
val[8] = 0;
} else if (dst->dst_type == DST_TYPE_IS_CABLE) {
/* guess till will get one */
freq = freq / 1000;
val = &dst->tx_tuna[0];
val[2] = (freq >> 16) & 0xff;
val[3] = (freq >> 8) & 0xff;
val[4] = (u8)freq;
} else
return -EINVAL;
return 0;
}
static int dst_set_bandwidth(struct dst_data *dst, fe_bandwidth_t bandwidth)
{
u8 *val;
dst->bandwidth = bandwidth;
if (dst->dst_type != DST_TYPE_IS_TERR)
return 0;
val = &dst->tx_tuna[0];
switch (bandwidth) {
case BANDWIDTH_6_MHZ:
val[6] = 6;
break;
case BANDWIDTH_7_MHZ:
val[6] = 7;
break;
case BANDWIDTH_8_MHZ:
val[6] = 8;
break;
default:
return -EINVAL;
}
return 0;
}
static int dst_set_inversion (struct dst_data *dst, fe_spectral_inversion_t inversion)
{
u8 *val;
dst->inversion = inversion;
val = &dst->tx_tuna[0];
val[8] &= ~0x80;
switch (inversion) {
case INVERSION_OFF:
break;
case INVERSION_ON:
val[8] |= 0x80;
break;
default:
return -EINVAL;
}
return 0;
}
static int dst_set_fec (struct dst_data *dst, fe_code_rate_t fec)
{
dst->fec = fec;
return 0;
}
static fe_code_rate_t dst_get_fec (struct dst_data *dst)
{
return dst->fec;
}
static int dst_set_symbolrate (struct dst_data *dst, u32 srate)
{
u8 *val;
u32 symcalc;
u64 sval;
dst->symbol_rate = srate;
if (dst->dst_type == DST_TYPE_IS_TERR) {
return 0;
}
// dprintk("%s: set srate %u\n", __FUNCTION__, srate);
srate /= 1000;
val = &dst->tx_tuna[0];
if (dst->type_flags & DST_TYPE_HAS_SYMDIV) {
sval = srate;
sval <<= 20;
do_div(sval, 88000);
symcalc = (u32)sval;
// dprintk("%s: set symcalc %u\n", __FUNCTION__, symcalc);
val[5] = (u8)(symcalc >> 12);
val[6] = (u8)(symcalc >> 4);
val[7] = (u8)(symcalc << 4);
} else {
val[5] = (u8)(srate >> 16) & 0x7f;
val[6] = (u8)(srate >> 8);
val[7] = (u8)srate;
}
val[8] &= ~0x20;
if (srate > 8000)
val[8] |= 0x20;
return 0;
}
static u8 dst_check_sum(u8 *buf, u32 len)
{
u32 i;
u8 val = 0;
if (!len)
return 0;
for (i = 0; i < len; i++) {
val += buf[i];
}
return ((~val) + 1);
}
typedef struct dst_types {
char *mstr;
int offs;
u8 dst_type;
u32 type_flags;
} DST_TYPES;
struct dst_types dst_tlist[] = {
{ "DST-020", 0, DST_TYPE_IS_SAT, DST_TYPE_HAS_SYMDIV },
{ "DST-030", 0, DST_TYPE_IS_SAT, DST_TYPE_HAS_TS204|DST_TYPE_HAS_NEWTUNE },
{ "DST-03T", 0, DST_TYPE_IS_SAT, DST_TYPE_HAS_SYMDIV|DST_TYPE_HAS_TS204},
{ "DST-MOT", 0, DST_TYPE_IS_SAT, DST_TYPE_HAS_SYMDIV },
{ "DST-CI", 1, DST_TYPE_IS_SAT, DST_TYPE_HAS_TS204|DST_TYPE_HAS_NEWTUNE },
{ "DSTMCI", 1, DST_TYPE_IS_SAT, DST_TYPE_HAS_NEWTUNE },
{ "DSTFCI", 1, DST_TYPE_IS_SAT, DST_TYPE_HAS_NEWTUNE },
