/*
*
*
* Procedures for interfacing to Open Firmware.
*
* Paul Mackerras August 1996.
* Copyright (C) 1996 Paul Mackerras.
*
* Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
* {engebret|bergner}@us.ibm.com
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#if 0
#define DEBUG_PROM
#endif
#include <stdarg.h>
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/version.h>
#include <linux/threads.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <asm/prom.h>
#include <asm/rtas.h>
#include <asm/lmb.h>
#include <asm/abs_addr.h>
#include <asm/page.h>
#include <asm/processor.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/smp.h>
#include <asm/system.h>
#include <asm/mmu.h>
#include <asm/pgtable.h>
#include <asm/bitops.h>
#include <asm/naca.h>
#include <asm/pci.h>
#include <asm/bootinfo.h>
#include <asm/ppcdebug.h>
#include "open_pic.h"
#ifdef CONFIG_LOGO_LINUX_CLUT224
#include <linux/linux_logo.h>
extern const struct linux_logo logo_linux_clut224;
#endif
/*
* prom_init() is called very early on, before the kernel text
* and data have been mapped to KERNELBASE. At this point the code
* is running at whatever address it has been loaded at, so
* references to extern and static variables must be relocated
* explicitly. The procedure reloc_offset() returns the address
* we're currently running at minus the address we were linked at.
* (Note that strings count as static variables.)
*
* Because OF may have mapped I/O devices into the area starting at
* KERNELBASE, particularly on CHRP machines, we can't safely call
* OF once the kernel has been mapped to KERNELBASE. Therefore all
* OF calls should be done within prom_init(), and prom_init()
* and all routines called within it must be careful to relocate
* references as necessary.
*
* Note that the bss is cleared *after* prom_init runs, so we have
* to make sure that any static or extern variables it accesses
* are put in the data segment.
*/
#define PROM_BUG() do { \
prom_print(RELOC("kernel BUG at ")); \
prom_print(RELOC(__FILE__)); \
prom_print(RELOC(":")); \
prom_print_hex(__LINE__); \
prom_print(RELOC("!\n")); \
__asm__ __volatile__(".long " BUG_ILLEGAL_INSTR); \
} while (0)
struct pci_reg_property {
struct pci_address addr;
u32 size_hi;
u32 size_lo;
};
struct isa_reg_property {
u32 space;
u32 address;
u32 size;
};
struct pci_intr_map {
struct pci_address addr;
u32 dunno;
phandle int_ctrler;
u32 intr;
};
typedef unsigned long interpret_func(struct device_node *, unsigned long,
int, int);
static interpret_func interpret_pci_props;
static interpret_func interpret_isa_props;
static interpret_func interpret_root_props;
#ifndef FB_MAX /* avoid pulling in all of the fb stuff */
#define FB_MAX 8
#endif
struct prom_t prom = {
0, /* entry */
0, /* chosen */
0, /* cpu */
0, /* stdout */
0, /* disp_node */
{0,0,0,{0},NULL}, /* args */
0, /* version */
32, /* encode_phys_size */
0 /* bi_rec pointer */
};
char *prom_display_paths[FB_MAX] __initdata = { 0, };
unsigned int prom_num_displays = 0;
char *of_stdout_device = 0;
extern struct rtas_t rtas;
extern unsigned long klimit;
