/*
*
* Procedures for interfacing to the RTAS on CHRP machines.
*
* Peter Bergner, IBM March 2001.
* Copyright (C) 2001 IBM.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <stdarg.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/spinlock.h>
#include <linux/module.h>
#include <linux/init.h>
#include <asm/prom.h>
#include <asm/rtas.h>
#include <asm/semaphore.h>
#include <asm/machdep.h>
#include <asm/paca.h>
#include <asm/page.h>
#include <asm/param.h>
#include <asm/system.h>
#include <asm/abs_addr.h>
#include <asm/udbg.h>
#include <asm/delay.h>
#include <asm/uaccess.h>
struct flash_block_list_header rtas_firmware_flash_list = {0, 0};
/*
* prom_init() is called very early on, before the kernel text
* and data have been mapped to KERNELBASE. At this point the code
* is running at whatever address it has been loaded at, so
* references to extern and static variables must be relocated
* explicitly. The procedure reloc_offset() returns the address
* we're currently running at minus the address we were linked at.
* (Note that strings count as static variables.)
*
* Because OF may have mapped I/O devices into the area starting at
* KERNELBASE, particularly on CHRP machines, we can't safely call
* OF once the kernel has been mapped to KERNELBASE. Therefore all
* OF calls should be done within prom_init(), and prom_init()
* and all routines called within it must be careful to relocate
* references as necessary.
*
* Note that the bss is cleared *after* prom_init runs, so we have
* to make sure that any static or extern variables it accesses
* are put in the data segment.
*/
struct rtas_t rtas = {
.lock = SPIN_LOCK_UNLOCKED
};
char rtas_err_buf[RTAS_ERROR_LOG_MAX];
extern unsigned long reloc_offset(void);
spinlock_t rtas_data_buf_lock = SPIN_LOCK_UNLOCKED;
char rtas_data_buf[RTAS_DATA_BUF_SIZE]__page_aligned;
void
phys_call_rtas(int token, int nargs, int nret, ...)
{
va_list list;
unsigned long offset = reloc_offset();
struct rtas_args *rtas = PTRRELOC(&(get_paca()->xRtas));
int i;
rtas->token = token;
rtas->nargs = nargs;
rtas->nret = nret;
rtas->rets = (rtas_arg_t *)PTRRELOC(&(rtas->args[nargs]));
va_start(list, nret);
for (i = 0; i < nargs; i++)
rtas->args[i] = (rtas_arg_t)LONG_LSW(va_arg(list, ulong));
va_end(list);
enter_rtas(rtas);
}
void
phys_call_rtas_display_status(char c)
{
unsigned long offset = reloc_offset();
struct rtas_args *rtas = PTRRELOC(&(get_paca()->xRtas));
rtas->token = 10;
rtas->nargs = 1;
rtas->nret = 1;
rtas->rets = (rtas_arg_t *)PTRRELOC(&(rtas->args[1]));
rtas->args[0] = (int)c;
enter_rtas(rtas);
}
void
call_rtas_display_status(char c)
{
struct rtas_args *rtas = &(get_paca()->xRtas);
rtas->token = 10;
rtas->nargs = 1;
rtas->nret = 1;
rtas->rets = (rtas_arg_t *)&(rtas->args[1]);
rtas->args[0] = (int)c;
enter_rtas((void *)__pa((unsigned long)rtas));
}
int
rtas_token(const char *service)
{
int *tokp;
if (rtas.dev == NULL) {
PPCDBG(PPCDBG_RTAS,"\tNo rtas device in device-tree...\n");
return RTAS_UNKNOWN_SERVICE;
}
tokp = (int *) get_property(rtas.dev, service, NULL);
return tokp ? *tokp : RTAS_UNKNOWN_SERVICE;
}
void
log_rtas_error(struct rtas_args *rtas_args)
{
struct rtas_args err_args, temp_args;
err_args.token = rtas_token("rtas-last-error");
err_args.nargs = 2;
err_args.nret = 1;
err_args.rets = (rtas_arg_t *)&(err_args.args[2]);
err_args.args[0] = (rtas_arg_t)__pa(rtas_err_buf);
err_args.args[1] = RTAS_ERROR_LOG_MAX;
err_args.args[2] = 0;
temp_args = *rtas_args;
get_paca()->xRtas = err_args;
PPCDBG(PPCDBG_RTAS, "\tentering rtas with 0x%lx\n",
(void *)__pa((unsigned long)&err_args));
enter_rtas((void *)__pa((unsigned long)&get_paca()->xRtas));
PPCDBG(PPCDBG_RTAS, "\treturned from rtas ...\n");
err_args = get_paca()->xRtas;
get_paca()->xRtas = temp_args;
if (err_args.rets[0] == 0)
log_error(rtas_err_buf, ERR_TYPE_RTAS_LOG, 0);
}
long
rtas_call(int token, int nargs, int nret,
unsigned long *outputs, ...)