{ "DCTNEW", 1, DST_TYPE_IS_CABLE, DST_TYPE_HAS_NEWTUNE },
{ "DCT_CI", 1, DST_TYPE_IS_CABLE, DST_TYPE_HAS_NEWTUNE|DST_TYPE_HAS_TS204 },
{ "DTTDIG" , 1, DST_TYPE_IS_TERR, 0} };
/* DCTNEW and DCT-CI are guesses */
static void dst_type_flags_print(u32 type_flags)
{
printk("DST type flags :");
if (type_flags & DST_TYPE_HAS_NEWTUNE)
printk(" 0x%x newtuner", DST_TYPE_HAS_NEWTUNE);
if (type_flags & DST_TYPE_HAS_TS204)
printk(" 0x%x ts204", DST_TYPE_HAS_TS204);
if (type_flags & DST_TYPE_HAS_SYMDIV)
printk(" 0x%x symdiv", DST_TYPE_HAS_SYMDIV);
printk("\n");
}
static int dst_type_print(u8 type)
{
char *otype;
switch (type) {
case DST_TYPE_IS_SAT:
otype = "satellite";
break;
case DST_TYPE_IS_TERR:
otype = "terrestial TV";
break;
case DST_TYPE_IS_CABLE:
otype = "terrestial TV";
break;
default:
printk("%s: invalid dst type %d\n",
__FUNCTION__, type);
return -EINVAL;
}
printk("DST type : %s\n", otype);
return 0;
}
static int dst_check_ci (struct dst_data *dst)
{
u8 txbuf[8];
u8 rxbuf[8];
int retval;
int i;
struct dst_types *dsp;
u8 use_dst_type;
u32 use_type_flags;
memset(txbuf, 0, sizeof(txbuf));
txbuf[1] = 6;
txbuf[7] = dst_check_sum (txbuf, 7);
dst_i2c_enable(dst);
dst_reset8820(dst);
retval = write_dst (dst, txbuf, 8);
if (retval < 0) {
dst_i2c_disable(dst);
dprintk("%s: write not successful, maybe no card?\n", __FUNCTION__);
return retval;
}
dvb_delay(3);
retval = read_dst (dst, rxbuf, 1);
dst_i2c_disable(dst);
if (retval < 0) {
dprintk("%s: read not successful, maybe no card?\n", __FUNCTION__);
return retval;
}
if (rxbuf[0] != 0xff) {
dprintk("%s: write reply not 0xff, not ci (%02x)\n", __FUNCTION__, rxbuf[0]);
return retval;
}
if (!dst_wait_dst_ready(dst))
return 0;
// dst_i2c_enable(i2c); Dimitri
retval = read_dst (dst, rxbuf, 8);
dst_i2c_disable(dst);
if (retval < 0) {
dprintk("%s: read not successful\n", __FUNCTION__);
return retval;
}
if (rxbuf[7] != dst_check_sum (rxbuf, 7)) {
dprintk("%s: checksum failure\n", __FUNCTION__);
return retval;
}
rxbuf[7] = '\0';
for (i = 0, dsp = &dst_tlist[0]; i < sizeof(dst_tlist) / sizeof(dst_tlist[0]); i++, dsp++) {
if (!strncmp(&rxbuf[dsp->offs],
dsp->mstr,
strlen(dsp->mstr))) {
use_type_flags = dsp->type_flags;
use_dst_type = dsp->dst_type;
printk("%s: recognize %s\n", __FUNCTION__, dsp->mstr);
break;
}
}
if (i >= sizeof(dst_tlist) / sizeof(dst_tlist[0])) {
printk("%s: unable to recognize %s or %s\n", __FUNCTION__, &rxbuf[0], &rxbuf[1]);
printk("%s please email linux-dvb@linuxtv.org with this type in\n", __FUNCTION__);
use_dst_type = DST_TYPE_IS_SAT;
use_type_flags = DST_TYPE_HAS_SYMDIV;
