/*
* sys_ppc32.c: Conversion between 32bit and 64bit native syscalls.
*
* Copyright (C) 2001 IBM
* Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
* Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
*
* These routines maintain argument size conversion between 32bit and 64bit
* environment.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/config.h>
#include <asm/ptrace.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/file.h>
#include <linux/signal.h>
#include <linux/resource.h>
#include <linux/times.h>
#include <linux/utsname.h>
#include <linux/timex.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/sem.h>
#include <linux/msg.h>
#include <linux/shm.h>
#include <linux/slab.h>
#include <linux/uio.h>
#include <linux/aio.h>
#include <linux/nfs_fs.h>
#include <linux/smb_fs.h>
#include <linux/smb_mount.h>
#include <linux/ncp_fs.h>
#include <linux/module.h>
#include <linux/sunrpc/svc.h>
#include <linux/nfsd/nfsd.h>
#include <linux/nfsd/cache.h>
#include <linux/nfsd/xdr.h>
#include <linux/nfsd/syscall.h>
#include <linux/poll.h>
#include <linux/personality.h>
#include <linux/stat.h>
#include <linux/filter.h>
#include <linux/highmem.h>
#include <linux/highuid.h>
#include <linux/mman.h>
#include <linux/ipv6.h>
#include <linux/in.h>
#include <linux/icmpv6.h>
#include <linux/sysctl.h>
#include <linux/binfmts.h>
#include <linux/dnotify.h>
#include <linux/security.h>
#include <linux/compat.h>
#include <linux/ptrace.h>
#include <linux/aio_abi.h>
#include <asm/types.h>
#include <asm/ipc.h>
#include <asm/uaccess.h>
#include <asm/semaphore.h>
#include <net/scm.h>
#include <net/sock.h>
#include <linux/elf.h>
#include <asm/ppcdebug.h>
#include <asm/time.h>
#include <asm/ppc32.h>
#include <asm/mmu_context.h>
typedef ssize_t (*io_fn_t)(struct file *, char *, size_t, loff_t *);
typedef ssize_t (*iov_fn_t)(struct file *, const struct iovec *, unsigned long, loff_t *);
static long do_readv_writev32(int type, struct file *file,
const struct compat_iovec *vector, u32 count)
{
compat_ssize_t tot_len;
struct iovec iovstack[UIO_FASTIOV];
struct iovec *iov=iovstack, *ivp;
struct inode *inode;
long retval, i;
io_fn_t fn;
iov_fn_t fnv;
/*
* SuS says "The readv() function *may* fail if the iovcnt argument
* was less than or equal to 0, or greater than {IOV_MAX}. Linux has
* traditionally returned zero for zero segments, so...
*/
retval = 0;
if (count == 0)
goto out;
/* First get the "struct iovec" from user memory and
* verify all the pointers
*/
retval = -EINVAL;
if (count > UIO_MAXIOV)
goto out;
if (!file->f_op)
goto out;
if (count > UIO_FASTIOV) {
retval = -ENOMEM;
iov = kmalloc(count*sizeof(struct iovec), GFP_KERNEL);
if (!iov)
goto out;
}
retval = -EFAULT;
if (verify_area(VERIFY_READ, vector, sizeof(struct compat_iovec)*count))
goto out;
/*
* Single unix specification:
* We should -EINVAL if an element length is not >= 0 and fitting an
* ssize_t. The total length is fitting an ssize_t
*
* Be careful here because iov_len is a size_t not an ssize_t
*/
tot_len = 0;
i = count;
ivp = iov;
retval = -EINVAL;
while(i > 0) {
compat_ssize_t tmp = tot_len;
compat_ssize_t len;
u32 buf;
if (__get_user(len, &vector->iov_len) ||
__get_user(buf, &vector->iov_base)) {
retval = -EFAULT;
goto out;
}
if (len < 0) /* size_t not fitting an compat_ssize_t .. */
goto out;
tot_len += len;
if (tot_len < tmp) /* maths overflow on the compat_ssize_t */
goto out;
ivp->iov_base = (void *)A(buf);
ivp->iov_len = (__kernel_size_t) len;
vector++;
ivp++;
i--;
}
if (tot_len == 0) {
retval = 0;
goto out;
}
inode = file->f_dentry->d_inode;
/* VERIFY_WRITE actually means a read, as we write to user space */
retval = locks_verify_area((type == READ
? FLOCK_VERIFY_READ : FLOCK_VERIFY_WRITE),
inode, file, file->f_pos, tot_len);
if (retval)
goto out;
if (type == READ) {
fn = file->f_op->read;
fnv = file->f_op->readv;
} else {
fn = (io_fn_t)file->f_op->write;
fnv = file->f_op->writev;
}
if (fnv) {
retval = fnv(file, iov, count, &file->f_pos);
goto out;
}
/* Do it by hand, with file-ops */
ivp = iov;
while (count > 0) {
void * base;
int len, nr;
base = ivp->iov_base;
len = ivp->iov_len;
ivp++;
count--;
nr = fn(file, base, len, &file->f_pos);
if (nr < 0) {
if (!retval)
retval = nr;
break;
}
retval += nr;
if (nr != len)
break;
}
out:
if (iov != iovstack)
kfree(iov);
if ((retval + (type == READ)) > 0)
dnotify_parent(file->f_dentry,
(type == READ) ? DN_ACCESS : DN_MODIFY);
return retval;
}
asmlinkage long sys32_readv(int fd, struct compat_iovec *vector, u32 count)
{
struct file *file;
int ret = -EBADF;
file = fget(fd);
if (!file || !(file->f_mode & FMODE_READ))
goto out;
ret = -EINVAL;
if (!file->f_op || (!file->f_op->readv && !file->f_op->read))
goto out;
ret = do_readv_writev32(READ, file, vector, count);
out:
if (file)
fput(file);
return ret;
}
asmlinkage long sys32_writev(int fd, struct compat_iovec *vector, u32 count)
{
struct file *file;
int ret = -EBADF;
file = fget(fd);
if (!file || !(file->f_mode & FMODE_WRITE))
goto out;
ret = -EINVAL;
if (!file->f_op || (!file->f_op->writev && !file->f_op->write))
goto out;
ret = do_readv_writev32(WRITE, file, vector, count);
out:
if (file)
fput(file);
return ret;
}
struct ncp_mount_data32_v3 {
int version;
unsigned int ncp_fd;
compat_uid_t mounted_uid;
compat_pid_t wdog_pid;
unsigned char mounted_vol[NCP_VOLNAME_LEN + 1];
unsigned int time_out;
unsigned int retry_count;
unsigned int flags;
compat_uid_t uid;
compat_gid_t gid;
compat_mode_t file_mode;
compat_mode_t dir_mode;
};
struct ncp_mount_data32_v4 {
int version;
/* all members below are "long" in ABI ... i.e. 32bit on sparc32, while 64bits on sparc64 */
unsigned int flags;
unsigned int mounted_uid;
int wdog_pid;
unsigned int ncp_fd;
unsigned int time_out;
unsigned int retry_count;
unsigned int uid;
unsigned int gid;
unsigned int file_mode;
unsigned int dir_mode;
};
static void *do_ncp_super_data_conv(void *raw_data)
{
switch (*(int*)raw_data) {
case NCP_MOUNT_VERSION:
{
struct ncp_mount_data news, *n = &news;
struct ncp_mount_data32_v3 *n32 = (struct ncp_mount_data32_v3 *)raw_data;
n->version = n32->version;
n->ncp_fd = n32->ncp_fd;
n->mounted_uid = n32->mounted_uid;
n->wdog_pid = n32->wdog_pid;
memmove (n->mounted_vol, n32->mounted_vol, sizeof (n32->mounted_vol));
n->time_out = n32->time_out;
n->retry_count = n32->retry_count;
n->flags = n32->flags;
n->uid = n32->uid;
n->gid = n32->gid;
n->file_mode = n32->file_mode;
n->dir_mode = n32->dir_mode;
memcpy(raw_data, n, sizeof(*n));
}
break;
case NCP_MOUNT_VERSION_V4:
{
struct ncp_mount_data_v4 news, *n = &news;
struct ncp_mount_data32_v4 *n32 = (struct ncp_mount_data32_v4 *)raw_data;
n->version = n32->version;
n->flags = n32->flags;
n->mounted_uid = n32->mounted_uid;
n->wdog_pid = n32->wdog_pid;
n->ncp_fd = n32->ncp_fd;
n->time_out = n32->time_out;
n->retry_count = n32->retry_count;
n->uid = n32->uid;
n->gid = n32->gid;
n->file_mode = n32->file_mode;
n->dir_mode = n32->dir_mode;
memcpy(raw_data, n, sizeof(*n));
}
break;
default:
/* do not touch unknown structures */
break;
}
return raw_data;
}
struct smb_mount_data32 {
int version;
compat_uid_t mounted_uid;
compat_uid_t uid;
compat_gid_t gid;
compat_mode_t file_mode;
compat_mode_t dir_mode;
};
static void *do_smb_super_data_conv(void *raw_data)
{
struct smb_mount_data news, *s = &news;
struct smb_mount_data32 *s32 = (struct smb_mount_data32 *)raw_data;
if (s32->version != SMB_MOUNT_OLDVERSION)
goto out;
s->version = s32->version;
s->mounted_uid = s32->mounted_uid;
s->uid = s32->uid;
s->gid = s32->gid;
s->file_mode = s32->file_mode;
s->dir_mode = s32->dir_mode;
memcpy(raw_data, s, sizeof(struct smb_mount_data));
out:
return raw_data;
}
static int copy_mount_stuff_to_kernel(const void *user, unsigned long *kernel)
{
int i;
unsigned long page;
struct vm_area_struct *vma;
*kernel = 0;
if(!user)
return 0;
vma = find_vma(current->mm, (unsigned long)user);
if(!vma || (unsigned long)user < vma->vm_start)
return -EFAULT;
if(!(vma->vm_flags & VM_READ))
return -EFAULT;
i = vma->vm_end - (unsigned long) user;
if(PAGE_SIZE <= (unsigned long) i)
i = PAGE_SIZE - 1;
if(!(page = __get_free_page(GFP_KERNEL)))
return -ENOMEM;
if(copy_from_user((void *) page, user, i)) {
free_page(page);
return -EFAULT;
}
*kernel = page;
return 0;
}
#define SMBFS_NAME "smbfs"
#define NCPFS_NAME "ncpfs"
asmlinkage long sys32_mount(char *dev_name, char *dir_name, char *type, unsigned long new_flags, u32 data)
{
unsigned long type_page = 0;
unsigned long data_page = 0;
unsigned long dev_page = 0;
unsigned long dir_page = 0;
int err, is_smb, is_ncp;
is_smb = is_ncp = 0;
err = copy_mount_stuff_to_kernel((const void *)type, &type_page);
if (err)
goto out;