extern unsigned long embedded_sysmap_end;
extern struct lmb lmb;
#define MAX_PHB 16 * 3 // 16 Towers * 3 PHBs/tower
struct _of_tce_table of_tce_table[MAX_PHB + 1] = {{0, 0, 0}};
char *bootpath = 0;
char *bootdevice = 0;
int boot_cpuid = 0;
struct device_node *allnodes = 0;
#define UNDEFINED_IRQ 0xffff
unsigned short real_irq_to_virt_map[NR_HW_IRQS];
unsigned short virt_irq_to_real_map[NR_IRQS];
int last_virt_irq = 2; /* index of last virt_irq. Skip through IPI */
static unsigned long call_prom(const char *service, int nargs, int nret, ...);
static void prom_exit(void);
static unsigned long copy_device_tree(unsigned long);
static unsigned long inspect_node(phandle, struct device_node *, unsigned long,
unsigned long, struct device_node ***);
static unsigned long finish_node(struct device_node *, unsigned long,
interpret_func *, int, int);
static unsigned long finish_node_interrupts(struct device_node *, unsigned long);
static unsigned long check_display(unsigned long);
static int prom_next_node(phandle *);
static struct bi_record * prom_bi_rec_verify(struct bi_record *);
static unsigned long prom_bi_rec_reserve(unsigned long);
static struct device_node *find_phandle(phandle);
#ifdef DEBUG_PROM
void prom_dump_lmb(void);
#endif
extern unsigned long reloc_offset(void);
extern void enter_prom(void *dummy,...);
extern char cmd_line[512]; /* XXX */
unsigned long dev_tree_size;
#ifdef CONFIG_HMT
struct {
unsigned int pir;
unsigned int threadid;
} hmt_thread_data[NR_CPUS] = {0};
#endif /* CONFIG_HMT */
char testString[] = "LINUX\n";
/* This is the one and *ONLY* place where we actually call open
* firmware from, since we need to make sure we're running in 32b
* mode when we do. We switch back to 64b mode upon return.
*/
static unsigned long __init
call_prom(const char *service, int nargs, int nret, ...)
{
int i;
unsigned long offset = reloc_offset();
struct prom_t *_prom = PTRRELOC(&prom);
va_list list;
_prom->args.service = (u32)LONG_LSW(service);
_prom->args.nargs = nargs;
_prom->args.nret = nret;
_prom->args.rets = (prom_arg_t *)&(_prom->args.args[nargs]);
va_start(list, nret);
for (i=0; i < nargs ;i++)
_prom->args.args[i] = (prom_arg_t)LONG_LSW(va_arg(list, unsigned long));
va_end(list);
for (i=0; i < nret ;i++)
_prom->args.rets[i] = 0;
enter_prom(&_prom->args);
return (unsigned long)((nret > 0) ? _prom->args.rets[0] : 0);
}
static void __init
prom_exit()
{
unsigned long offset = reloc_offset();
call_prom(RELOC("exit"), 0, 0);
for (;;) /* should never get here */
;
}
void __init
prom_enter(void)
{
unsigned long offset = reloc_offset();
call_prom(RELOC("enter"), 0, 0);
}
void __init
prom_print(const char *msg)
{
const char *p, *q;
unsigned long offset = reloc_offset();
struct prom_t *_prom = PTRRELOC(&prom);
if (_prom->stdout == 0)
return;
for (p = msg; *p != 0; p = q) {
for (q = p; *q != 0 && *q != '\n'; ++q)
;
if (q > p)
call_prom(RELOC("write"), 3, 1, _prom->stdout,
p, q - p);
if (*q != 0) {
++q;
call_prom(RELOC("write"), 3, 1, _prom->stdout,
RELOC("\r\n"), 2);
}
}
}
void
prom_print_hex(unsigned long val)