}
switch (dst_type[dst_cur_no]) {
case (-1U):
/* not used */
break;
case DST_TYPE_IS_SAT:
case DST_TYPE_IS_TERR:
case DST_TYPE_IS_CABLE:
use_dst_type = (u8)(dst_type[dst_cur_no]);
break;
default:
printk("%s: invalid user override dst type %d, not used\n",
__FUNCTION__, dst_type[dst_cur_no]);
break;
}
dst_type_print(use_dst_type);
if (dst_type_flags[dst_cur_no] != (-1U)) {
printk("%s: user override dst type flags 0x%x\n",
__FUNCTION__, dst_type_flags[dst_cur_no]);
use_type_flags = dst_type_flags[dst_cur_no];
}
dst->type_flags = use_type_flags;
dst->dst_type= use_dst_type;
dst_type_flags_print(dst->type_flags);
if (dst->type_flags & DST_TYPE_HAS_TS204) {
dst_packsize(dst, 204);
}
return 0;
}
static int dst_command (struct dst_data *dst, u8 *data, u8 len)
{
int retval;
u8 reply;
dst_i2c_enable(dst);
dst_reset8820(dst);
retval = write_dst (dst, data, len);
if (retval < 0) {
dst_i2c_disable(dst);
dprintk("%s: write not successful\n", __FUNCTION__);
return retval;
}
dvb_delay(33);
retval = read_dst (dst, &reply, 1);
dst_i2c_disable(dst);
if (retval < 0) {
dprintk("%s: read verify not successful\n", __FUNCTION__);
return retval;
}
if (reply != 0xff) {
dprintk("%s: write reply not 0xff 0x%02x \n", __FUNCTION__, reply);
return 0;
}
if (len >= 2 && data[0] == 0 && (data[1] == 1 || data[1] == 3))
return 0;
if (!dst_wait_dst_ready(dst))
return 0;
// dst_i2c_enable(i2c); Per dimitri
retval = read_dst (dst, dst->rxbuffer, 8);
dst_i2c_disable(dst);
if (retval < 0) {
dprintk("%s: read not successful\n", __FUNCTION__);
return 0;
}
if (dst->rxbuffer[7] != dst_check_sum (dst->rxbuffer, 7)) {
dprintk("%s: checksum failure\n", __FUNCTION__);
return 0;
}
return 0;
}
static int dst_get_signal(struct dst_data *dst)
{
int retval;
u8 get_signal[] = {0x00, 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0xfb};
if ((dst->diseq_flags & ATTEMPT_TUNE) == 0) {
dst->decode_lock = dst->decode_strength = dst->decode_snr = 0;
return 0;
}
if (0 == (dst->diseq_flags & HAS_LOCK)) {
dst->decode_lock = dst->decode_strength = dst->decode_snr = 0;
return 0;
}
if (time_after_eq(jiffies, dst->cur_jiff + (HZ/5))) {
retval = dst_command(dst, get_signal, 8);
if (retval < 0)
return retval;
if (dst->dst_type == DST_TYPE_IS_SAT) {
dst->decode_lock = ((dst->rxbuffer[6] & 0x10) == 0) ?
1 : 0;
dst->decode_strength = dst->rxbuffer[5] << 8;
dst->decode_snr = dst->rxbuffer[2] << 8 |
dst->rxbuffer[3];
} else if ((dst->dst_type == DST_TYPE_IS_TERR) ||
(dst->dst_type == DST_TYPE_IS_CABLE)) {
dst->decode_lock = (dst->rxbuffer[1]) ?