if (!type_page) {
err = -EINVAL;
goto out;
}
is_smb = !strcmp((char *)type_page, SMBFS_NAME);
is_ncp = !strcmp((char *)type_page, NCPFS_NAME);
err = copy_mount_stuff_to_kernel((const void *)AA(data), &data_page);
if (err)
goto type_out;
err = copy_mount_stuff_to_kernel(dev_name, &dev_page);
if (err)
goto data_out;
err = copy_mount_stuff_to_kernel(dir_name, &dir_page);
if (err)
goto dev_out;
if (!is_smb && !is_ncp) {
lock_kernel();
err = do_mount((char*)dev_page, (char*)dir_page,
(char*)type_page, new_flags, (char*)data_page);
unlock_kernel();
} else {
if (is_ncp)
do_ncp_super_data_conv((void *)data_page);
else
do_smb_super_data_conv((void *)data_page);
lock_kernel();
err = do_mount((char*)dev_page, (char*)dir_page,
(char*)type_page, new_flags, (char*)data_page);
unlock_kernel();
}
free_page(dir_page);
dev_out:
free_page(dev_page);
data_out:
free_page(data_page);
type_out:
free_page(type_page);
out:
return err;
}
/* readdir & getdents */
#define NAME_OFFSET(de) ((int) ((de)->d_name - (char *) (de)))
#define ROUND_UP(x) (((x)+sizeof(u32)-1) & ~(sizeof(u32)-1))
struct old_linux_dirent32 {
u32 d_ino;
u32 d_offset;
unsigned short d_namlen;
char d_name[1];
};
struct readdir_callback32 {
struct old_linux_dirent32 * dirent;
int count;
};
static int fillonedir(void * __buf, const char * name, int namlen,
off_t offset, ino_t ino, unsigned int d_type)
{
struct readdir_callback32 * buf = (struct readdir_callback32 *) __buf;
struct old_linux_dirent32 * dirent;
if (buf->count)
return -EINVAL;
buf->count++;
dirent = buf->dirent;
put_user(ino, &dirent->d_ino);
put_user(offset, &dirent->d_offset);
put_user(namlen, &dirent->d_namlen);
copy_to_user(dirent->d_name, name, namlen);
put_user(0, dirent->d_name + namlen);
return 0;
}
asmlinkage int old32_readdir(unsigned int fd, struct old_linux_dirent32 *dirent, unsigned int count)
{
int error = -EBADF;
struct file * file;
struct readdir_callback32 buf;
file = fget(fd);
if (!file)
goto out;
buf.count = 0;
buf.dirent = dirent;
error = vfs_readdir(file, (filldir_t)fillonedir, &buf);
if (error < 0)
goto out_putf;
error = buf.count;
out_putf:
fput(file);
out:
return error;
}
struct linux_dirent32 {
u32 d_ino;
u32 d_off;
unsigned short d_reclen;
char d_name[1];
};
struct getdents_callback32 {
struct linux_dirent32 * current_dir;
struct linux_dirent32 * previous;
int count;
int error;
};
static int
filldir(void * __buf, const char * name, int namlen, off_t offset, ino_t ino,
unsigned int d_type)
{
struct linux_dirent32 * dirent;
struct getdents_callback32 * buf = (struct getdents_callback32 *) __buf;
int reclen = ROUND_UP(NAME_OFFSET(dirent) + namlen + 1);
buf->error = -EINVAL; /* only used if we fail.. */
if (reclen > buf->count)
return -EINVAL;
dirent = buf->previous;
if (dirent)
put_user(offset, &dirent->d_off);
dirent = buf->current_dir;
buf->previous = dirent;
put_user(ino, &dirent->d_ino);
put_user(reclen, &dirent->d_reclen);
copy_to_user(dirent->d_name, name, namlen);
put_user(0, dirent->d_name + namlen);
((char *) dirent) += reclen;
buf->current_dir = dirent;
buf->count -= reclen;
return 0;
}
asmlinkage long sys32_getdents(unsigned int fd, struct linux_dirent32 *dirent, unsigned int count)
{
struct file * file;
struct linux_dirent32 * lastdirent;
struct getdents_callback32 buf;
int error = -EBADF;
file = fget(fd);
if (!file)
goto out;
buf.current_dir = dirent;
buf.previous = NULL;
buf.count = count;
buf.error = 0;
error = vfs_readdir(file, (filldir_t)filldir, &buf);
if (error < 0)
goto out_putf;
lastdirent = buf.previous;
error = buf.error;
if(lastdirent) {
put_user(file->f_pos, &lastdirent->d_off);
error = count - buf.count;
}
out_putf:
fput(file);
out:
return error;
}
/* end of readdir & getdents */
/*
* Ooo, nasty. We need here to frob 32-bit unsigned longs to
* 64-bit unsigned longs.
*/
static inline int
get_fd_set32(unsigned long n, unsigned long *fdset, u32 *ufdset)
{
if (ufdset) {
unsigned long odd;
if (verify_area(VERIFY_WRITE, ufdset, n*sizeof(u32)))
return -EFAULT;
odd = n & 1UL;
n &= ~1UL;
while (n) {
unsigned long h, l;
__get_user(l, ufdset);
__get_user(h, ufdset+1);
ufdset += 2;
*fdset++ = h << 32 | l;
n -= 2;
}
if (odd)
__get_user(*fdset, ufdset);
} else {
/* Tricky, must clear full unsigned long in the
* kernel fdset at the end, this makes sure that
* actually happens.
*/
memset(fdset, 0, ((n + 1) & ~1)*sizeof(u32));
}
return 0;
}
static inline void
set_fd_set32(unsigned long n, u32 *ufdset, unsigned long *fdset)
{
unsigned long odd;
if (!ufdset)
return;
odd = n & 1UL;
n &= ~1UL;
while (n) {
unsigned long h, l;
l = *fdset++;
h = l >> 32;
__put_user(l, ufdset);
__put_user(h, ufdset+1);
ufdset += 2;
n -= 2;
}
if (odd)
__put_user(*fdset, ufdset);
}
#define MAX_SELECT_SECONDS ((unsigned long) (MAX_SCHEDULE_TIMEOUT / HZ)-1)
asmlinkage long sys32_select(int n, u32 *inp, u32 *outp, u32 *exp, u32 tvp_x)
{
fd_set_bits fds;
struct compat_timeval *tvp = (struct compat_timeval *)AA(tvp_x);
char *bits;
unsigned long nn;
long timeout;
int ret, size, max_fdset;
timeout = MAX_SCHEDULE_TIMEOUT;
if (tvp) {
time_t sec, usec;
if ((ret = verify_area(VERIFY_READ, tvp, sizeof(*tvp)))
|| (ret = __get_user(sec, &tvp->tv_sec))
|| (ret = __get_user(usec, &tvp->tv_usec)))
goto out_nofds;
ret = -EINVAL;
if(sec < 0 || usec < 0)
goto out_nofds;
if ((unsigned long) sec < MAX_SELECT_SECONDS) {
timeout = (usec + 1000000/HZ - 1) / (1000000/HZ);
timeout += sec * (unsigned long) HZ;
}
}
ret = -EINVAL;
if (n < 0)
goto out_nofds;
/* max_fdset can increase, so grab it once to avoid race */
max_fdset = current->files->max_fdset;
if (n > max_fdset)
n = max_fdset;
/*
* We need 6 bitmaps (in/out/ex for both incoming and outgoing),
* since we used fdset we need to allocate memory in units of
* long-words.
*/
ret = -ENOMEM;
size = FDS_BYTES(n);
bits = kmalloc(6 * size, GFP_KERNEL);
if (!bits)
goto out_nofds;
fds.in = (unsigned long *) bits;
fds.out = (unsigned long *) (bits + size);
fds.ex = (unsigned long *) (bits + 2*size);
fds.res_in = (unsigned long *) (bits + 3*size);
fds.res_out = (unsigned long *) (bits + 4*size);
fds.res_ex = (unsigned long *) (bits + 5*size);
nn = (n + 8*sizeof(u32) - 1) / (8*sizeof(u32));
if ((ret = get_fd_set32(nn, fds.in, inp)) ||
(ret = get_fd_set32(nn, fds.out, outp)) ||
(ret = get_fd_set32(nn, fds.ex, exp)))
goto out;
zero_fd_set(n, fds.res_in);
zero_fd_set(n, fds.res_out);
zero_fd_set(n, fds.res_ex);
ret = do_select(n, &fds, &timeout);
if (tvp && !(current->personality & STICKY_TIMEOUTS)) {
time_t sec = 0, usec = 0;
if (timeout) {
sec = timeout / HZ;
usec = timeout % HZ;
usec *= (1000000/HZ);
}
put_user(sec, &tvp->tv_sec);
put_user(usec, &tvp->tv_usec);
}
if (ret < 0)
goto out;
if (!ret) {
ret = -ERESTARTNOHAND;
if (signal_pending(current))
goto out;
ret = 0;
}
set_fd_set32(nn, inp, fds.res_in);
set_fd_set32(nn, outp, fds.res_out);
set_fd_set32(nn, exp, fds.res_ex);
out:
kfree(bits);
out_nofds:
return ret;
}
int ppc32_select(u32 n, u32* inp, u32* outp, u32* exp, u32 tvp_x)
{
/* sign extend n */
return sys32_select((int)n, inp, outp, exp, tvp_x);
}
int cp_compat_stat(struct kstat *stat, struct compat_stat *statbuf)
{
long err;
if (stat->size > MAX_NON_LFS || !new_valid_dev(stat->dev) ||
!new_valid_dev(stat->rdev))
return -EOVERFLOW;
err = verify_area(VERIFY_WRITE, statbuf, sizeof(*statbuf));
err |= __put_user(new_encode_dev(stat->dev), &statbuf->st_dev);
err |= __put_user(stat->ino, &statbuf->st_ino);
err |= __put_user(stat->mode, &statbuf->st_mode);
err |= __put_user(stat->nlink, &statbuf->st_nlink);
err |= __put_user(stat->uid, &statbuf->st_uid);
err |= __put_user(stat->gid, &statbuf->st_gid);
err |= __put_user(new_encode_dev(stat->rdev), &statbuf->st_rdev);
err |= __put_user(stat->size, &statbuf->st_size);
err |= __put_user(stat->atime.tv_sec, &statbuf->st_atime);
err |= __put_user(stat->atime.tv_nsec, &statbuf->st_atime_nsec);
err |= __put_user(stat->mtime.tv_sec, &statbuf->st_mtime);
err |= __put_user(stat->mtime.tv_nsec, &statbuf->st_mtime_nsec);
err |= __put_user(stat->ctime.tv_sec, &statbuf->st_ctime);
err |= __put_user(stat->ctime.tv_nsec, &statbuf->st_ctime_nsec);
err |= __put_user(stat->blksize, &statbuf->st_blksize);
err |= __put_user(stat->blocks, &statbuf->st_blocks);
err |= __put_user(0, &statbuf->__unused4[0]);
err |= __put_user(0, &statbuf->__unused4[1]);
return err;
}
extern asmlinkage long sys_sysfs(int option, unsigned long arg1, unsigned long arg2);
/* Note: it is necessary to treat option as an unsigned int,
* with the corresponding cast to a signed int to insure that the
* proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode)
* and the register representation of a signed int (msr in 64-bit mode) is performed.
