/*
* PowerPC64 Segment Translation Support.
*
* Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
* Copyright (c) 2001 Dave Engebretsen
*
* Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/config.h>
#include <asm/pgtable.h>
#include <asm/mmu.h>
#include <asm/mmu_context.h>
#include <asm/paca.h>
#include <asm/naca.h>
#include <asm/pmc.h>
#include <asm/cputable.h>
int make_ste(unsigned long stab, unsigned long esid, unsigned long vsid);
void make_slbe(unsigned long esid, unsigned long vsid, int large,
int kernel_segment);
/*
* Build an entry for the base kernel segment and put it into
* the segment table or SLB. All other segment table or SLB
* entries are faulted in.
*/
void stab_initialize(unsigned long stab)
{
unsigned long esid, vsid;
esid = GET_ESID(KERNELBASE);
vsid = get_kernel_vsid(esid << SID_SHIFT);
if (cur_cpu_spec->cpu_features & CPU_FTR_SLB) {
/* Invalidate the entire SLB & all the ERATS */
#ifdef CONFIG_PPC_ISERIES
asm volatile("isync; slbia; isync":::"memory");
#else
asm volatile("isync":::"memory");
asm volatile("slbmte %0,%0"::"r" (0) : "memory");
asm volatile("isync; slbia; isync":::"memory");
make_slbe(esid, vsid, 0, 1);
asm volatile("isync":::"memory");
#endif
} else {
asm volatile("isync; slbia; isync":::"memory");
make_ste(stab, esid, vsid);
/* Order update */
asm volatile("sync":::"memory");
}
}
/* Both the segment table and SLB code uses the following cache */
#define NR_STAB_CACHE_ENTRIES 8
DEFINE_PER_CPU(long, stab_cache_ptr);
DEFINE_PER_CPU(long, stab_cache[NR_STAB_CACHE_ENTRIES]);
/*
* Segment table stuff
*/
/*
* Create a segment table entry for the given esid/vsid pair.
*/
int make_ste(unsigned long stab, unsigned long esid, unsigned long vsid)
{
unsigned long entry, group, old_esid, castout_entry, i;
unsigned int global_entry;
STE *ste, *castout_ste;
/* Search the primary group first. */
global_entry = (esid & 0x1f) << 3;
ste = (STE *)(stab | ((esid & 0x1f) << 7));
/* Find an empty entry, if one exists. */
for (group = 0; group < 2; group++) {
for (entry = 0; entry < 8; entry++, ste++) {
if (!(ste->dw0.dw0.v)) {
ste->dw1.dw1.vsid = vsid;
ste->dw0.dw0.esid = esid;
ste->dw0.dw0.kp = 1;
asm volatile("eieio":::"memory");
ste->dw0.dw0.v = 1;
return(global_entry | entry);
}
}
/* Now search the secondary group. */
global_entry = ((~esid) & 0x1f) << 3;
ste = (STE *)(stab | (((~esid) & 0x1f) << 7));
}
/*
* Could not find empty entry, pick one with a round robin selection.
* Search all entries in the two groups.
*/
castout_entry = get_paca()->xStab_data.next_round_robin;
for (i = 0; i < 16; i++) {
if (castout_entry < 8) {
global_entry = (esid & 0x1f) << 3;
ste = (STE *)(stab | ((esid & 0x1f) << 7));
castout_ste = ste + castout_entry;
} else {
global_entry = ((~esid) & 0x1f) << 3;
ste = (STE *)(stab | (((~esid) & 0x1f) << 7));
castout_ste = ste + (castout_entry - 8);
}
/* Dont cast out the first kernel segment */
if (castout_ste->dw0.dw0.esid != GET_ESID(KERNELBASE))
break;
castout_entry = (castout_entry + 1) & 0xf;
}
get_paca()->xStab_data.next_round_robin = (castout_entry + 1) & 0xf;
/* Modify the old entry to the new value. */
/* Force previous translations to complete. DRENG */
asm volatile("isync" : : : "memory");
castout_ste->dw0.dw0.v = 0;
asm volatile("sync" : : : "memory"); /* Order update */
castout_ste->dw1.dw1.vsid = vsid;
old_esid = castout_ste->dw0.dw0.esid;
castout_ste->dw0.dw0.esid = esid;
castout_ste->dw0.dw0.kp = 1;
asm volatile("eieio" : : : "memory"); /* Order update */
castout_ste->dw0.dw0.v = 1;
asm volatile("slbie %0" : : "r" (old_esid << SID_SHIFT));
/* Ensure completion of slbie */
asm volatile("sync" : : : "memory");
return (global_entry | (castout_entry & 0x7));
}
static inline void __ste_allocate(unsigned long esid, unsigned long vsid)
{
unsigned char stab_entry;
unsigned long *offset;
int region_id = REGION_ID(esid << SID_SHIFT);
stab_entry = make_ste(get_paca()->xStab_data.virt, esid, vsid);
if (region_id != USER_REGION_ID)
return;
offset = &__get_cpu_var(stab_cache_ptr);
if (*offset < NR_STAB_CACHE_ENTRIES) {
__get_cpu_var(stab_cache[*offset]) = stab_entry;
}
(*offset)++;
}
/*
* Allocate a segment table entry for the given ea.