1 : 0;
dst->decode_strength = dst->rxbuffer[4] << 8;
dst->decode_snr = dst->rxbuffer[3] << 8;
}
dst->cur_jiff = jiffies;
}
return 0;
}
/*
* line22k0 0x00, 0x09, 0x00, 0xff, 0x01, 0x00, 0x00, 0x00
* line22k1 0x00, 0x09, 0x01, 0xff, 0x01, 0x00, 0x00, 0x00
* line22k2 0x00, 0x09, 0x02, 0xff, 0x01, 0x00, 0x00, 0x00
* tone 0x00, 0x09, 0xff, 0x00, 0x01, 0x00, 0x00, 0x00
* data 0x00, 0x09, 0xff, 0x01, 0x01, 0x00, 0x00, 0x00
* power_off 0x00, 0x09, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00
* power_on 0x00, 0x09, 0xff, 0xff, 0x01, 0x00, 0x00, 0x00
* Diseqc 1 0x00, 0x08, 0x04, 0xe0, 0x10, 0x38, 0xf0, 0xec
* Diseqc 2 0x00, 0x08, 0x04, 0xe0, 0x10, 0x38, 0xf4, 0xe8
* Diseqc 3 0x00, 0x08, 0x04, 0xe0, 0x10, 0x38, 0xf8, 0xe4
* Diseqc 4 0x00, 0x08, 0x04, 0xe0, 0x10, 0x38, 0xfc, 0xe0
*/
static int dst_set_diseqc (struct dst_data *dst, u8 *cmd, u8 len)
{
u8 paket[8] = {0x00, 0x08, 0x04, 0xe0, 0x10, 0x38, 0xf0, 0xec };
if (dst->dst_type == DST_TYPE_IS_TERR)
return 0;
if (len == 0 || len > 4)
return -EINVAL;
memcpy(&paket[3], cmd, len);
paket[7] = dst_check_sum (&paket[0], 7);
dst_command(dst, paket, 8);
return 0;
}
static int dst_tone_power_cmd (struct dst_data *dst)
{
u8 paket[8] = {0x00, 0x09, 0xff, 0xff, 0x01, 0x00, 0x00, 0x00};
if (dst->dst_type == DST_TYPE_IS_TERR)
return 0;
if (dst->voltage == SEC_VOLTAGE_OFF)
paket[4] = 0;
else
paket[4] = 1;
if (dst->tone == SEC_TONE_ON)
paket[2] = dst->k22;
else
paket[2] = 0;
paket[7] = dst_check_sum (&paket[0], 7);
dst_command(dst, paket, 8);
return 0;
}
static int dst_set_voltage (struct dst_data *dst, fe_sec_voltage_t voltage)
{
u8 *val;
int need_cmd;
dst->voltage = voltage;
if (dst->dst_type == DST_TYPE_IS_TERR)
return 0;
need_cmd = 0;
val = &dst->tx_tuna[0];
val[8] &= ~0x40;
switch (voltage) {
case SEC_VOLTAGE_13:
if ((dst->diseq_flags & HAS_POWER) == 0)
need_cmd = 1;
dst->diseq_flags |= HAS_POWER;
break;
case SEC_VOLTAGE_18:
if ((dst->diseq_flags & HAS_POWER) == 0)
need_cmd = 1;
dst->diseq_flags |= HAS_POWER;
val[8] |= 0x40;
break;
case SEC_VOLTAGE_OFF:
need_cmd = 1;
dst->diseq_flags &= ~(HAS_POWER|HAS_LOCK|ATTEMPT_TUNE);
break;
default:
return -EINVAL;
}
if (need_cmd) {
dst_tone_power_cmd(dst);
}
return 0;
}
static int dst_set_tone (struct dst_data *dst, fe_sec_tone_mode_t tone)
{
u8 *val;
dst->tone = tone;
if (dst->dst_type == DST_TYPE_IS_TERR)
return 0;
val = &dst->tx_tuna[0];
val[8] &= ~0x1;
switch (tone) {
case SEC_TONE_OFF:
break;
case SEC_TONE_ON:
val[8] |= 1;
break;
default:
return -EINVAL;
}
dst_tone_power_cmd(dst);
return 0;
}
static int dst_get_tuna (struct dst_data *dst)
{
int retval;
if ((dst->diseq_flags & ATTEMPT_TUNE) == 0)
return 0;
dst->diseq_flags &= ~(HAS_LOCK);
if (!dst_wait_dst_ready(dst))
return 0;
if (dst->type_flags & DST_TYPE_HAS_NEWTUNE) {
/* how to get variable length reply ???? */
retval = read_dst (dst, dst->rx_tuna, 10);
} else {
retval = read_dst (dst, &dst->rx_tuna[2], 8);
}