{
int i, nibbles = sizeof(val)*2;
char buf[sizeof(val)*2+1];
for (i = nibbles-1; i >= 0; i--) {
buf[i] = (val & 0xf) + '0';
if (buf[i] > '9')
buf[i] += ('a'-'0'-10);
val >>= 4;
}
buf[nibbles] = '\0';
prom_print(buf);
}
void
prom_print_nl(void)
{
unsigned long offset = reloc_offset();
prom_print(RELOC("\n"));
}
static unsigned long
prom_initialize_naca(unsigned long mem)
{
phandle node;
char type[64];
unsigned long num_cpus = 0;
unsigned long offset = reloc_offset();
struct prom_t *_prom = PTRRELOC(&prom);
struct naca_struct *_naca = RELOC(naca);
struct systemcfg *_systemcfg = RELOC(systemcfg);
/* NOTE: _naca->debug_switch is already initialized. */
#ifdef DEBUG_PROM
prom_print(RELOC("prom_initialize_naca: start...\n"));
#endif
_naca->pftSize = 0; /* ilog2 of htab size. computed below. */
for (node = 0; prom_next_node(&node); ) {
type[0] = 0;
call_prom(RELOC("getprop"), 4, 1, node, RELOC("device_type"),
type, sizeof(type));
if (!strcmp(type, RELOC("cpu"))) {
num_cpus += 1;
/* We're assuming *all* of the CPUs have the same
* d-cache and i-cache sizes... -Peter
*/
if ( num_cpus == 1 ) {
u32 size, lsize;
call_prom(RELOC("getprop"), 4, 1, node,
RELOC("d-cache-size"),
&size, sizeof(size));
call_prom(RELOC("getprop"), 4, 1, node,
RELOC("d-cache-line-size"),
&lsize, sizeof(lsize));
_systemcfg->dCacheL1Size = size;
_systemcfg->dCacheL1LineSize = lsize;
_naca->dCacheL1LogLineSize = __ilog2(lsize);
_naca->dCacheL1LinesPerPage = PAGE_SIZE/lsize;
call_prom(RELOC("getprop"), 4, 1, node,
RELOC("i-cache-size"),
&size, sizeof(size));
call_prom(RELOC("getprop"), 4, 1, node,
RELOC("i-cache-line-size"),
&lsize, sizeof(lsize));
_systemcfg->iCacheL1Size = size;
_systemcfg->iCacheL1LineSize = lsize;
_naca->iCacheL1LogLineSize = __ilog2(lsize);
_naca->iCacheL1LinesPerPage = PAGE_SIZE/lsize;
if (_systemcfg->platform == PLATFORM_PSERIES_LPAR) {
u32 pft_size[2];
call_prom(RELOC("getprop"), 4, 1, node,
RELOC("ibm,pft-size"),
&pft_size, sizeof(pft_size));
/* pft_size[0] is the NUMA CEC cookie */
_naca->pftSize = pft_size[1];
}
}
} else if (!strcmp(type, RELOC("serial"))) {
phandle isa, pci;
struct isa_reg_property reg;
union pci_range ranges;
type[0] = 0;
call_prom(RELOC("getprop"), 4, 1, node,
RELOC("ibm,aix-loc"), type, sizeof(type));
if (strcmp(type, RELOC("S1")))
continue;
call_prom(RELOC("getprop"), 4, 1, node, RELOC("reg"),
®, sizeof(reg));
isa = call_prom(RELOC("parent"), 1, 1, node);
if (!isa)
PROM_BUG();
pci = call_prom(RELOC("parent"), 1, 1, isa);
if (!pci)
PROM_BUG();
call_prom(RELOC("getprop"), 4, 1, pci, RELOC("ranges"),
&ranges, sizeof(ranges));
if ( _prom->encode_phys_size == 32 )
_naca->serialPortAddr = ranges.pci32.phys+reg.address;
else {
_naca->serialPortAddr =
((((unsigned long)ranges.pci64.phys_hi) << 32) |
(ranges.pci64.phys_lo)) + reg.address;
}
}
}
_naca->interrupt_controller = IC_INVALID;
for (node = 0; prom_next_node(&node); ) {
type[0] = 0;
call_prom(RELOC("getprop"), 4, 1, node, RELOC("name"),
type, sizeof(type));
if (strcmp(type, RELOC("interrupt-controller"))) {
continue;
}
call_prom(RELOC("getprop"), 4, 1, node, RELOC("compatible"),