*/
int ste_allocate(unsigned long ea)
{
unsigned long vsid, esid;
mm_context_t context;
/* Check for invalid effective addresses. */
if (!IS_VALID_EA(ea))
return 1;
/* Kernel or user address? */
if (REGION_ID(ea) >= KERNEL_REGION_ID) {
vsid = get_kernel_vsid(ea);
context = REGION_ID(ea);
} else {
if (!current->mm)
return 1;
context = current->mm->context;
vsid = get_vsid(context, ea);
}
esid = GET_ESID(ea);
__ste_allocate(esid, vsid);
/* Order update */
asm volatile("sync":::"memory");
return 0;
}
/*
* preload some userspace segments into the segment table.
*/
static void preload_stab(struct task_struct *tsk, struct mm_struct *mm)
{
unsigned long pc = KSTK_EIP(tsk);
unsigned long stack = KSTK_ESP(tsk);
unsigned long unmapped_base;
unsigned long pc_esid = GET_ESID(pc);
unsigned long stack_esid = GET_ESID(stack);
unsigned long unmapped_base_esid;
unsigned long vsid;
if (test_tsk_thread_flag(tsk, TIF_32BIT))
unmapped_base = TASK_UNMAPPED_BASE_USER32;
else
unmapped_base = TASK_UNMAPPED_BASE_USER64;
unmapped_base_esid = GET_ESID(unmapped_base);
if (!IS_VALID_EA(pc) || (REGION_ID(pc) >= KERNEL_REGION_ID))
return;
vsid = get_vsid(mm->context, pc);
__ste_allocate(pc_esid, vsid);
if (pc_esid == stack_esid)
return;
if (!IS_VALID_EA(stack) || (REGION_ID(stack) >= KERNEL_REGION_ID))
return;
vsid = get_vsid(mm->context, stack);
__ste_allocate(stack_esid, vsid);
if (pc_esid == unmapped_base_esid || stack_esid == unmapped_base_esid)
return;
if (!IS_VALID_EA(unmapped_base) ||
(REGION_ID(unmapped_base) >= KERNEL_REGION_ID))
return;
vsid = get_vsid(mm->context, unmapped_base);
__ste_allocate(unmapped_base_esid, vsid);
/* Order update */
asm volatile("sync" : : : "memory");
}
/* Flush all user entries from the segment table of the current processor. */
void flush_stab(struct task_struct *tsk, struct mm_struct *mm)
{
STE *stab = (STE *) get_paca()->xStab_data.virt;
STE *ste;
unsigned long *offset = &__get_cpu_var(stab_cache_ptr);
/* Force previous translations to complete. DRENG */
asm volatile("isync" : : : "memory");
if (*offset <= NR_STAB_CACHE_ENTRIES) {
int i;
for (i = 0; i < *offset; i++) {
ste = stab + __get_cpu_var(stab_cache[i]);
ste->dw0.dw0.v = 0;
}
asm volatile("sync; slbia; sync":::"memory");
} else {
unsigned long entry;
/* Invalidate all entries. */
ste = stab;
/* Never flush the first entry. */
ste += 1;
for (entry = 1;
entry < (PAGE_SIZE / sizeof(STE));
entry++, ste++) {
unsigned long ea;
ea = ste->dw0.dw0.esid << SID_SHIFT;
if (ea < KERNELBASE) {
ste->dw0.dw0.v = 0;
}
}
asm volatile("sync; slbia; sync":::"memory");
}
*offset = 0;
preload_stab(tsk, mm);
}
/*
* SLB stuff
*/
/*
* Create a segment buffer entry for the given esid/vsid pair.
*
* NOTE: A context syncronising instruction is required before and after
* this, in the common case we use exception entry and rfid.
*/
void make_slbe(unsigned long esid, unsigned long vsid, int large,
int kernel_segment)
{
unsigned long entry, castout_entry;
union {
unsigned long word0;
slb_dword0 data;
} esid_data;
union {
unsigned long word0;
slb_dword1 data;
} vsid_data;
/*
* We take the next entry, round robin. Previously we tried
* to find a free slot first but that took too long. Unfortunately
* we dont have any LRU information to help us choose a slot.
*/
/*
* Never cast out the segment for our kernel stack. Since we
* dont invalidate the ERAT we could have a valid translation
* for the kernel stack during the first part of exception exit
* which gets invalidated due to a tlbie from another cpu at a
* non recoverable point (after setting srr0/1) - Anton
*/
castout_entry = get_paca()->xStab_data.next_round_robin;
do {
entry = castout_entry;
castout_entry++;
if (castout_entry >= naca->slb_size)
castout_entry = 1;
asm volatile("slbmfee %0,%1" : "=r" (esid_data) : "r" (entry));
} while (esid_data.data.v &&
esid_data.data.esid == GET_ESID((unsigned long)_get_SP()));
get_paca()->xStab_data.next_round_robin = castout_entry;
/* slbie not needed as the previous mapping is still valid. */
/*
* Write the new SLB entry.