if (retval < 0) {
dprintk("%s: read not successful\n", __FUNCTION__);
return 0;
}
if (dst->type_flags & DST_TYPE_HAS_NEWTUNE) {
if (dst->rx_tuna[9] != dst_check_sum (&dst->rx_tuna[0], 9)) {
dprintk("%s: checksum failure?\n", __FUNCTION__);
return 0;
}
} else {
if (dst->rx_tuna[9] != dst_check_sum (&dst->rx_tuna[2], 7)) {
dprintk("%s: checksum failure?\n", __FUNCTION__);
return 0;
}
}
if (dst->rx_tuna[2] == 0 && dst->rx_tuna[3] == 0)
return 0;
dst->decode_freq = ((dst->rx_tuna[2] & 0x7f) << 8) + dst->rx_tuna[3];
dst->decode_lock = 1;
/*
dst->decode_n1 = (dst->rx_tuna[4] << 8) +
(dst->rx_tuna[5]);
dst->decode_n2 = (dst->rx_tuna[8] << 8) +
(dst->rx_tuna[7]);
*/
dst->diseq_flags |= HAS_LOCK;
/* dst->cur_jiff = jiffies; */
return 1;
}
static int dst_write_tuna (struct dst_data *dst)
{
int retval;
u8 reply;
dprintk("%s: type_flags 0x%x \n", __FUNCTION__, dst->type_flags);
dst->decode_freq = 0;
dst->decode_lock = dst->decode_strength = dst->decode_snr = 0;
if (dst->dst_type == DST_TYPE_IS_SAT) {
if (!(dst->diseq_flags & HAS_POWER))
dst_set_voltage (dst, SEC_VOLTAGE_13);
}
dst->diseq_flags &= ~(HAS_LOCK|ATTEMPT_TUNE);
dst_i2c_enable(dst);
if (dst->type_flags & DST_TYPE_HAS_NEWTUNE) {
dst_reset8820(dst);
dst->tx_tuna[9] = dst_check_sum (&dst->tx_tuna[0], 9);
retval = write_dst (dst, &dst->tx_tuna[0], 10);
} else {
dst->tx_tuna[9] = dst_check_sum (&dst->tx_tuna[2], 7);
retval = write_dst (dst, &dst->tx_tuna[2], 8);
}
if (retval < 0) {
dst_i2c_disable(dst);
dprintk("%s: write not successful\n", __FUNCTION__);
return retval;
}
dvb_delay(3);
retval = read_dst (dst, &reply, 1);
dst_i2c_disable(dst);
if (retval < 0) {
dprintk("%s: read verify not successful\n", __FUNCTION__);
return retval;
}
if (reply != 0xff) {
dprintk("%s: write reply not 0xff 0x%02x \n", __FUNCTION__, reply);
return 0;
}
dst->diseq_flags |= ATTEMPT_TUNE;
return dst_get_tuna(dst);
}
static void dst_init (struct dst_data *dst)
{
static u8 ini_satci_tuna[] = { 9, 0, 3, 0xb6, 1, 0, 0x73, 0x21, 0, 0 };
static u8 ini_satfta_tuna[] = { 0, 0, 3, 0xb6, 1, 0x55, 0xbd, 0x50, 0, 0 };
static u8 ini_tvfta_tuna[] = { 0, 0, 3, 0xb6, 1, 7, 0x0, 0x0, 0, 0 };
static u8 ini_tvci_tuna[] = { 9, 0, 3, 0xb6, 1, 7, 0x0, 0x0, 0, 0 };
static u8 ini_cabfta_tuna[] = { 0, 0, 3, 0xb6, 1, 7, 0x0, 0x0, 0, 0 };
static u8 ini_cabci_tuna[] = { 9, 0, 3, 0xb6, 1, 7, 0x0, 0x0, 0, 0 };
dst->inversion = INVERSION_ON;
dst->voltage = SEC_VOLTAGE_13;
dst->tone = SEC_TONE_OFF;
dst->symbol_rate = 29473000;
dst->fec = FEC_AUTO;
dst->diseq_flags = 0;
dst->k22 = 0x02;
dst->bandwidth = BANDWIDTH_7_MHZ;
dst->cur_jiff = jiffies;
if (dst->dst_type == DST_TYPE_IS_SAT) {
dst->frequency = 950000;
memcpy(dst->tx_tuna, ((dst->type_flags & DST_TYPE_HAS_NEWTUNE )?
ini_satci_tuna : ini_satfta_tuna),
sizeof(ini_satfta_tuna));
} else if (dst->dst_type == DST_TYPE_IS_TERR) {
dst->frequency = 137000000;
memcpy(dst->tx_tuna, ((dst->type_flags & DST_TYPE_HAS_NEWTUNE )?