type, sizeof(type));
if (strstr(type, RELOC("open-pic"))) {
_naca->interrupt_controller = IC_OPEN_PIC;
} else if (strstr(type, RELOC("ppc-xicp"))) {
_naca->interrupt_controller = IC_PPC_XIC;
} else {
prom_print(RELOC("prom: failed to recognize interrupt-controller\n"));
}
break;
}
if (_naca->interrupt_controller == IC_INVALID) {
prom_print(RELOC("prom: failed to find interrupt-controller\n"));
PROM_BUG();
}
/* We gotta have at least 1 cpu... */
if ( (_systemcfg->processorCount = num_cpus) < 1 )
PROM_BUG();
_systemcfg->physicalMemorySize = lmb_phys_mem_size();
if (_systemcfg->platform == PLATFORM_PSERIES) {
unsigned long rnd_mem_size, pteg_count;
/* round mem_size up to next power of 2 */
rnd_mem_size = 1UL << __ilog2(_systemcfg->physicalMemorySize);
if (rnd_mem_size < _systemcfg->physicalMemorySize)
rnd_mem_size <<= 1;
/* # pages / 2 */
pteg_count = (rnd_mem_size >> (12 + 1));
_naca->pftSize = __ilog2(pteg_count << 7);
}
if (_naca->pftSize == 0) {
prom_print(RELOC("prom: failed to compute pftSize!\n"));
PROM_BUG();
}
/*
* Hardcode to GP size. I am not sure where to get this info
* in general, as there does not appear to be a slb-size OF
* entry. At least in Condor and earlier. DRENG
*/
_naca->slb_size = 64;
/* Add an eye catcher and the systemcfg layout version number */
strcpy(_systemcfg->eye_catcher, RELOC("SYSTEMCFG:PPC64"));
_systemcfg->version.major = SYSTEMCFG_MAJOR;
_systemcfg->version.minor = SYSTEMCFG_MINOR;
_systemcfg->processor = _get_PVR();
#ifdef DEBUG_PROM
prom_print(RELOC("systemcfg->processorCount = 0x"));
prom_print_hex(_systemcfg->processorCount);
prom_print_nl();
prom_print(RELOC("systemcfg->physicalMemorySize = 0x"));
prom_print_hex(_systemcfg->physicalMemorySize);
prom_print_nl();
prom_print(RELOC("naca->pftSize = 0x"));
prom_print_hex(_naca->pftSize);
prom_print_nl();
prom_print(RELOC("systemcfg->dCacheL1LineSize = 0x"));
prom_print_hex(_systemcfg->dCacheL1LineSize);
prom_print_nl();
prom_print(RELOC("systemcfg->iCacheL1LineSize = 0x"));
prom_print_hex(_systemcfg->iCacheL1LineSize);
prom_print_nl();
prom_print(RELOC("naca->serialPortAddr = 0x"));
prom_print_hex(_naca->serialPortAddr);
prom_print_nl();
prom_print(RELOC("naca->interrupt_controller = 0x"));
prom_print_hex(_naca->interrupt_controller);
prom_print_nl();
prom_print(RELOC("systemcfg->platform = 0x"));
prom_print_hex(_systemcfg->platform);
prom_print_nl();
prom_print(RELOC("prom_initialize_naca: end...\n"));
#endif
return mem;
}
static unsigned long __init
prom_initialize_lmb(unsigned long mem)
{
phandle node;
char type[64];
unsigned long i, offset = reloc_offset();
struct prom_t *_prom = PTRRELOC(&prom);
union lmb_reg_property reg;
unsigned long lmb_base, lmb_size;
unsigned long num_regs, bytes_per_reg = (_prom->encode_phys_size*2)/8;
lmb_init();
for (node = 0; prom_next_node(&node); ) {
type[0] = 0;
call_prom(RELOC("getprop"), 4, 1, node, RELOC("device_type"),
type, sizeof(type));
if (strcmp(type, RELOC("memory")))
continue;
num_regs = call_prom(RELOC("getprop"), 4, 1, node, RELOC("reg"),