*/
asmlinkage long sys32_sysfs(u32 option, u32 arg1, u32 arg2)
{
return sys_sysfs((int)option, arg1, arg2);
}
/* Handle adjtimex compatibility. */
struct timex32 {
u32 modes;
s32 offset, freq, maxerror, esterror;
s32 status, constant, precision, tolerance;
struct compat_timeval time;
s32 tick;
s32 ppsfreq, jitter, shift, stabil;
s32 jitcnt, calcnt, errcnt, stbcnt;
s32 :32; s32 :32; s32 :32; s32 :32;
s32 :32; s32 :32; s32 :32; s32 :32;
s32 :32; s32 :32; s32 :32; s32 :32;
};
extern int do_adjtimex(struct timex *);
extern void ppc_adjtimex(void);
asmlinkage long sys32_adjtimex(struct timex32 *utp)
{
struct timex txc;
int ret;
memset(&txc, 0, sizeof(struct timex));
if(get_user(txc.modes, &utp->modes) ||
__get_user(txc.offset, &utp->offset) ||
__get_user(txc.freq, &utp->freq) ||
__get_user(txc.maxerror, &utp->maxerror) ||
__get_user(txc.esterror, &utp->esterror) ||
__get_user(txc.status, &utp->status) ||
__get_user(txc.constant, &utp->constant) ||
__get_user(txc.precision, &utp->precision) ||
__get_user(txc.tolerance, &utp->tolerance) ||
__get_user(txc.time.tv_sec, &utp->time.tv_sec) ||
__get_user(txc.time.tv_usec, &utp->time.tv_usec) ||
__get_user(txc.tick, &utp->tick) ||
__get_user(txc.ppsfreq, &utp->ppsfreq) ||
__get_user(txc.jitter, &utp->jitter) ||
__get_user(txc.shift, &utp->shift) ||
__get_user(txc.stabil, &utp->stabil) ||
__get_user(txc.jitcnt, &utp->jitcnt) ||
__get_user(txc.calcnt, &utp->calcnt) ||
__get_user(txc.errcnt, &utp->errcnt) ||
__get_user(txc.stbcnt, &utp->stbcnt))
return -EFAULT;
ret = do_adjtimex(&txc);
/* adjust the conversion of TB to time of day to track adjtimex */
ppc_adjtimex();
if(put_user(txc.modes, &utp->modes) ||
__put_user(txc.offset, &utp->offset) ||
__put_user(txc.freq, &utp->freq) ||
__put_user(txc.maxerror, &utp->maxerror) ||
__put_user(txc.esterror, &utp->esterror) ||
__put_user(txc.status, &utp->status) ||
__put_user(txc.constant, &utp->constant) ||
__put_user(txc.precision, &utp->precision) ||
__put_user(txc.tolerance, &utp->tolerance) ||
__put_user(txc.time.tv_sec, &utp->time.tv_sec) ||
__put_user(txc.time.tv_usec, &utp->time.tv_usec) ||
__put_user(txc.tick, &utp->tick) ||
__put_user(txc.ppsfreq, &utp->ppsfreq) ||
__put_user(txc.jitter, &utp->jitter) ||
__put_user(txc.shift, &utp->shift) ||
__put_user(txc.stabil, &utp->stabil) ||
__put_user(txc.jitcnt, &utp->jitcnt) ||
__put_user(txc.calcnt, &utp->calcnt) ||
__put_user(txc.errcnt, &utp->errcnt) ||
__put_user(txc.stbcnt, &utp->stbcnt))
ret = -EFAULT;
return ret;
}
/* Stuff for NFS server syscalls... */
struct nfsctl_svc32 {
u16 svc32_port;
s32 svc32_nthreads;
};
struct nfsctl_client32 {
s8 cl32_ident[NFSCLNT_IDMAX+1];
s32 cl32_naddr;
struct in_addr cl32_addrlist[NFSCLNT_ADDRMAX];
s32 cl32_fhkeytype;
s32 cl32_fhkeylen;
u8 cl32_fhkey[NFSCLNT_KEYMAX];
};
struct nfsctl_export32 {
s8 ex32_client[NFSCLNT_IDMAX+1];
s8 ex32_path[NFS_MAXPATHLEN+1];
compat_dev_t ex32_dev;
compat_ino_t ex32_ino;
s32 ex32_flags;
compat_uid_t ex32_anon_uid;
compat_gid_t ex32_anon_gid;
};
struct nfsctl_fdparm32 {
struct sockaddr gd32_addr;
s8 gd32_path[NFS_MAXPATHLEN+1];
s32 gd32_version;
};
struct nfsctl_fsparm32 {
struct sockaddr gd32_addr;
s8 gd32_path[NFS_MAXPATHLEN+1];
s32 gd32_maxlen;
};
struct nfsctl_arg32 {
s32 ca32_version; /* safeguard */
union {
struct nfsctl_svc32 u32_svc;
struct nfsctl_client32 u32_client;
struct nfsctl_export32 u32_export;
struct nfsctl_fdparm32 u32_getfd;
struct nfsctl_fsparm32 u32_getfs;
} u;
#define ca32_svc u.u32_svc
#define ca32_client u.u32_client
#define ca32_export u.u32_export
#define ca32_getfd u.u32_getfd
#define ca32_getfs u.u32_getfs
};
union nfsctl_res32 {
__u8 cr32_getfh[NFS_FHSIZE];
struct knfsd_fh cr32_getfs;
};
static int nfs_svc32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32)
{
int err;
err = __get_user(karg->ca_version, &arg32->ca32_version);
err |= __get_user(karg->ca_svc.svc_port, &arg32->ca32_svc.svc32_port);
err |= __get_user(karg->ca_svc.svc_nthreads, &arg32->ca32_svc.svc32_nthreads);
return err;
}
static int nfs_clnt32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32)
{
int err;
err = __get_user(karg->ca_version, &arg32->ca32_version);
err |= copy_from_user(&karg->ca_client.cl_ident[0],
&arg32->ca32_client.cl32_ident[0],
NFSCLNT_IDMAX);
err |= __get_user(karg->ca_client.cl_naddr, &arg32->ca32_client.cl32_naddr);
err |= copy_from_user(&karg->ca_client.cl_addrlist[0],
&arg32->ca32_client.cl32_addrlist[0],
(sizeof(struct in_addr) * NFSCLNT_ADDRMAX));
err |= __get_user(karg->ca_client.cl_fhkeytype,
&arg32->ca32_client.cl32_fhkeytype);
err |= __get_user(karg->ca_client.cl_fhkeylen,
&arg32->ca32_client.cl32_fhkeylen);
err |= copy_from_user(&karg->ca_client.cl_fhkey[0],
&arg32->ca32_client.cl32_fhkey[0],
NFSCLNT_KEYMAX);
if(err) return -EFAULT;
return 0;
}
static int nfs_exp32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32)
{
int err;
err = __get_user(karg->ca_version, &arg32->ca32_version);
err |= copy_from_user(&karg->ca_export.ex_client[0],
&arg32->ca32_export.ex32_client[0],
NFSCLNT_IDMAX);
err |= copy_from_user(&karg->ca_export.ex_path[0],
&arg32->ca32_export.ex32_path[0],
NFS_MAXPATHLEN);
err |= __get_user(karg->ca_export.ex_dev,
&arg32->ca32_export.ex32_dev);
err |= __get_user(karg->ca_export.ex_ino,
&arg32->ca32_export.ex32_ino);
err |= __get_user(karg->ca_export.ex_flags,
&arg32->ca32_export.ex32_flags);
err |= __get_user(karg->ca_export.ex_anon_uid,
&arg32->ca32_export.ex32_anon_uid);
err |= __get_user(karg->ca_export.ex_anon_gid,
&arg32->ca32_export.ex32_anon_gid);
karg->ca_export.ex_anon_uid = karg->ca_export.ex_anon_uid;
karg->ca_export.ex_anon_gid = karg->ca_export.ex_anon_gid;
if(err) return -EFAULT;
return 0;
}
static int nfs_getfd32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32)
{
int err;
err = __get_user(karg->ca_version, &arg32->ca32_version);
err |= copy_from_user(&karg->ca_getfd.gd_addr,
&arg32->ca32_getfd.gd32_addr,
(sizeof(struct sockaddr)));
err |= copy_from_user(&karg->ca_getfd.gd_path,
&arg32->ca32_getfd.gd32_path,
(NFS_MAXPATHLEN+1));
err |= __get_user(karg->ca_getfd.gd_version,
&arg32->ca32_getfd.gd32_version);
if(err) return -EFAULT;
return 0;
}
static int nfs_getfs32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32)
{
int err;
err = __get_user(karg->ca_version, &arg32->ca32_version);
err |= copy_from_user(&karg->ca_getfs.gd_addr,
&arg32->ca32_getfs.gd32_addr,
(sizeof(struct sockaddr)));
err |= copy_from_user(&karg->ca_getfs.gd_path,
&arg32->ca32_getfs.gd32_path,
(NFS_MAXPATHLEN+1));
err |= __get_user(karg->ca_getfs.gd_maxlen,
&arg32->ca32_getfs.gd32_maxlen);
if(err) return -EFAULT;
return 0;
}
/* This really doesn't need translations, we are only passing
* back a union which contains opaque nfs file handle data.
*/
static int nfs_getfh32_res_trans(union nfsctl_res *kres, union nfsctl_res32 *res32)
{
int err;
err = copy_to_user(res32, kres, sizeof(*res32));
if(err) return -EFAULT;
return 0;
}
/* Note: it is necessary to treat cmd_parm as an unsigned int,
* with the corresponding cast to a signed int to insure that the
* proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode)
* and the register representation of a signed int (msr in 64-bit mode) is performed.