ini_tvci_tuna : ini_tvfta_tuna),
sizeof(ini_tvfta_tuna));
} else if (dst->dst_type == DST_TYPE_IS_CABLE) {
dst->frequency = 51000000;
memcpy(dst->tx_tuna, ((dst->type_flags & DST_TYPE_HAS_NEWTUNE )?
ini_cabci_tuna : ini_cabfta_tuna),
sizeof(ini_cabfta_tuna));
}
}
struct lkup {
unsigned int cmd;
char *desc;
} looker[] = {
{FE_GET_INFO, "FE_GET_INFO:"},
{FE_READ_STATUS, "FE_READ_STATUS:" },
{FE_READ_BER, "FE_READ_BER:" },
{FE_READ_SIGNAL_STRENGTH, "FE_READ_SIGNAL_STRENGTH:" },
{FE_READ_SNR, "FE_READ_SNR:" },
{FE_READ_UNCORRECTED_BLOCKS, "FE_READ_UNCORRECTED_BLOCKS:" },
{FE_SET_FRONTEND, "FE_SET_FRONTEND:" },
{FE_GET_FRONTEND, "FE_GET_FRONTEND:" },
{FE_SLEEP, "FE_SLEEP:" },
{FE_INIT, "FE_INIT:" },
{FE_RESET, "FE_RESET:" },
{FE_SET_TONE, "FE_SET_TONE:" },
{FE_SET_VOLTAGE, "FE_SET_VOLTAGE:" },
};
static int dst_ioctl (struct dvb_frontend *fe, unsigned int cmd, void *arg)
{
struct dst_data *dst = fe->data;
int retval;
/*
char *cc;
cc = "FE_UNSUPP:";
for(retval = 0; retval < sizeof(looker) / sizeof(looker[0]); retval++) {
if (looker[retval].cmd == cmd) {
cc = looker[retval].desc;
break;
}
}
dprintk("%s cmd %s (0x%x)\n",__FUNCTION__, cc, cmd);
*/
// printk("%s: dst %8.8x bt %8.8x i2c %8.8x\n", __FUNCTION__, dst, dst->bt, dst->i2c);
/* should be set by attach, but just in case */
dst->i2c = fe->i2c;
switch (cmd) {
case FE_GET_INFO:
{
struct dvb_frontend_info *info;
info = &dst_info_sat;
if (dst->dst_type == DST_TYPE_IS_TERR)
info = &dst_info_tv;
else if (dst->dst_type == DST_TYPE_IS_CABLE)
info = &dst_info_cable;
memcpy (arg, info, sizeof(struct dvb_frontend_info));
break;
}
case FE_READ_STATUS:
{
fe_status_t *status = arg;
*status = 0;
if (dst->diseq_flags & HAS_LOCK) {
dst_get_signal(dst);
if (dst->decode_lock)
*status |= FE_HAS_LOCK
| FE_HAS_SIGNAL
| FE_HAS_CARRIER
| FE_HAS_SYNC
| FE_HAS_VITERBI;
}
break;
}
case FE_READ_BER:
{
/* guess */
// *(u32*) arg = dst->decode_n1;
*(u32*) arg = 0;
return -EOPNOTSUPP;
}
case FE_READ_SIGNAL_STRENGTH:
{
dst_get_signal(dst);
*((u16*) arg) = dst->decode_strength;
break;
}
case FE_READ_SNR:
{
dst_get_signal(dst);
*((u16*) arg) = dst->decode_snr;
break;
}
case FE_READ_UNCORRECTED_BLOCKS:
{
*((u32*) arg) = 0; /* the stv0299 can't measure BER and */
return -EOPNOTSUPP; /* errors at the same time.... */
}
case FE_SET_FRONTEND:
{
struct dvb_frontend_parameters *p = arg;
dst_set_freq (dst, p->frequency);
dst_set_inversion (dst, p->inversion);
if (dst->dst_type == DST_TYPE_IS_SAT) {
dst_set_fec (dst, p->u.qpsk.fec_inner);
dst_set_symbolrate (dst, p->u.qpsk.symbol_rate);
} else if (dst->dst_type == DST_TYPE_IS_TERR) {
dst_set_bandwidth(dst, p->u.ofdm.bandwidth);
} else if (dst->dst_type == DST_TYPE_IS_CABLE) {