®, sizeof(reg)) / bytes_per_reg;
for (i=0; i < num_regs ;i++) {
if (_prom->encode_phys_size == 32) {
lmb_base = reg.addr32[i].address;
lmb_size = reg.addr32[i].size;
} else {
lmb_base = reg.addr64[i].address;
lmb_size = reg.addr64[i].size;
}
if ( lmb_add(lmb_base, lmb_size) < 0 )
prom_print(RELOC("Too many LMB's, discarding this one...\n"));
}
}
lmb_analyze();
#ifdef DEBUG_PROM
prom_dump_lmb();
#endif /* DEBUG_PROM */
return mem;
}
static char hypertas_funcs[1024];
static void __init
prom_instantiate_rtas(void)
{
unsigned long offset = reloc_offset();
struct prom_t *_prom = PTRRELOC(&prom);
struct rtas_t *_rtas = PTRRELOC(&rtas);
struct systemcfg *_systemcfg = RELOC(systemcfg);
ihandle prom_rtas;
u32 getprop_rval;
#ifdef DEBUG_PROM
prom_print(RELOC("prom_instantiate_rtas: start...\n"));
#endif
prom_rtas = (ihandle)call_prom(RELOC("finddevice"), 1, 1, RELOC("/rtas"));
if (prom_rtas != (ihandle) -1) {
int rc;
if ((rc = call_prom(RELOC("getprop"),
4, 1, prom_rtas,
RELOC("ibm,hypertas-functions"),
hypertas_funcs,
sizeof(hypertas_funcs))) > 0) {
_systemcfg->platform = PLATFORM_PSERIES_LPAR;
}
call_prom(RELOC("getprop"),
4, 1, prom_rtas,
RELOC("rtas-size"),
&getprop_rval,
sizeof(getprop_rval));
_rtas->size = getprop_rval;
prom_print(RELOC("instantiating rtas"));
if (_rtas->size != 0) {
unsigned long rtas_region = RTAS_INSTANTIATE_MAX;
/* Grab some space within the first RTAS_INSTANTIATE_MAX bytes
* of physical memory (or within the RMO region) because RTAS
* runs in 32-bit mode and relocate off.
*/
if ( _systemcfg->platform == PLATFORM_PSERIES_LPAR ) {
struct lmb *_lmb = PTRRELOC(&lmb);
rtas_region = min(_lmb->rmo_size, RTAS_INSTANTIATE_MAX);
}
_rtas->base = lmb_alloc_base(_rtas->size, PAGE_SIZE, rtas_region);
prom_print(RELOC(" at 0x"));
prom_print_hex(_rtas->base);
prom_rtas = (ihandle)call_prom(RELOC("open"),
1, 1, RELOC("/rtas"));
prom_print(RELOC("..."));
if ((long)call_prom(RELOC("call-method"), 3, 2,
RELOC("instantiate-rtas"),
prom_rtas,
_rtas->base) >= 0) {
_rtas->entry = (long)_prom->args.rets[1];
}
}
if (_rtas->entry <= 0) {
prom_print(RELOC(" failed\n"));
} else {
prom_print(RELOC(" done\n"));
}
#ifdef DEBUG_PROM
prom_print(RELOC("rtas->base = 0x"));
prom_print_hex(_rtas->base);
prom_print_nl();
prom_print(RELOC("rtas->entry = 0x"));
prom_print_hex(_rtas->entry);
prom_print_nl();
prom_print(RELOC("rtas->size = 0x"));
prom_print_hex(_rtas->size);
prom_print_nl();
#endif
}
#ifdef DEBUG_PROM
prom_print(RELOC("prom_instantiate_rtas: end...\n"));
#endif
}
unsigned long prom_strtoul(const char *cp)
{
unsigned long result = 0,value;
while (*cp) {
value = *cp-'0';
result = result*10 + value;
cp++;
}
return result;
}
#ifdef DEBUG_PROM
void
prom_dump_lmb(void)
{
unsigned long i;
unsigned long offset = reloc_offset();
struct lmb *_lmb = PTRRELOC(&lmb);
prom_print(RELOC("\nprom_dump_lmb:\n"));
prom_print(RELOC(" memory.cnt = 0x"));
prom_print_hex(_lmb->memory.cnt);
prom_print_nl();
prom_print(RELOC(" memory.size = 0x"));
prom_print_hex(_lmb->memory.size);
prom_print_nl();
prom_print(RELOC(" memory.lcd_size = 0x"));