{
va_list list;
int i;
unsigned long s;
struct rtas_args *rtas_args = &(get_paca()->xRtas);
PPCDBG(PPCDBG_RTAS, "Entering rtas_call\n");
PPCDBG(PPCDBG_RTAS, "\ttoken = 0x%x\n", token);
PPCDBG(PPCDBG_RTAS, "\tnargs = %d\n", nargs);
PPCDBG(PPCDBG_RTAS, "\tnret = %d\n", nret);
PPCDBG(PPCDBG_RTAS, "\t&outputs = 0x%lx\n", outputs);
if (token == RTAS_UNKNOWN_SERVICE)
return -1;
rtas_args->token = token;
rtas_args->nargs = nargs;
rtas_args->nret = nret;
rtas_args->rets = (rtas_arg_t *)&(rtas_args->args[nargs]);
va_start(list, outputs);
for (i = 0; i < nargs; ++i) {
rtas_args->args[i] = (rtas_arg_t)LONG_LSW(va_arg(list, ulong));
PPCDBG(PPCDBG_RTAS, "\tnarg[%d] = 0x%lx\n", i, rtas_args->args[i]);
}
va_end(list);
for (i = 0; i < nret; ++i)
rtas_args->rets[i] = 0;
#if 0 /* Gotta do something different here, use global lock for now... */
spin_lock_irqsave(&rtas_args->lock, s);
#else
spin_lock_irqsave(&rtas.lock, s);
#endif
PPCDBG(PPCDBG_RTAS, "\tentering rtas with 0x%lx\n",
(void *)__pa((unsigned long)rtas_args));
enter_rtas((void *)__pa((unsigned long)rtas_args));
PPCDBG(PPCDBG_RTAS, "\treturned from rtas ...\n");
if (rtas_args->rets[0] == -1)
log_rtas_error(rtas_args);
#if 0 /* Gotta do something different here, use global lock for now... */
spin_unlock_irqrestore(&rtas_args->lock, s);
#else
spin_unlock_irqrestore(&rtas.lock, s);
#endif
ifppcdebug(PPCDBG_RTAS) {
for(i=0; i < nret ;i++)
udbg_printf("\tnret[%d] = 0x%lx\n", i, (ulong)rtas_args->rets[i]);
}
if (nret > 1 && outputs != NULL)
for (i = 0; i < nret-1; ++i)
outputs[i] = rtas_args->rets[i+1];
return (ulong)((nret > 0) ? rtas_args->rets[0] : 0);
}
/* Given an RTAS status code of 990n compute the hinted delay of 10^n
* (last digit) milliseconds. For now we bound at n=5 (100 sec).