*/
int asmlinkage sys32_nfsservctl(u32 cmd_parm, struct nfsctl_arg32 *arg32, union nfsctl_res32 *res32)
{
int cmd = (int)cmd_parm;
struct nfsctl_arg *karg = NULL;
union nfsctl_res *kres = NULL;
mm_segment_t oldfs;
int err;
karg = kmalloc(sizeof(*karg), GFP_USER);
if(!karg)
return -ENOMEM;
if(res32) {
kres = kmalloc(sizeof(*kres), GFP_USER);
if(!kres) {
kfree(karg);
return -ENOMEM;
}
}
switch(cmd) {
case NFSCTL_SVC:
err = nfs_svc32_trans(karg, arg32);
break;
case NFSCTL_ADDCLIENT:
err = nfs_clnt32_trans(karg, arg32);
break;
case NFSCTL_DELCLIENT:
err = nfs_clnt32_trans(karg, arg32);
break;
case NFSCTL_EXPORT:
case NFSCTL_UNEXPORT:
err = nfs_exp32_trans(karg, arg32);
break;
case NFSCTL_GETFD:
err = nfs_getfd32_trans(karg, arg32);
break;
case NFSCTL_GETFS:
err = nfs_getfs32_trans(karg, arg32);
break;
default:
err = -EINVAL;
break;
}
if(err)
goto done;
oldfs = get_fs();
set_fs(KERNEL_DS);
err = sys_nfsservctl(cmd, karg, kres);
set_fs(oldfs);
if (err)
goto done;
if((cmd == NFSCTL_GETFD) ||
(cmd == NFSCTL_GETFS))
err = nfs_getfh32_res_trans(kres, res32);
done:
if(karg)
kfree(karg);
if(kres)
kfree(kres);
return err;
}
/* These are here just in case some old sparc32 binary calls it. */
asmlinkage long sys32_pause(void)
{
current->state = TASK_INTERRUPTIBLE;
schedule();
return -ERESTARTNOHAND;
}
static inline long get_ts32(struct timespec *o, struct compat_timeval *i)
{
long usec;
if (!access_ok(VERIFY_READ, i, sizeof(*i)))
return -EFAULT;
if (__get_user(o->tv_sec, &i->tv_sec))
return -EFAULT;
if (__get_user(usec, &i->tv_usec))
return -EFAULT;
o->tv_nsec = usec * 1000;
return 0;
}
static inline long put_tv32(struct compat_timeval *o, struct timeval *i)
{
return (!access_ok(VERIFY_WRITE, o, sizeof(*o)) ||
(__put_user(i->tv_sec, &o->tv_sec) |
__put_user(i->tv_usec, &o->tv_usec)));
}
struct sysinfo32 {
s32 uptime;
u32 loads[3];
u32 totalram;
u32 freeram;
u32 sharedram;
u32 bufferram;
u32 totalswap;
u32 freeswap;
unsigned short procs;
unsigned short pad;
u32 totalhigh;
u32 freehigh;
u32 mem_unit;
char _f[20-2*sizeof(int)-sizeof(int)];
};
extern asmlinkage long sys_sysinfo(struct sysinfo *info);
asmlinkage long sys32_sysinfo(struct sysinfo32 *info)
{
struct sysinfo s;
int ret, err;
int bitcount=0;
mm_segment_t old_fs = get_fs ();
set_fs (KERNEL_DS);
ret = sys_sysinfo(&s);
set_fs (old_fs);
/* Check to see if any memory value is too large for 32-bit and
* scale down if needed.
*/
if ((s.totalram >> 32) || (s.totalswap >> 32)) {
while (s.mem_unit < PAGE_SIZE) {
s.mem_unit <<= 1;
bitcount++;
}
s.totalram >>=bitcount;
s.freeram >>= bitcount;
s.sharedram >>= bitcount;
s.bufferram >>= bitcount;
s.totalswap >>= bitcount;
s.freeswap >>= bitcount;
s.totalhigh >>= bitcount;
s.freehigh >>= bitcount;
}
err = put_user (s.uptime, &info->uptime);
err |= __put_user (s.loads[0], &info->loads[0]);
err |= __put_user (s.loads[1], &info->loads[1]);
err |= __put_user (s.loads[2], &info->loads[2]);
err |= __put_user (s.totalram, &info->totalram);
err |= __put_user (s.freeram, &info->freeram);
err |= __put_user (s.sharedram, &info->sharedram);
err |= __put_user (s.bufferram, &info->bufferram);
err |= __put_user (s.totalswap, &info->totalswap);
err |= __put_user (s.freeswap, &info->freeswap);
err |= __put_user (s.procs, &info->procs);
err |= __put_user (s.totalhigh, &info->totalhigh);
err |= __put_user (s.freehigh, &info->freehigh);
err |= __put_user (s.mem_unit, &info->mem_unit);
if (err)
return -EFAULT;
return ret;
}
/* Translations due to time_t size differences. Which affects all
sorts of things, like timeval and itimerval. */
extern struct timezone sys_tz;
asmlinkage long sys32_gettimeofday(struct compat_timeval *tv, struct timezone *tz)
{
if (tv) {
struct timeval ktv;
do_gettimeofday(&ktv);
if (put_tv32(tv, &ktv))
return -EFAULT;
}
if (tz) {
if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
return -EFAULT;
}
return 0;
}
asmlinkage long sys32_settimeofday(struct compat_timeval *tv, struct timezone *tz)
{
struct timespec kts;
struct timezone ktz;
if (tv) {
if (get_ts32(&kts, tv))
return -EFAULT;
}
if (tz) {
if (copy_from_user(&ktz, tz, sizeof(ktz)))
return -EFAULT;
}
return do_sys_settimeofday(tv ? &kts : NULL, tz ? &ktz : NULL);
}
struct msgbuf32 {
compat_long_t mtype;
char mtext[1];
};
struct semid_ds32 {
struct ipc_perm sem_perm;
compat_time_t sem_otime;
compat_time_t sem_ctime;
compat_uptr_t sem_base;
compat_uptr_t sem_pending;
compat_uptr_t sem_pending_last;
compat_uptr_t undo;
unsigned short sem_nsems;
};
struct semid64_ds32 {
struct ipc64_perm sem_perm;
unsigned int __unused1;
compat_time_t sem_otime;
unsigned int __unused2;
compat_time_t sem_ctime;
compat_ulong_t sem_nsems;
compat_ulong_t __unused3;
compat_ulong_t __unused4;
};
struct msqid_ds32 {
struct ipc_perm msg_perm;
compat_uptr_t msg_first;
compat_uptr_t msg_last;
compat_time_t msg_stime;
compat_time_t msg_rtime;
compat_time_t msg_ctime;
compat_ulong_t msg_lcbytes;
compat_ulong_t msg_lqbytes;
unsigned short msg_cbytes;
unsigned short msg_qnum;
unsigned short msg_qbytes;
compat_ipc_pid_t msg_lspid;
compat_ipc_pid_t msg_lrpid;
};
struct msqid64_ds32 {
struct ipc64_perm msg_perm;
unsigned int __unused1;
compat_time_t msg_stime;
unsigned int __unused2;
compat_time_t msg_rtime;
unsigned int __unused3;
compat_time_t msg_ctime;
compat_ulong_t msg_cbytes;
compat_ulong_t msg_qnum;
compat_ulong_t msg_qbytes;
compat_pid_t msg_lspid;
compat_pid_t msg_lrpid;
compat_ulong_t __unused4;
compat_ulong_t __unused5;
};
struct shmid_ds32 {
struct ipc_perm shm_perm;
int shm_segsz;
compat_time_t shm_atime;
compat_time_t shm_dtime;
compat_time_t shm_ctime;
compat_ipc_pid_t shm_cpid;
compat_ipc_pid_t shm_lpid;
unsigned short shm_nattch;
unsigned short __unused;
compat_uptr_t __unused2;
compat_uptr_t __unused3;
};
struct shmid64_ds32 {
struct ipc64_perm shm_perm;
unsigned int __unused1;
compat_time_t shm_atime;
unsigned int __unused2;
compat_time_t shm_dtime;
unsigned int __unused3;
compat_time_t shm_ctime;
unsigned int __unused4;
compat_size_t shm_segsz;
compat_pid_t shm_cpid;
compat_pid_t shm_lpid;
compat_ulong_t shm_nattch;
compat_ulong_t __unused5;
compat_ulong_t __unused6;
};
/*
* sys32_ipc() is the de-multiplexer for the SysV IPC calls in 32bit
* emulation..
*
* This is really horribly ugly.