prom_print_hex(_lmb->memory.lcd_size);
prom_print_nl();
for (i=0; i < _lmb->memory.cnt ;i++) {
prom_print(RELOC(" memory.region[0x"));
prom_print_hex(i);
prom_print(RELOC("].base = 0x"));
prom_print_hex(_lmb->memory.region[i].base);
prom_print_nl();
prom_print(RELOC(" .physbase = 0x"));
prom_print_hex(_lmb->memory.region[i].physbase);
prom_print_nl();
prom_print(RELOC(" .size = 0x"));
prom_print_hex(_lmb->memory.region[i].size);
prom_print_nl();
prom_print(RELOC(" .type = 0x"));
prom_print_hex(_lmb->memory.region[i].type);
prom_print_nl();
}
prom_print_nl();
prom_print(RELOC(" reserved.cnt = 0x"));
prom_print_hex(_lmb->reserved.cnt);
prom_print_nl();
prom_print(RELOC(" reserved.size = 0x"));
prom_print_hex(_lmb->reserved.size);
prom_print_nl();
prom_print(RELOC(" reserved.lcd_size = 0x"));
prom_print_hex(_lmb->reserved.lcd_size);
prom_print_nl();
for (i=0; i < _lmb->reserved.cnt ;i++) {
prom_print(RELOC(" reserved.region[0x"));
prom_print_hex(i);
prom_print(RELOC("].base = 0x"));
prom_print_hex(_lmb->reserved.region[i].base);
prom_print_nl();
prom_print(RELOC(" .physbase = 0x"));
prom_print_hex(_lmb->reserved.region[i].physbase);
prom_print_nl();
prom_print(RELOC(" .size = 0x"));
prom_print_hex(_lmb->reserved.region[i].size);
prom_print_nl();
prom_print(RELOC(" .type = 0x"));
prom_print_hex(_lmb->reserved.region[i].type);
prom_print_nl();
}
}
#endif /* DEBUG_PROM */
void
prom_initialize_tce_table(void)
{
phandle node;
ihandle phb_node;
unsigned long offset = reloc_offset();
char compatible[64], path[64], type[64], model[64];
unsigned long i, table = 0;
unsigned long base, vbase, align;
unsigned int minalign, minsize;
struct _of_tce_table *prom_tce_table = RELOC(of_tce_table);
unsigned long tce_entry, *tce_entryp;
#ifdef DEBUG_PROM
prom_print(RELOC("starting prom_initialize_tce_table\n"));
#endif
/* Search all nodes looking for PHBs. */
for (node = 0; prom_next_node(&node); ) {
compatible[0] = 0;
type[0] = 0;
model[0] = 0;
call_prom(RELOC("getprop"), 4, 1, node, RELOC("compatible"),
compatible, sizeof(compatible));
call_prom(RELOC("getprop"), 4, 1, node, RELOC("device_type"),
type, sizeof(type));
call_prom(RELOC("getprop"), 4, 1, node, RELOC("model"),
model, sizeof(model));
/* Keep the old logic in tack to avoid regression. */
if (compatible[0] != 0) {
if((strstr(compatible, RELOC("python")) == NULL) &&
(strstr(compatible, RELOC("Speedwagon")) == NULL) &&
(strstr(compatible, RELOC("Winnipeg")) == NULL))
continue;
} else if (model[0] != 0) {
if ((strstr(model, RELOC("ython")) == NULL) &&
(strstr(model, RELOC("peedwagon")) == NULL) &&
(strstr(model, RELOC("innipeg")) == NULL))
continue;
}
if ((type[0] == 0) || (strstr(type, RELOC("pci")) == NULL)) {
continue;
}
if (call_prom(RELOC("getprop"), 4, 1, node,
RELOC("tce-table-minalign"), &minalign,
sizeof(minalign)) < 0) {
minalign = 0;
}
if (call_prom(RELOC("getprop"), 4, 1, node,
RELOC("tce-table-minsize"), &minsize,
sizeof(minsize)) < 0) {
minsize = 4UL << 20;
}
/* Even though we read what OF wants, we just set the table
* size to 4 MB. This is enough to map 2GB of PCI DMA space.