*/
unsigned int
rtas_extended_busy_delay_time(int status)
{
int order = status - 9900;
unsigned long ms;
if (order < 0)
order = 0; /* RTC depends on this for -2 clock busy */
else if (order > 5)
order = 5; /* bound */
/* Use microseconds for reasonable accuracy */
for (ms=1; order > 0; order--)
ms *= 10;
return ms;
}
int
rtas_get_power_level(int powerdomain, int *level)
{
int token = rtas_token("get-power-level");
long powerlevel;
int rc;
if (token == RTAS_UNKNOWN_SERVICE)
return RTAS_UNKNOWN_OP;
while(1) {
rc = (int) rtas_call(token, 1, 2, &powerlevel, powerdomain);
if (rc == RTAS_BUSY)
udelay(1);
else
break;
}
*level = (int) powerlevel;
return rc;
}
int
rtas_set_power_level(int powerdomain, int level, int *setlevel)
{
int token = rtas_token("set-power-level");
unsigned int wait_time;
long returned_level;
int rc;
if (token == RTAS_UNKNOWN_SERVICE)
return RTAS_UNKNOWN_OP;
while (1) {
rc = (int) rtas_call(token, 2, 2, &returned_level, powerdomain,
level);
if (rc == RTAS_BUSY)
udelay(1);
else if (rtas_is_extended_busy(rc)) {
wait_time = rtas_extended_busy_delay_time(rc);
udelay(wait_time * 1000);
}
else
break;
}
*setlevel = (int) returned_level;
return rc;
}
int
rtas_get_sensor(int sensor, int index, int *state)
{
int token = rtas_token("get-sensor-state");
unsigned int wait_time;
long returned_state;
int rc;
if (token == RTAS_UNKNOWN_SERVICE)
return RTAS_UNKNOWN_OP;
while (1) {
rc = (int) rtas_call(token, 2, 2, &returned_state, sensor,
index);
if (rc == RTAS_BUSY)
udelay(1);
else if (rtas_is_extended_busy(rc)) {
wait_time = rtas_extended_busy_delay_time(rc);
udelay(wait_time * 1000);
}
else
break;
}
*state = (int) returned_state;
return rc;
}
int
rtas_set_indicator(int indicator, int index, int new_value)
{
int token = rtas_token("set-indicator");
unsigned int wait_time;
int rc;
if (token == RTAS_UNKNOWN_SERVICE)
return RTAS_UNKNOWN_OP;
while (1) {
rc = (int) rtas_call(token, 3, 1, NULL, indicator, index,
new_value);
if (rc == RTAS_BUSY)
udelay(1);
else if (rtas_is_extended_busy(rc)) {
wait_time = rtas_extended_busy_delay_time(rc);
udelay(wait_time * 1000);
}
else
break;
}
return rc;
}
#define FLASH_BLOCK_LIST_VERSION (1UL)
static void
rtas_flash_firmware(void)
{
unsigned long image_size;
struct flash_block_list *f, *next, *flist;
unsigned long rtas_block_list;
int i, status, update_token;
update_token = rtas_token("ibm,update-flash-64-and-reboot");
if (update_token == RTAS_UNKNOWN_SERVICE) {
printk(KERN_ALERT "FLASH: ibm,update-flash-64-and-reboot is not available -- not a service partition?\n");
printk(KERN_ALERT "FLASH: firmware will not be flashed\n");
return;
}
/* NOTE: the "first" block list is a global var with no data
* blocks in the kernel data segment. We do this because
* we want to ensure this block_list addr is under 4GB.