*/
static long do_sys32_semctl(int first, int second, int third, void *uptr)
{
union semun fourth;
u32 pad;
int err, err2;
mm_segment_t old_fs;
if (!uptr)
return -EINVAL;
err = -EFAULT;
if (get_user(pad, (u32 *)uptr))
return err;
if ((third & ~IPC_64) == SETVAL)
fourth.val = (int)pad;
else
fourth.__pad = (void *)A(pad);
switch (third & (~IPC_64)) {
case IPC_INFO:
case IPC_RMID:
case SEM_INFO:
case GETVAL:
case GETPID:
case GETNCNT:
case GETZCNT:
case GETALL:
case SETALL:
case SETVAL:
err = sys_semctl(first, second, third, fourth);
break;
case IPC_STAT:
case SEM_STAT:
if (third & IPC_64) {
struct semid64_ds s64;
struct semid64_ds32 *usp;
usp = (struct semid64_ds32 *)A(pad);
fourth.__pad = &s64;
old_fs = get_fs();
set_fs(KERNEL_DS);
err = sys_semctl(first, second, third, fourth);
set_fs(old_fs);
err2 = copy_to_user(&usp->sem_perm, &s64.sem_perm,
sizeof(struct ipc64_perm));
err2 |= __put_user(s64.sem_otime, &usp->sem_otime);
err2 |= __put_user(s64.sem_ctime, &usp->sem_ctime);
err2 |= __put_user(s64.sem_nsems, &usp->sem_nsems);
if (err2)
err = -EFAULT;
} else {
struct semid_ds s;
struct semid_ds32 *usp;
usp = (struct semid_ds32 *)A(pad);
fourth.__pad = &s;
old_fs = get_fs();
set_fs(KERNEL_DS);
err = sys_semctl(first, second, third, fourth);
set_fs(old_fs);
err2 = copy_to_user(&usp->sem_perm, &s.sem_perm,
sizeof(struct ipc_perm));
err2 |= __put_user(s.sem_otime, &usp->sem_otime);
err2 |= __put_user(s.sem_ctime, &usp->sem_ctime);
err2 |= __put_user(s.sem_nsems, &usp->sem_nsems);
if (err2)
err = -EFAULT;
}
break;
case IPC_SET:
if (third & IPC_64) {
struct semid64_ds s64;
struct semid64_ds32 *usp;
usp = (struct semid64_ds32 *)A(pad);
err = get_user(s64.sem_perm.uid, &usp->sem_perm.uid);
err |= __get_user(s64.sem_perm.gid,
&usp->sem_perm.gid);
err |= __get_user(s64.sem_perm.mode,
&usp->sem_perm.mode);
if (err)
goto out;
fourth.__pad = &s64;
old_fs = get_fs();
set_fs(KERNEL_DS);
err = sys_semctl(first, second, third, fourth);
set_fs(old_fs);
} else {
struct semid_ds s;
struct semid_ds32 *usp;
usp = (struct semid_ds32 *)A(pad);
err = get_user(s.sem_perm.uid, &usp->sem_perm.uid);
err |= __get_user(s.sem_perm.gid,
&usp->sem_perm.gid);
err |= __get_user(s.sem_perm.mode,
&usp->sem_perm.mode);
if (err)
goto out;
fourth.__pad = &s;
old_fs = get_fs();
set_fs(KERNEL_DS);
err = sys_semctl(first, second, third, fourth);
set_fs(old_fs);
}
break;
default:
err = -EINVAL;
}
out:
return err;
}
#define MAXBUF (64*1024)
static int
do_sys32_msgsnd(int first, int second, int third, void *uptr)
{
struct msgbuf *p;
struct msgbuf32 *up = (struct msgbuf32 *)uptr;
mm_segment_t old_fs;
int err;
if (second < 0 || (second >= MAXBUF-sizeof(struct msgbuf)))
return -EINVAL;
p = kmalloc(second + sizeof(struct msgbuf), GFP_USER);
if (!p)
return -ENOMEM;
err = get_user(p->mtype, &up->mtype);
err |= copy_from_user(p->mtext, &up->mtext, second);
if (err) {
err = -EFAULT;
goto out;
}
old_fs = get_fs();
set_fs(KERNEL_DS);
err = sys_msgsnd(first, p, second, third);
set_fs(old_fs);
out:
kfree(p);
return err;
}
static int
do_sys32_msgrcv(int first, int second, int msgtyp, int third,
int version, void *uptr)
{
struct msgbuf32 *up;
struct msgbuf *p;
mm_segment_t old_fs;
int err;
if (second < 0 || (second >= MAXBUF-sizeof(struct msgbuf)))
return -EINVAL;
if (!version) {
struct ipc_kludge_32 *uipck = (struct ipc_kludge_32 *)uptr;
struct ipc_kludge_32 ipck;
err = -EINVAL;
if (!uptr)
goto out;
err = -EFAULT;
if (copy_from_user(&ipck, uipck, sizeof(struct ipc_kludge_32)))
goto out;
uptr = (void *)A(ipck.msgp);
msgtyp = ipck.msgtyp;
}
err = -ENOMEM;
p = kmalloc(second + sizeof (struct msgbuf), GFP_USER);
if (!p)
goto out;
old_fs = get_fs();
set_fs(KERNEL_DS);
err = sys_msgrcv(first, p, second, msgtyp, third);
set_fs(old_fs);
if (err < 0)
goto free_then_out;
up = (struct msgbuf32 *)uptr;
if (put_user(p->mtype, &up->mtype) ||
copy_to_user(&up->mtext, p->mtext, err))
err = -EFAULT;
free_then_out:
kfree(p);
out:
return err;
}
static int
do_sys32_msgctl(int first, int second, void *uptr)
{
int err = -EINVAL, err2;
mm_segment_t old_fs;
switch (second & (~IPC_64)) {
case IPC_INFO:
case IPC_RMID:
case MSG_INFO:
err = sys_msgctl(first, second, (struct msqid_ds *)uptr);
break;
case IPC_SET:
if (second & IPC_64) {
struct msqid64_ds m64;
struct msqid64_ds32 *up = (struct msqid64_ds32 *)uptr;
err2 = copy_from_user(&m64.msg_perm, &up->msg_perm,
sizeof(struct ipc64_perm));
err2 |= __get_user(m64.msg_qbytes, &up->msg_qbytes);
if (err2) {
err = -EFAULT;
break;
}
old_fs = get_fs();
set_fs(KERNEL_DS);
err = sys_msgctl(first, second,
(struct msqid_ds *)&m64);
set_fs(old_fs);
} else {
struct msqid_ds m;
struct msqid_ds32 *up = (struct msqid_ds32 *)uptr;
err2 = copy_from_user(&m.msg_perm, &up->msg_perm,
sizeof(struct ipc_perm));
err2 |= __get_user(m.msg_qbytes, &up->msg_qbytes);
if (err2) {
err = -EFAULT;
break;
}
old_fs = get_fs();
set_fs(KERNEL_DS);
err = sys_msgctl(first, second, &m);
set_fs(old_fs);
}
break;
case IPC_STAT:
case MSG_STAT:
if (second & IPC_64) {
struct msqid64_ds m64;
struct msqid64_ds32 *up = (struct msqid64_ds32 *)uptr;
old_fs = get_fs();
set_fs(KERNEL_DS);
err = sys_msgctl(first, second,
(struct msqid_ds *)&m64);
set_fs(old_fs);
err2 = copy_to_user(&up->msg_perm, &m64.msg_perm,
sizeof(struct ipc64_perm));
err2 |= __put_user(m64.msg_stime, &up->msg_stime);
err2 |= __put_user(m64.msg_rtime, &up->msg_rtime);
err2 |= __put_user(m64.msg_ctime, &up->msg_ctime);
err2 |= __put_user(m64.msg_cbytes, &up->msg_cbytes);
err2 |= __put_user(m64.msg_qnum, &up->msg_qnum);
err2 |= __put_user(m64.msg_qbytes, &up->msg_qbytes);
err2 |= __put_user(m64.msg_lspid, &up->msg_lspid);
err2 |= __put_user(m64.msg_lrpid, &up->msg_lrpid);
if (err2)
err = -EFAULT;
} else {
struct msqid64_ds m;
struct msqid_ds32 *up = (struct msqid_ds32 *)uptr;
old_fs = get_fs();
set_fs(KERNEL_DS);
err = sys_msgctl(first, second, (struct msqid_ds *)&m);
set_fs(old_fs);
err2 = copy_to_user(&up->msg_perm, &m.msg_perm,
sizeof(struct ipc_perm));
err2 |= __put_user(m.msg_stime, &up->msg_stime);
err2 |= __put_user(m.msg_rtime, &up->msg_rtime);
err2 |= __put_user(m.msg_ctime, &up->msg_ctime);
err2 |= __put_user(m.msg_cbytes, &up->msg_cbytes);
err2 |= __put_user(m.msg_qnum, &up->msg_qnum);
err2 |= __put_user(m.msg_qbytes, &up->msg_qbytes);
err2 |= __put_user(m.msg_lspid, &up->msg_lspid);
err2 |= __put_user(m.msg_lrpid, &up->msg_lrpid);
if (err2)
err = -EFAULT;
}
break;
}
return err;
}
static int
do_sys32_shmat(int first, int second, int third, int version, void *uptr)
{
unsigned long raddr;
u32 *uaddr = (u32 *)A((u32)third);
int err = -EINVAL;
if (version == 1)
return err;
err = sys_shmat(first, uptr, second, &raddr);
if (err)
return err;
err = put_user(raddr, uaddr);
return err;
}
static int
do_sys32_shmctl(int first, int second, void *uptr)
{
int err = -EINVAL, err2;
mm_segment_t old_fs;
switch (second & (~IPC_64)) {
case IPC_INFO:
case IPC_RMID:
case SHM_LOCK:
case SHM_UNLOCK:
err = sys_shmctl(first, second, (struct shmid_ds *)uptr);
break;
case IPC_SET:
if (second & IPC_64) {
struct shmid64_ds32 *up = (struct shmid64_ds32 *)uptr;
struct shmid64_ds s64;
err = get_user(s64.shm_perm.uid, &up->shm_perm.uid);
err |= __get_user(s64.shm_perm.gid, &up->shm_perm.gid);
err |= __get_user(s64.shm_perm.mode,
&up->shm_perm.mode);
if (err)
break;
old_fs = get_fs();
set_fs(KERNEL_DS);
err = sys_shmctl(first, second,
(struct shmid_ds *)&s64);
set_fs(old_fs);
} else {
struct shmid_ds32 *up = (struct shmid_ds32 *)uptr;
struct shmid_ds s;
err = get_user(s.shm_perm.uid, &up->shm_perm.uid);
err |= __get_user(s.shm_perm.gid, &up->shm_perm.gid);
err |= __get_user(s.shm_perm.mode, &up->shm_perm.mode);
if (err)
break;
old_fs = get_fs();
set_fs(KERNEL_DS);
err = sys_shmctl(first, second, &s);
set_fs(old_fs);
}
break;
case IPC_STAT:
case SHM_STAT:
if (second & IPC_64) {
struct shmid64_ds32 *up = (struct shmid64_ds32 *)uptr;
struct shmid64_ds s64;
old_fs = get_fs();
set_fs(KERNEL_DS);
err = sys_shmctl(first, second,
(struct shmid_ds *)&s64);
set_fs(old_fs);
if (err < 0)
break;
err2 = copy_to_user(&up->shm_perm, &s64.shm_perm,
sizeof(struct ipc64_perm));
err2 |= __put_user(s64.shm_atime, &up->shm_atime);
err2 |= __put_user(s64.shm_dtime, &up->shm_dtime);
err2 |= __put_user(s64.shm_ctime, &up->shm_ctime);
err2 |= __put_user(s64.shm_segsz, &up->shm_segsz);
err2 |= __put_user(s64.shm_nattch, &up->shm_nattch);
err2 |= __put_user(s64.shm_cpid, &up->shm_cpid);
err2 |= __put_user(s64.shm_lpid, &up->shm_lpid);
if (err2)
err = -EFAULT;
} else {
struct shmid_ds32 *up = (struct shmid_ds32 *)uptr;
struct shmid_ds s;
old_fs = get_fs();
set_fs(KERNEL_DS);
err = sys_shmctl(first, second, &s);
set_fs(old_fs);
if (err < 0)
break;
err2 = copy_to_user(&up->shm_perm, &s.shm_perm,
sizeof(struct ipc_perm));
err2 |= __put_user (s.shm_atime, &up->shm_atime);
err2 |= __put_user (s.shm_dtime, &up->shm_dtime);
err2 |= __put_user (s.shm_ctime, &up->shm_ctime);
err2 |= __put_user (s.shm_segsz, &up->shm_segsz);
err2 |= __put_user (s.shm_nattch, &up->shm_nattch);
err2 |= __put_user (s.shm_cpid, &up->shm_cpid);
err2 |= __put_user (s.shm_lpid, &up->shm_lpid);
if (err2)
err = -EFAULT;
}
break;
case SHM_INFO: {
struct shm_info si;
struct shm_info32 {
int used_ids;
u32 shm_tot, shm_rss, shm_swp;
u32 swap_attempts, swap_successes;
} *uip = (struct shm_info32 *)uptr;
old_fs = get_fs();
set_fs(KERNEL_DS);
err = sys_shmctl(first, second, (struct shmid_ds *)&si);
set_fs(old_fs);
if (err < 0)
break;
err2 = put_user(si.used_ids, &uip->used_ids);
err2 |= __put_user(si.shm_tot, &uip->shm_tot);
err2 |= __put_user(si.shm_rss, &uip->shm_rss);
err2 |= __put_user(si.shm_swp, &uip->shm_swp);
err2 |= __put_user(si.swap_attempts, &uip->swap_attempts);
err2 |= __put_user(si.swap_successes, &uip->swap_successes);
if (err2)
err = -EFAULT;
break;
}
}
return err;
}
static int sys32_semtimedop(int semid, struct sembuf *tsems, int nsems,
const struct compat_timespec *timeout32)
{
struct compat_timespec t32;
struct timespec *t64 = compat_alloc_user_space(sizeof(*t64));
if (copy_from_user(&t32, timeout32, sizeof(t32)))
return -EFAULT;
if (put_user(t32.tv_sec, &t64->tv_sec) ||
put_user(t32.tv_nsec, &t64->tv_nsec))
return -EFAULT;
return sys_semtimedop(semid, tsems, nsems, t64);
}
/*
* Note: it is necessary to treat first_parm, second_parm, and
* third_parm as unsigned ints, with the corresponding cast to a
* signed int to insure that the proper conversion (sign extension)
* between the register representation of a signed int (msr in 32-bit
* mode) and the register representation of a signed int (msr in
* 64-bit mode) is performed.