* By doing this, we avoid the pitfalls of trying to DMA to
* MMIO space and the DMA alias hole.
*/
/*
* On POWER4, firmware sets the TCE region by assuming
* each TCE table is 8MB. Using this memory for anything
* else will impact performance, so we always allocate 8MB.
* Anton
*
* XXX FIXME use a cpu feature here
*/
minsize = 8UL << 20;
/* Align to the greater of the align or size */
align = max(minalign, minsize);
/* Carve out storage for the TCE table. */
base = lmb_alloc(minsize, align);
if ( !base ) {
prom_print(RELOC("ERROR, cannot find space for TCE table.\n"));
prom_exit();
}
vbase = absolute_to_virt(base);
/* Save away the TCE table attributes for later use. */
prom_tce_table[table].node = node;
prom_tce_table[table].base = vbase;
prom_tce_table[table].size = minsize;
#ifdef DEBUG_PROM
prom_print(RELOC("TCE table: 0x"));
prom_print_hex(table);
prom_print_nl();
prom_print(RELOC("\tnode = 0x"));
prom_print_hex(node);
prom_print_nl();
prom_print(RELOC("\tbase = 0x"));
prom_print_hex(vbase);
prom_print_nl();
prom_print(RELOC("\tsize = 0x"));
prom_print_hex(minsize);
prom_print_nl();
#endif
/* Initialize the table to have a one-to-one mapping
* over the allocated size.
*/
tce_entryp = (unsigned long *)base;
for (i = 0; i < (minsize >> 3) ;tce_entryp++, i++) {
tce_entry = (i << PAGE_SHIFT);
tce_entry |= 0x3;
*tce_entryp = tce_entry;
}
/* Call OF to setup the TCE hardware */
if (call_prom(RELOC("package-to-path"), 3, 1, node,
path, 255) <= 0) {
prom_print(RELOC("package-to-path failed\n"));
} else {
prom_print(RELOC("opened "));
prom_print(path);
prom_print_nl();
}
phb_node = (ihandle)call_prom(RELOC("open"), 1, 1, path);
if ( (long)phb_node <= 0) {
prom_print(RELOC("open failed\n"));
} else {
prom_print(RELOC("open success\n"));
}
call_prom(RELOC("call-method"), 6, 0,
RELOC("set-64-bit-addressing"),
phb_node,
-1,
minsize,
base & 0xffffffff,
(base >> 32) & 0xffffffff);
call_prom(RELOC("close"), 1, 0, phb_node);
table++;
}
/* Flag the first invalid entry */
prom_tce_table[table].node = 0;
#ifdef DEBUG_PROM
prom_print(RELOC("ending prom_initialize_tce_table\n"));
#endif
}
/*
* With CHRP SMP we need to use the OF to start the other
* processors so we can't wait until smp_boot_cpus (the OF is
* trashed by then) so we have to put the processors into
* a holding pattern controlled by the kernel (not OF) before
* we destroy the OF.
*
* This uses a chunk of low memory, puts some holding pattern
* code there and sends the other processors off to there until
* smp_boot_cpus tells them to do something. The holding pattern
* checks that address until its cpu # is there, when it is that
* cpu jumps to __secondary_start(). smp_boot_cpus() takes care
* of setting those values.
*
* We also use physical address 0x4 here to tell when a cpu
* is in its holding pattern code.