dst_set_fec (dst, p->u.qam.fec_inner);
dst_set_symbolrate (dst, p->u.qam.symbol_rate);
}
dst_write_tuna (dst);
break;
}
case FE_GET_FRONTEND:
{
struct dvb_frontend_parameters *p = arg;
p->frequency = dst->decode_freq;
p->inversion = dst->inversion;
if (dst->dst_type == DST_TYPE_IS_SAT) {
p->u.qpsk.symbol_rate = dst->symbol_rate;
p->u.qpsk.fec_inner = dst_get_fec (dst);
} else if (dst->dst_type == DST_TYPE_IS_TERR) {
p->u.ofdm.bandwidth = dst->bandwidth;
} else if (dst->dst_type == DST_TYPE_IS_CABLE) {
p->u.qam.symbol_rate = dst->symbol_rate;
p->u.qam.fec_inner = dst_get_fec (dst);
p->u.qam.modulation = QAM_AUTO;
}
break;
}
case FE_SLEEP:
return 0;
case FE_INIT:
dst_init(dst);
break;
case FE_RESET:
break;
case FE_DISEQC_SEND_MASTER_CMD:
{
struct dvb_diseqc_master_cmd *cmd = (struct dvb_diseqc_master_cmd *)arg;
retval = dst_set_diseqc (dst, cmd->msg, cmd->msg_len);
if (retval < 0)
return retval;
break;
}
case FE_SET_TONE:
retval = dst_set_tone (dst, (fe_sec_tone_mode_t) arg);
if (retval < 0)
return retval;
break;
case FE_SET_VOLTAGE:
retval = dst_set_voltage (dst, (fe_sec_voltage_t) arg);
if (retval < 0)
return retval;
break;
default:
return -EOPNOTSUPP;
};
return 0;
}
static int dst_attach (struct dvb_i2c_bus *i2c, void **data)
{
struct dst_data *dst;
struct bt878 *bt;
struct dvb_frontend_info *info;
dprintk("%s: check ci\n", __FUNCTION__);
if (dst_cur_no >= DST_MAX_CARDS) {
dprintk("%s: can't have more than %d cards\n", __FUNCTION__, DST_MAX_CARDS);
return -ENODEV;
}
bt = bt878_find_by_dvb_adap(i2c->adapter);
if (!bt)
return -ENODEV;
dst = kmalloc(sizeof(struct dst_data), GFP_KERNEL);
if (dst == NULL) {
printk(KERN_INFO "%s: Out of memory.\n", __FUNCTION__);
return -ENOMEM;
}
memset(dst, 0, sizeof(*dst));
*data = dst;
dst->bt = bt;
dst->i2c = i2c;
if (dst_check_ci(dst) < 0) {
kfree(dst);
return -ENODEV;
}
dst_init (dst);
dprintk("%s: register dst %8.8x bt %8.8x i2c %8.8x\n", __FUNCTION__,
(u32)dst, (u32)(dst->bt), (u32)(dst->i2c));
info = &dst_info_sat;
if (dst->dst_type == DST_TYPE_IS_TERR)
info = &dst_info_tv;
else if (dst->dst_type == DST_TYPE_IS_CABLE)
info = &dst_info_cable;
dvb_register_frontend (dst_ioctl, i2c, dst, info);
dst_cur_no++;
return 0;
}
static void dst_detach (struct dvb_i2c_bus *i2c, void *data)
{
dvb_unregister_frontend (dst_ioctl, i2c);
dprintk("%s: unregister dst %8.8x\n", __FUNCTION__, (u32)(data));
if (data)
kfree(data);
}
static int __init init_dst (void)
{
return dvb_register_i2c_device (THIS_MODULE, dst_attach, dst_detach);
}
static void __exit exit_dst (void)
{
dvb_unregister_i2c_device (dst_attach);
}
module_init(init_dst);
module_exit(exit_dst);
MODULE_DESCRIPTION("DST DVB-S Frontend");
MODULE_AUTHOR("Jamie Honan");
MODULE_LICENSE("GPL");