*/
asmlinkage long sys32_ipc(u32 call, u32 first_parm, u32 second_parm, u32 third_parm, u32 ptr, u32 fifth)
{
int first = (int)first_parm;
int second = (int)second_parm;
int third = (int)third_parm;
int version, err;
version = call >> 16; /* hack for backward compatibility */
call &= 0xffff;
switch (call) {
case SEMOP:
/* struct sembuf is the same on 32 and 64bit :)) */
err = sys_semtimedop(first, (struct sembuf *)AA(ptr),
second, NULL);
break;
case SEMTIMEDOP:
err = sys32_semtimedop(first, (struct sembuf *)AA(ptr), second,
(const struct compat_timespec *)AA(fifth));
break;
case SEMGET:
err = sys_semget(first, second, third);
break;
case SEMCTL:
err = do_sys32_semctl(first, second, third,
(void *)AA(ptr));
break;
case MSGSND:
err = do_sys32_msgsnd(first, second, third,
(void *)AA(ptr));
break;
case MSGRCV:
err = do_sys32_msgrcv(first, second, fifth, third,
version, (void *)AA(ptr));
break;
case MSGGET:
err = sys_msgget((key_t)first, second);
break;
case MSGCTL:
err = do_sys32_msgctl(first, second, (void *)AA(ptr));
break;
case SHMAT:
err = do_sys32_shmat(first, second, third,
version, (void *)AA(ptr));
break;
case SHMDT:
err = sys_shmdt((char *)AA(ptr));
break;
case SHMGET:
err = sys_shmget(first, second, third);
break;
case SHMCTL:
err = do_sys32_shmctl(first, second, (void *)AA(ptr));
break;
default:
err = -ENOSYS;
break;
}
return err;
}
extern asmlinkage ssize_t sys_sendfile(int out_fd, int in_fd, off_t* offset, size_t count);
/* Note: it is necessary to treat out_fd and in_fd as unsigned ints,
* with the corresponding cast to a signed int to insure that the
* proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode)
* and the register representation of a signed int (msr in 64-bit mode) is performed.
*/
asmlinkage long sys32_sendfile(u32 out_fd, u32 in_fd, compat_off_t* offset, u32 count)
{
mm_segment_t old_fs = get_fs();
int ret;
off_t of;
if (offset && get_user(of, offset))
return -EFAULT;
set_fs(KERNEL_DS);
ret = sys_sendfile((int)out_fd, (int)in_fd, offset ? &of : NULL, count);
set_fs(old_fs);
if (offset && put_user(of, offset))
return -EFAULT;
return ret;
}
extern asmlinkage ssize_t sys_sendfile64(int out_fd, int in_fd, loff_t *offset, size_t count);
asmlinkage int sys32_sendfile64(int out_fd, int in_fd, compat_loff_t *offset, s32 count)
{
mm_segment_t old_fs = get_fs();
int ret;
loff_t lof;
if (offset && get_user(lof, offset))
return -EFAULT;
set_fs(KERNEL_DS);
ret = sys_sendfile64(out_fd, in_fd, offset ? &lof : NULL, count);
set_fs(old_fs);
if (offset && put_user(lof, offset))
return -EFAULT;
return ret;
}
/*
* count32() counts the number of arguments/envelopes
*/
static int count32(u32 * argv, int max)
{
int i = 0;
if (argv != NULL) {
for (;;) {
u32 p; int error;
error = get_user(p,argv);
if (error)
return error;
if (!p)
break;
argv++;
if (++i > max)
return -E2BIG;
}
}
return i;
}
/*
* 'copy_string32()' copies argument/envelope strings from user
* memory to free pages in kernel mem. These are in a format ready
* to be put directly into the top of new user memory.
*/
static int copy_strings32(int argc, u32 * argv, struct linux_binprm *bprm)
{
while (argc-- > 0) {
u32 str;
int len;
unsigned long pos;
if (get_user(str, argv + argc) ||
!str ||
!(len = strnlen_user((char *)A(str), bprm->p)))
return -EFAULT;
if (bprm->p < len)
return -E2BIG;
bprm->p -= len;
pos = bprm->p;
while (len) {
char *kaddr;
struct page *page;
int offset, bytes_to_copy, new, err;
offset = pos % PAGE_SIZE;
page = bprm->page[pos / PAGE_SIZE];
new = 0;
if (!page) {
page = alloc_page(GFP_USER);
bprm->page[pos / PAGE_SIZE] = page;
if (!page)
return -ENOMEM;
new = 1;
}
kaddr = (char *)kmap(page);
if (new && offset)
memset(kaddr, 0, offset);
bytes_to_copy = PAGE_SIZE - offset;
if (bytes_to_copy > len) {
bytes_to_copy = len;
if (new)
memset(kaddr+offset+len, 0,
PAGE_SIZE-offset-len);
}
err = copy_from_user(kaddr + offset, (char *)A(str),
bytes_to_copy);
kunmap((unsigned long)kaddr);
if (err)
return -EFAULT;
pos += bytes_to_copy;
str += bytes_to_copy;
len -= bytes_to_copy;
}
}
return 0;
}
/*
* sys32_execve() executes a new program.
*/
static int do_execve32(char * filename, u32 * argv, u32 * envp, struct pt_regs * regs)
{
struct linux_binprm bprm;
struct file * file;
int retval;
int i;
sched_balance_exec();
file = open_exec(filename);
retval = PTR_ERR(file);
if (IS_ERR(file))
return retval;
bprm.p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
memset(bprm.page, 0, MAX_ARG_PAGES * sizeof(bprm.page[0]));
bprm.file = file;
bprm.filename = filename;
bprm.interp = filename;
bprm.sh_bang = 0;
bprm.loader = 0;
bprm.exec = 0;
bprm.security = NULL;
bprm.mm = mm_alloc();
retval = -ENOMEM;
if (!bprm.mm)
goto out_file;
retval = init_new_context(current, bprm.mm);
if (retval < 0)
goto out_mm;
bprm.argc = count32(argv, bprm.p / sizeof(u32));
if ((retval = bprm.argc) < 0)
goto out_mm;
bprm.envc = count32(envp, bprm.p / sizeof(u32));
if ((retval = bprm.envc) < 0)
goto out_mm;
retval = security_bprm_alloc(&bprm);
if (retval)
goto out;
retval = prepare_binprm(&bprm);
if (retval < 0)
goto out;
retval = copy_strings_kernel(1, &bprm.filename, &bprm);
if (retval < 0)
goto out;
bprm.exec = bprm.p;
retval = copy_strings32(bprm.envc, envp, &bprm);
if (retval < 0)
goto out;
retval = copy_strings32(bprm.argc, argv, &bprm);
if (retval < 0)
goto out;
retval = search_binary_handler(&bprm,regs);
if (retval >= 0) {
/* execve success */
security_bprm_free(&bprm);
return retval;
}
out:
/* Something went wrong, return the inode and free the argument pages*/
for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
struct page * page = bprm.page[i];
if (page)
__free_page(page);
}
if (bprm.security)
security_bprm_free(&bprm);
out_mm:
if (bprm.mm)
mmdrop(bprm.mm);
out_file:
if (bprm.file) {
allow_write_access(bprm.file);
fput(bprm.file);
}
return retval;
}
long sys32_execve(unsigned long a0, unsigned long a1, unsigned long a2,
unsigned long a3, unsigned long a4, unsigned long a5,
struct pt_regs *regs)
{
int error;
char * filename;
filename = getname((char *) a0);
error = PTR_ERR(filename);
if (IS_ERR(filename))
goto out;
if (regs->msr & MSR_FP)
giveup_fpu(current);
#ifdef CONFIG_ALTIVEC
if (regs->msr & MSR_VEC)
giveup_altivec(current);
#endif /* CONFIG_ALTIVEC */
error = do_execve32(filename, (u32*) a1, (u32*) a2, regs);
if (error == 0)
current->ptrace &= ~PT_DTRACE;
putname(filename);
out:
return error;
}
/* Set up a thread for executing a new program. */
void start_thread32(struct pt_regs* regs, unsigned long nip, unsigned long sp)
{
set_fs(USER_DS);
memset(regs->gpr, 0, sizeof(regs->gpr));
memset(®s->ctr, 0, 4 * sizeof(regs->ctr));
regs->nip = nip;
regs->gpr[1] = sp;
regs->msr = MSR_USER32;
#ifndef CONFIG_SMP
if (last_task_used_math == current)
last_task_used_math = 0;
#endif /* CONFIG_SMP */
current->thread.fpscr = 0;
memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
#ifdef CONFIG_ALTIVEC
#ifndef CONFIG_SMP
if (last_task_used_altivec == current)
last_task_used_altivec = 0;
#endif /* CONFIG_SMP */
memset(current->thread.vr, 0, sizeof(current->thread.vr));
current->thread.vscr.u[0] = 0;
current->thread.vscr.u[1] = 0;
current->thread.vscr.u[2] = 0;
current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
current->thread.vrsave = 0;
current->thread.used_vr = 0;
#endif /* CONFIG_ALTIVEC */
}
extern asmlinkage int sys_prctl(int option, unsigned long arg2, unsigned long arg3,
unsigned long arg4, unsigned long arg5);
/* Note: it is necessary to treat option as an unsigned int,
* with the corresponding cast to a signed int to insure that the
* proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode)
* and the register representation of a signed int (msr in 64-bit mode) is performed.