*/
vsid_data.word0 = 0;
vsid_data.data.vsid = vsid;
vsid_data.data.kp = 1;
if (large)
vsid_data.data.l = 1;
if (kernel_segment)
vsid_data.data.c = 1;
esid_data.word0 = 0;
esid_data.data.esid = esid;
esid_data.data.v = 1;
esid_data.data.index = entry;
/*
* No need for an isync before or after this slbmte. The exception
* we enter with and the rfid we exit with are context synchronizing.
*/
asm volatile("slbmte %0,%1" : : "r" (vsid_data), "r" (esid_data));
}
static inline void __slb_allocate(unsigned long esid, unsigned long vsid,
mm_context_t context)
{
int large = 0;
int region_id = REGION_ID(esid << SID_SHIFT);
unsigned long *offset;
if (cur_cpu_spec->cpu_features & CPU_FTR_16M_PAGE) {
if (region_id == KERNEL_REGION_ID)
large = 1;
else if (region_id == USER_REGION_ID)
large = in_hugepage_area(context, esid << SID_SHIFT);
}
make_slbe(esid, vsid, large, region_id != USER_REGION_ID);
if (region_id != USER_REGION_ID)
return;
offset = &__get_cpu_var(stab_cache_ptr);
if (*offset < NR_STAB_CACHE_ENTRIES) {
__get_cpu_var(stab_cache[*offset]) = esid;
}
(*offset)++;
}
/*
* Allocate a segment table entry for the given ea.
*/
int slb_allocate(unsigned long ea)
{
unsigned long vsid, esid;
mm_context_t context;
/* Check for invalid effective addresses. */
if (unlikely(!IS_VALID_EA(ea)))
return 1;
/* Kernel or user address? */
if (REGION_ID(ea) >= KERNEL_REGION_ID) {
context = REGION_ID(ea);
vsid = get_kernel_vsid(ea);
} else {
if (unlikely(!current->mm))
return 1;
context = current->mm->context;
vsid = get_vsid(context, ea);
}
esid = GET_ESID(ea);
__slb_allocate(esid, vsid, context);
return 0;
}
/*
* preload some userspace segments into the SLB.
*/
static void preload_slb(struct task_struct *tsk, struct mm_struct *mm)
{
unsigned long pc = KSTK_EIP(tsk);
unsigned long stack = KSTK_ESP(tsk);
unsigned long unmapped_base;
unsigned long pc_esid = GET_ESID(pc);
unsigned long stack_esid = GET_ESID(stack);
unsigned long unmapped_base_esid;
unsigned long vsid;
if (test_tsk_thread_flag(tsk, TIF_32BIT))
unmapped_base = TASK_UNMAPPED_BASE_USER32;
else
unmapped_base = TASK_UNMAPPED_BASE_USER64;
unmapped_base_esid = GET_ESID(unmapped_base);
if (!IS_VALID_EA(pc) || (REGION_ID(pc) >= KERNEL_REGION_ID))
return;
vsid = get_vsid(mm->context, pc);
__slb_allocate(pc_esid, vsid, mm->context);
if (pc_esid == stack_esid)
return;
if (!IS_VALID_EA(stack) || (REGION_ID(stack) >= KERNEL_REGION_ID))
return;
vsid = get_vsid(mm->context, stack);
__slb_allocate(stack_esid, vsid, mm->context);
if (pc_esid == unmapped_base_esid || stack_esid == unmapped_base_esid)
return;
if (!IS_VALID_EA(unmapped_base) ||
(REGION_ID(unmapped_base) >= KERNEL_REGION_ID))
return;
vsid = get_vsid(mm->context, unmapped_base);
__slb_allocate(unmapped_base_esid, vsid, mm->context);
}
/* Flush all user entries from the segment table of the current processor. */
void flush_slb(struct task_struct *tsk, struct mm_struct *mm)
{
unsigned long *offset = &__get_cpu_var(stab_cache_ptr);
if (*offset <= NR_STAB_CACHE_ENTRIES) {
int i;
union {
unsigned long word0;
slb_dword0 data;
} esid_data;
asm volatile("isync" : : : "memory");
for (i = 0; i < *offset; i++) {
esid_data.word0 = 0;
esid_data.data.esid = __get_cpu_var(stab_cache[i]);
asm volatile("slbie %0" : : "r" (esid_data));
}
asm volatile("isync" : : : "memory");
} else {
asm volatile("isync; slbia; isync" : : : "memory");
}
*offset = 0;
preload_slb(tsk, mm);
}