*/
rtas_firmware_flash_list.num_blocks = 0;
flist = (struct flash_block_list *)&rtas_firmware_flash_list;
rtas_block_list = virt_to_abs(flist);
if (rtas_block_list >= (4UL << 20)) {
printk(KERN_ALERT "FLASH: kernel bug...flash list header addr above 4GB\n");
return;
}
printk(KERN_ALERT "FLASH: preparing saved firmware image for flash\n");
/* Update the block_list in place. */
image_size = 0;
for (f = flist; f; f = next) {
/* Translate data addrs to absolute */
for (i = 0; i < f->num_blocks; i++) {
f->blocks[i].data = (char *)virt_to_abs(f->blocks[i].data);
image_size += f->blocks[i].length;
}
next = f->next;
/* Don't translate NULL pointer for last entry */
if (f->next)
f->next = (struct flash_block_list *)virt_to_abs(f->next);
else
f->next = 0LL;
/* make num_blocks into the version/length field */
f->num_blocks = (FLASH_BLOCK_LIST_VERSION << 56) | ((f->num_blocks+1)*16);
}
printk(KERN_ALERT "FLASH: flash image is %ld bytes\n", image_size);
printk(KERN_ALERT "FLASH: performing flash and reboot\n");
ppc_md.progress("Flashing \n", 0x0);
ppc_md.progress("Please Wait... ", 0x0);
printk(KERN_ALERT "FLASH: this will take several minutes. Do not power off!\n");
status = rtas_call(update_token, 1, 1, NULL, rtas_block_list);
switch (status) { /* should only get "bad" status */
case 0:
printk(KERN_ALERT "FLASH: success\n");
break;
case -1:
printk(KERN_ALERT "FLASH: hardware error. Firmware may not be not flashed\n");
break;
case -3:
printk(KERN_ALERT "FLASH: image is corrupt or not correct for this platform. Firmware not flashed\n");
break;
case -4:
printk(KERN_ALERT "FLASH: flash failed when partially complete. System may not reboot\n");
break;
default:
printk(KERN_ALERT "FLASH: unknown flash return code %d\n", status);
break;
}
}
void rtas_flash_bypass_warning(void)
{
printk(KERN_ALERT "FLASH: firmware flash requires a reboot\n");
printk(KERN_ALERT "FLASH: the firmware image will NOT be flashed\n");
}
void
rtas_restart(char *cmd)
{
if (rtas_firmware_flash_list.next)
rtas_flash_firmware();
printk("RTAS system-reboot returned %ld\n",
rtas_call(rtas_token("system-reboot"), 0, 1, NULL));
for (;;);
}
void
rtas_power_off(void)
{
if (rtas_firmware_flash_list.next)
rtas_flash_bypass_warning();
/* allow power on only with power button press */
printk("RTAS power-off returned %ld\n",
rtas_call(rtas_token("power-off"), 2, 1, NULL,0xffffffff,0xffffffff));
for (;;);
}
void
rtas_halt(void)
{
if (rtas_firmware_flash_list.next)
rtas_flash_bypass_warning();
rtas_power_off();
}
unsigned long rtas_rmo_buf = 0;
asmlinkage int ppc_rtas(struct rtas_args __user *uargs)
{
struct rtas_args args;
unsigned long flags;
int nargs;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0)
return -EFAULT;
nargs = args.nargs;
if (nargs > ARRAY_SIZE(args.args)
|| args.nret > ARRAY_SIZE(args.args)
|| nargs + args.nret > ARRAY_SIZE(args.args))
return -EINVAL;
/* Copy in args. */
if (copy_from_user(args.args, uargs->args,
nargs * sizeof(rtas_arg_t)) != 0)
return -EFAULT;
spin_lock_irqsave(&rtas.lock, flags);
get_paca()->xRtas = args;
enter_rtas((void *)__pa((unsigned long)&get_paca()->xRtas));
args = get_paca()->xRtas;
args.rets = (rtas_arg_t *)&(args.args[nargs]);
if (args.rets[0] == -1)
log_rtas_error(&args);
spin_unlock_irqrestore(&rtas.lock, flags);
/* Copy out args. */
if (copy_to_user(uargs->args + nargs,
args.args + nargs,
args.nret * sizeof(rtas_arg_t)) != 0)
return -EFAULT;
return 0;
}
EXPORT_SYMBOL(rtas_firmware_flash_list);
EXPORT_SYMBOL(rtas_token);
EXPORT_SYMBOL(rtas_call);
EXPORT_SYMBOL(rtas_data_buf);
EXPORT_SYMBOL(rtas_data_buf_lock);
EXPORT_SYMBOL(rtas_extended_busy_delay_time);
EXPORT_SYMBOL(rtas_get_sensor);
EXPORT_SYMBOL(rtas_get_power_level);
EXPORT_SYMBOL(rtas_set_power_level);
EXPORT_SYMBOL(rtas_set_indicator);