*/
asmlinkage long sys32_prctl(u32 option, u32 arg2, u32 arg3, u32 arg4, u32 arg5)
{
return sys_prctl((int)option,
(unsigned long) arg2,
(unsigned long) arg3,
(unsigned long) arg4,
(unsigned long) arg5);
}
extern asmlinkage int sys_sched_rr_get_interval(pid_t pid, struct timespec *interval);
/* Note: it is necessary to treat pid as an unsigned int,
* with the corresponding cast to a signed int to insure that the
* proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode)
* and the register representation of a signed int (msr in 64-bit mode) is performed.
*/
asmlinkage int sys32_sched_rr_get_interval(u32 pid, struct compat_timespec *interval)
{
struct timespec t;
int ret;
mm_segment_t old_fs = get_fs ();
set_fs (KERNEL_DS);
ret = sys_sched_rr_get_interval((int)pid, &t);
set_fs (old_fs);
if (put_compat_timespec(&t, interval))
return -EFAULT;
return ret;
}
extern asmlinkage int sys_pciconfig_read(unsigned long bus, unsigned long dfn, unsigned long off,
unsigned long len, unsigned char *buf);
asmlinkage int sys32_pciconfig_read(u32 bus, u32 dfn, u32 off, u32 len, u32 ubuf)
{
return sys_pciconfig_read((unsigned long) bus,
(unsigned long) dfn,
(unsigned long) off,
(unsigned long) len,
(unsigned char *)AA(ubuf));
}
extern asmlinkage int sys_pciconfig_write(unsigned long bus, unsigned long dfn, unsigned long off,
unsigned long len, unsigned char *buf);
asmlinkage int sys32_pciconfig_write(u32 bus, u32 dfn, u32 off, u32 len, u32 ubuf)
{
return sys_pciconfig_write((unsigned long) bus,
(unsigned long) dfn,
(unsigned long) off,
(unsigned long) len,
(unsigned char *)AA(ubuf));
}
extern asmlinkage int sys_newuname(struct new_utsname * name);
asmlinkage int ppc64_newuname(struct new_utsname * name)
{
int errno = sys_newuname(name);
if (current->personality == PER_LINUX32 && !errno) {
if(copy_to_user(name->machine, "ppc\0\0", 8)) {
errno = -EFAULT;
}
}
return errno;
}
extern asmlinkage long sys_personality(unsigned long);
asmlinkage int ppc64_personality(unsigned long personality)
{
int ret;
if (current->personality == PER_LINUX32 && personality == PER_LINUX)
personality = PER_LINUX32;
ret = sys_personality(personality);
if (ret == PER_LINUX32)
ret = PER_LINUX;
return ret;
}
extern asmlinkage long sys_access(const char * filename, int mode);
/* Note: it is necessary to treat mode as an unsigned int,
* with the corresponding cast to a signed int to insure that the
* proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode)
* and the register representation of a signed int (msr in 64-bit mode) is performed.
*/
asmlinkage long sys32_access(const char * filename, u32 mode)
{
return sys_access(filename, (int)mode);
}
extern asmlinkage long sys_creat(const char * pathname, int mode);
/* Note: it is necessary to treat mode as an unsigned int,
* with the corresponding cast to a signed int to insure that the
* proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode)
* and the register representation of a signed int (msr in 64-bit mode) is performed.
*/
asmlinkage long sys32_creat(const char * pathname, u32 mode)
{
return sys_creat(pathname, (int)mode);
}
extern asmlinkage long sys_waitpid(pid_t pid, unsigned int * stat_addr, int options);
/* Note: it is necessary to treat pid and options as unsigned ints,
* with the corresponding cast to a signed int to insure that the
* proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode)
* and the register representation of a signed int (msr in 64-bit mode) is performed.
*/
asmlinkage long sys32_waitpid(u32 pid, unsigned int * stat_addr, u32 options)
{
return sys_waitpid((int)pid, stat_addr, (int)options);
}
extern asmlinkage long sys_getgroups(int gidsetsize, gid_t *grouplist);
/* Note: it is necessary to treat gidsetsize as an unsigned int,
* with the corresponding cast to a signed int to insure that the
* proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode)
* and the register representation of a signed int (msr in 64-bit mode) is performed.
*/
asmlinkage long sys32_getgroups(u32 gidsetsize, gid_t *grouplist)
{
return sys_getgroups((int)gidsetsize, grouplist);
}
extern asmlinkage long sys_getpgid(pid_t pid);
/* Note: it is necessary to treat pid as an unsigned int,
* with the corresponding cast to a signed int to insure that the
* proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode)
* and the register representation of a signed int (msr in 64-bit mode) is performed.
*/
asmlinkage long sys32_getpgid(u32 pid)
{
return sys_getpgid((int)pid);
}
extern asmlinkage long sys_getpriority(int which, int who);
/* Note: it is necessary to treat which and who as unsigned ints,
* with the corresponding cast to a signed int to insure that the
* proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode)
* and the register representation of a signed int (msr in 64-bit mode) is performed.
*/
asmlinkage long sys32_getpriority(u32 which, u32 who)
{
return sys_getpriority((int)which, (int)who);
}
extern asmlinkage long sys_getsid(pid_t pid);
/* Note: it is necessary to treat pid as an unsigned int,
* with the corresponding cast to a signed int to insure that the
* proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode)
* and the register representation of a signed int (msr in 64-bit mode) is performed.
*/
asmlinkage long sys32_getsid(u32 pid)
{
return sys_getsid((int)pid);
}
extern asmlinkage long sys_kill(int pid, int sig);
/* Note: it is necessary to treat pid and sig as unsigned ints,
* with the corresponding cast to a signed int to insure that the
* proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode)
* and the register representation of a signed int (msr in 64-bit mode) is performed.
*/
asmlinkage long sys32_kill(u32 pid, u32 sig)
{
return sys_kill((int)pid, (int)sig);
}
extern asmlinkage long sys_mkdir(const char * pathname, int mode);
/* Note: it is necessary to treat mode as an unsigned int,
* with the corresponding cast to a signed int to insure that the
* proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode)
* and the register representation of a signed int (msr in 64-bit mode) is performed.
*/
asmlinkage long sys32_mkdir(const char * pathname, u32 mode)
{
return sys_mkdir(pathname, (int)mode);
}
extern asmlinkage long sys_nice(int increment);
long sys32_nice(u32 increment)
{
/* sign extend increment */
return sys_nice((int)increment);
}
extern off_t sys_lseek(unsigned int fd, off_t offset, unsigned int origin);
off_t ppc32_lseek(unsigned int fd, u32 offset, unsigned int origin)
{
/* sign extend n */
return sys_lseek(fd, (int)offset, origin);
}
/*
* This is just a version for 32-bit applications which does
* not force O_LARGEFILE on.
*/
long sys32_open(const char * filename, int flags, int mode)
{
char * tmp;
int fd, error;
tmp = getname(filename);
fd = PTR_ERR(tmp);
if (!IS_ERR(tmp)) {
fd = get_unused_fd();
if (fd >= 0) {
struct file * f = filp_open(tmp, flags, mode);
error = PTR_ERR(f);
if (IS_ERR(f))
goto out_error;
fd_install(fd, f);
}
out:
putname(tmp);
}
return fd;
out_error:
put_unused_fd(fd);
fd = error;
goto out;
}
extern asmlinkage long sys_readlink(const char * path, char * buf, int bufsiz);
/* Note: it is necessary to treat bufsiz as an unsigned int,
* with the corresponding cast to a signed int to insure that the
* proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode)
* and the register representation of a signed int (msr in 64-bit mode) is performed.
*/
asmlinkage long sys32_readlink(const char * path, char * buf, u32 bufsiz)
{
return sys_readlink(path, buf, (int)bufsiz);
}
extern asmlinkage long sys_sched_get_priority_max(int policy);
/* Note: it is necessary to treat option as an unsigned int,
* with the corresponding cast to a signed int to insure that the
* proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode)
* and the register representation of a signed int (msr in 64-bit mode) is performed.
*/
asmlinkage long sys32_sched_get_priority_max(u32 policy)
{
return sys_sched_get_priority_max((int)policy);
}
extern asmlinkage long sys_sched_get_priority_min(int policy);
/* Note: it is necessary to treat policy as an unsigned int,
* with the corresponding cast to a signed int to insure that the
* proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode)
* and the register representation of a signed int (msr in 64-bit mode) is performed.
*/
asmlinkage long sys32_sched_get_priority_min(u32 policy)
{
return sys_sched_get_priority_min((int)policy);
}
extern asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param *param);
/* Note: it is necessary to treat pid as an unsigned int,
* with the corresponding cast to a signed int to insure that the
* proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode)
* and the register representation of a signed int (msr in 64-bit mode) is performed.
*/
asmlinkage long sys32_sched_getparam(u32 pid, struct sched_param *param)
{
return sys_sched_getparam((int)pid, param);
}
extern asmlinkage long sys_sched_getscheduler(pid_t pid);
/* Note: it is necessary to treat pid as an unsigned int,
* with the corresponding cast to a signed int to insure that the
* proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode)
* and the register representation of a signed int (msr in 64-bit mode) is performed.
*/
asmlinkage long sys32_sched_getscheduler(u32 pid)
{
return sys_sched_getscheduler((int)pid);
}
extern asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param *param);
/* Note: it is necessary to treat pid as an unsigned int,
* with the corresponding cast to a signed int to insure that the
* proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode)
* and the register representation of a signed int (msr in 64-bit mode) is performed.
*/
asmlinkage long sys32_sched_setparam(u32 pid, struct sched_param *param)
{
return sys_sched_setparam((int)pid, param);
}
extern asmlinkage long sys_sched_setscheduler(pid_t pid, int policy, struct sched_param *param);
/* Note: it is necessary to treat pid and policy as unsigned ints,
* with the corresponding cast to a signed int to insure that the
* proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode)
* and the register representation of a signed int (msr in 64-bit mode) is performed.
*/
asmlinkage long sys32_sched_setscheduler(u32 pid, u32 policy, struct sched_param *param)
{
return sys_sched_setscheduler((int)pid, (int)policy, param);
}
extern asmlinkage long sys_setdomainname(char *name, int len);
/* Note: it is necessary to treat len as an unsigned int,
* with the corresponding cast to a signed int to insure that the
* proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode)
* and the register representation of a signed int (msr in 64-bit mode) is performed.
*/
asmlinkage long sys32_setdomainname(char *name, u32 len)
{
return sys_setdomainname(name, (int)len);
}
extern asmlinkage long sys_setgroups(int gidsetsize, gid_t *grouplist);
/* Note: it is necessary to treat gidsetsize as an unsigned int,
* with the corresponding cast to a signed int to insure that the
* proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode)
* and the register representation of a signed int (msr in 64-bit mode) is performed.
*/
asmlinkage long sys32_setgroups(u32 gidsetsize, gid_t *grouplist)
{
return sys_setgroups((int)gidsetsize, grouplist);
}
extern asmlinkage long sys_sethostname(char *name, int len);
asmlinkage long sys32_sethostname(char *name, u32 len)
{
/* sign extend len */
return sys_sethostname(name, (int)len);
}
extern asmlinkage long sys_setpgid(pid_t pid, pid_t pgid);
/* Note: it is necessary to treat pid and pgid as unsigned ints,
* with the corresponding cast to a signed int to insure that the
* proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode)
* and the register representation of a signed int (msr in 64-bit mode) is performed.
*/
asmlinkage long sys32_setpgid(u32 pid, u32 pgid)
{
return sys_setpgid((int)pid, (int)pgid);
}
extern asmlinkage long sys_setpriority(int which, int who, int niceval);
long sys32_setpriority(u32 which, u32 who, u32 niceval)
{
/* sign extend which, who and niceval */
return sys_setpriority((int)which, (int)who, (int)niceval);
}
extern asmlinkage long sys_ssetmask(int newmask);
/* Note: it is necessary to treat newmask as an unsigned int,
* with the corresponding cast to a signed int to insure that the
* proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode)
* and the register representation of a signed int (msr in 64-bit mode) is performed.
*/
asmlinkage long sys32_ssetmask(u32 newmask)
{
return sys_ssetmask((int) newmask);
}
extern asmlinkage long sys_syslog(int type, char * buf, int len);
long sys32_syslog(u32 type, char * buf, u32 len)
{
/* sign extend len */
return sys_syslog(type, buf, (int)len);
}
extern asmlinkage long sys_umask(int mask);
/* Note: it is necessary to treat mask as an unsigned int,
* with the corresponding cast to a signed int to insure that the
* proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode)
* and the register representation of a signed int (msr in 64-bit mode) is performed.
*/
asmlinkage long sys32_umask(u32 mask)
{
return sys_umask((int)mask);
}
extern asmlinkage long sys_umount(char * name, int flags);
/* Note: it is necessary to treat flags as an unsigned int,
* with the corresponding cast to a signed int to insure that the
* proper conversion (sign extension) between the register representation of a signed int (msr in 32-bit mode)
* and the register representation of a signed int (msr in 64-bit mode) is performed.
*/
asmlinkage long sys32_umount(char * name, u32 flags)
{
return sys_umount(name, (int)flags);
}
struct __sysctl_args32 {
u32 name;
int nlen;
u32 oldval;
u32 oldlenp;
u32 newval;
u32 newlen;
u32 __unused[4];
};
extern asmlinkage long sys32_sysctl(struct __sysctl_args32 *args)
{
struct __sysctl_args32 tmp;
int error;
size_t oldlen, *oldlenp = NULL;
unsigned long addr = (((long)&args->__unused[0]) + 7) & ~7;
if (copy_from_user(&tmp, args, sizeof(tmp)))
return -EFAULT;
if (tmp.oldval && tmp.oldlenp) {
/* Duh, this is ugly and might not work if sysctl_args
is in read-only memory, but do_sysctl does indirectly
a lot of uaccess in both directions and we'd have to
basically copy the whole sysctl.c here, and
glibc's __sysctl uses rw memory for the structure
anyway. */
if (get_user(oldlen, (u32 *)A(tmp.oldlenp)) ||
put_user(oldlen, (size_t *)addr))
return -EFAULT;
oldlenp = (size_t *)addr;
}
lock_kernel();
error = do_sysctl((int *)A(tmp.name), tmp.nlen, (void *)A(tmp.oldval),
oldlenp, (void *)A(tmp.newval), tmp.newlen);
unlock_kernel();
if (oldlenp) {
if (!error) {
if (get_user(oldlen, (size_t *)addr) ||
put_user(oldlen, (u32 *)A(tmp.oldlenp)))
error = -EFAULT;
}
copy_to_user(args->__unused, tmp.__unused, sizeof(tmp.__unused));
}
return error;
}
asmlinkage long sys32_time(compat_time_t* tloc)
{
compat_time_t secs;
struct timeval tv;
do_gettimeofday( &tv );
secs = tv.tv_sec;
if (tloc) {
if (put_user(secs,tloc))
secs = -EFAULT;
}
return secs;
}
int sys32_olduname(struct oldold_utsname * name)
{
int error;
if (!name)
return -EFAULT;
if (!access_ok(VERIFY_WRITE,name,sizeof(struct oldold_utsname)))
return -EFAULT;
down_read(&uts_sem);
error = __copy_to_user(&name->sysname,&system_utsname.sysname,__OLD_UTS_LEN);
error -= __put_user(0,name->sysname+__OLD_UTS_LEN);
error -= __copy_to_user(&name->nodename,&system_utsname.nodename,__OLD_UTS_LEN);
error -= __put_user(0,name->nodename+__OLD_UTS_LEN);
error -= __copy_to_user(&name->release,&system_utsname.release,__OLD_UTS_LEN);
error -= __put_user(0,name->release+__OLD_UTS_LEN);
error -= __copy_to_user(&name->version,&system_utsname.version,__OLD_UTS_LEN);
error -= __put_user(0,name->version+__OLD_UTS_LEN);
error -= __copy_to_user(&name->machine,&system_utsname.machine,__OLD_UTS_LEN);
error = __put_user(0,name->machine+__OLD_UTS_LEN);
up_read(&uts_sem);
error = error ? -EFAULT : 0;
return error;
}
extern unsigned long sys_mmap(unsigned long addr, size_t len,
unsigned long prot, unsigned long flags,
unsigned long fd, off_t offset);
unsigned long sys32_mmap2(unsigned long addr, size_t len,
unsigned long prot, unsigned long flags,
unsigned long fd, unsigned long pgoff)
{
/* This should remain 12 even if PAGE_SIZE changes */
return sys_mmap(addr, len, prot, flags, fd, pgoff << 12);
}
int get_compat_timeval(struct timeval *tv, struct compat_timeval *ctv)
{
return (verify_area(VERIFY_READ, ctv, sizeof(*ctv)) ||
__get_user(tv->tv_sec, &ctv->tv_sec) ||
__get_user(tv->tv_usec, &ctv->tv_usec)) ? -EFAULT : 0;
}
long sys32_utimes(char *filename, struct compat_timeval *tvs)
{
char *kfilename;
struct timeval ktvs[2];
mm_segment_t old_fs;
long ret;
kfilename = getname(filename);
ret = PTR_ERR(kfilename);
if (!IS_ERR(kfilename)) {
if (tvs) {
if (get_compat_timeval(&ktvs[0], &tvs[0]) ||
get_compat_timeval(&ktvs[1], &tvs[1]))
return -EFAULT;
}
old_fs = get_fs();
set_fs(KERNEL_DS);
ret = do_utimes(kfilename, (tvs ? &ktvs[0] : NULL));
set_fs(old_fs);
putname(kfilename);
}
return ret;
}
extern long sys_tgkill(int tgid, int pid, int sig);
long sys32_tgkill(u32 tgid, u32 pid, int sig)
{
/* sign extend tgid, pid */
return sys_tgkill((int)tgid, (int)pid, sig);
}
/*
* long long munging:
* The 32 bit ABI passes long longs in an odd even register pair.
*/
extern ssize_t sys_pread64(unsigned int fd, char *buf, size_t count,
loff_t pos);
extern ssize_t sys_pwrite64(unsigned int fd, const char *buf, size_t count,
loff_t pos);
compat_ssize_t sys32_pread64(unsigned int fd, char *ubuf, compat_size_t count,
u32 reg6, u32 poshi, u32 poslo)
{
return sys_pread64(fd, ubuf, count, ((loff_t)poshi << 32) | poslo);
}
compat_ssize_t sys32_pwrite64(unsigned int fd, char *ubuf, compat_size_t count,
u32 reg6, u32 poshi, u32 poslo)
{
return sys_pwrite64(fd, ubuf, count, ((loff_t)poshi << 32) | poslo);
}
extern ssize_t sys_readahead(int fd, loff_t offset, size_t count);
compat_ssize_t sys32_readahead(int fd, u32 r4, u32 offhi, u32 offlo, u32 count)
{
return sys_readahead(fd, ((loff_t)offhi << 32) | offlo, count);
}
extern asmlinkage long sys_truncate(const char * path, unsigned long length);
extern asmlinkage long sys_ftruncate(unsigned int fd, unsigned long length);
asmlinkage int sys32_truncate64(const char * path, u32 reg4,
unsigned long high, unsigned long low)
{
return sys_truncate(path, (high << 32) | low);
}
asmlinkage int sys32_ftruncate64(unsigned int fd, u32 reg4, unsigned long high,
unsigned long low)
{
return sys_ftruncate(fd, (high << 32) | low);
}
extern long sys_lookup_dcookie(u64 cookie64, char *buf, size_t len);
long ppc32_lookup_dcookie(u32 cookie_high, u32 cookie_low, char *buf,
size_t len)
{
return sys_lookup_dcookie((u64)cookie_high << 32 | cookie_low,
buf, len);
}
extern int sys_fadvise64(int fd, loff_t offset, size_t len, int advice);
long ppc32_fadvise64(int fd, u32 unused, u32 offset_high, u32 offset_low,
size_t len, int advice)
{
return sys_fadvise64(fd, (u64)offset_high << 32 | offset_low, len,
advice);
}
long ppc32_fadvise64_64(int fd, int advice, u32 offset_high, u32 offset_low,
u32 len_high, u32 len_low)
{
return sys_fadvise64(fd, (u64)offset_high << 32 | offset_low,
(u64)len_high << 32 | len_low, advice);
}
extern long sys_timer_create(clockid_t, sigevent_t *, timer_t *);
long ppc32_timer_create(clockid_t clock,
struct compat_sigevent __user *ev32,
timer_t __user *timer_id)
{
sigevent_t event;
timer_t t;
long err;
mm_segment_t savefs;
if (ev32 == NULL)
return sys_timer_create(clock, NULL, timer_id);
memset(&event, 0, sizeof(event));
if (!access_ok(VERIFY_READ, ev32, sizeof(struct compat_sigevent))
|| __get_user(event.sigev_value.sival_int,
&ev32->sigev_value.sival_int)
|| __get_user(event.sigev_signo, &ev32->sigev_signo)
|| __get_user(event.sigev_notify, &ev32->sigev_notify)
|| __get_user(event.sigev_notify_thread_id,
&ev32->sigev_notify_thread_id))
return -EFAULT;
if (!access_ok(VERIFY_WRITE, timer_id, sizeof(timer_t)))
return -EFAULT;
savefs = get_fs();
set_fs(KERNEL_DS);
err = sys_timer_create(clock, &event, &t);
set_fs(savefs);
if (err == 0)
err = __put_user(t, timer_id);
return err;
}