*
* Fixup comment... DRENG / PPPBBB - Peter
*
* -- Cort
*/
static void
prom_hold_cpus(unsigned long mem)
{
unsigned long i;
unsigned int cpuid;
phandle node;
unsigned long offset = reloc_offset();
char type[64], *path;
extern void __secondary_hold(void);
extern unsigned long __secondary_hold_spinloop;
extern unsigned long __secondary_hold_acknowledge;
unsigned long *spinloop = __v2a(&__secondary_hold_spinloop);
unsigned long *acknowledge = __v2a(&__secondary_hold_acknowledge);
unsigned long secondary_hold = (unsigned long)__v2a(*PTRRELOC((unsigned long *)__secondary_hold));
struct systemcfg *_systemcfg = RELOC(systemcfg);
struct paca_struct *_xPaca = PTRRELOC(&paca[0]);
struct prom_t *_prom = PTRRELOC(&prom);
/* Initially, we must have one active CPU. */
_systemcfg->processorCount = 1;
#ifdef DEBUG_PROM
prom_print(RELOC("prom_hold_cpus: start...\n"));
prom_print(RELOC(" 1) spinloop = 0x"));
prom_print_hex(spinloop);
prom_print_nl();
prom_print(RELOC(" 1) *spinloop = 0x"));
prom_print_hex(*spinloop);
prom_print_nl();
prom_print(RELOC(" 1) acknowledge = 0x"));
prom_print_hex(acknowledge);
prom_print_nl();
prom_print(RELOC(" 1) *acknowledge = 0x"));
prom_print_hex(*acknowledge);
prom_print_nl();
prom_print(RELOC(" 1) secondary_hold = 0x"));
prom_print_hex(secondary_hold);
prom_print_nl();
#endif
/* Set the common spinloop variable, so all of the secondary cpus
* will block when they are awakened from their OF spinloop.
* This must occur for both SMP and non SMP kernels, since OF will
* be trashed when we move the kernel.
*/
*spinloop = 0;
#ifdef CONFIG_HMT
for (i=0; i < NR_CPUS; i++) {
RELOC(hmt_thread_data)[i].pir = 0xdeadbeef;
}
#endif
/* look for cpus */
for (node = 0; prom_next_node(&node); ) {
type[0] = 0;
call_prom(RELOC("getprop"), 4, 1, node, RELOC("device_type"),
type, sizeof(type));
if (strcmp(type, RELOC("cpu")) != 0)
continue;
/* Skip non-configured cpus. */
call_prom(RELOC("getprop"), 4, 1, node, RELOC("status"),
type, sizeof(type));
if (strcmp(type, RELOC("okay")) != 0)
continue;
cpuid = -1;
call_prom(RELOC("getprop"), 4, 1, node, RELOC("reg"),
&cpuid, sizeof(cpuid));
/* Only need to start secondary procs, not ourself. */
if ( cpuid == _prom->cpu )
continue;
path = (char *) mem;
memset(path, 0, 256);
if ((long) call_prom(RELOC("package-to-path"), 3, 1,
node, path, 255) < 0)
continue;
#ifdef DEBUG_PROM
prom_print_nl();
prom_print(RELOC("cpu hw idx = 0x"));
prom_print_hex(cpuid);
prom_print_nl();
#endif
prom_print(RELOC("starting cpu "));
prom_print(path);
/* Init the acknowledge var which will be reset by
* the secondary cpu when it awakens from its OF
* spinloop.
*/
*acknowledge = (unsigned long)-1;
#ifdef DEBUG_PROM
prom_print(RELOC(" 3) spinloop = 0x"));
prom_print_hex(spinloop);
prom_print_nl();
prom_print(RELOC(" 3) *spinloop = 0x"));
prom_print_hex(*spinloop);
prom_print_nl();
prom_print(RELOC(" 3) acknowledge = 0x"));
prom_print_hex(acknowledge);
prom_print_nl();
prom_print(RELOC(" 3) *acknowledge = 0x"));
prom_print_hex(*acknowledge);
prom_print_nl();
prom_print(RELOC(" 3) secondary_hold = 0x"));
prom_print_hex(secondary_hold);
prom_print_nl();
#endif
call_prom(RELOC("start-cpu"), 3, 0, node, secondary_hold, cpuid);
prom_print(RELOC("..."));
for ( i = 0 ; (i < 100000000) &&
(*acknowledge == ((unsigned long)-1)); i++ ) ;
#ifdef DEBUG_PROM
{
unsigned long *p = 0x0;
prom_print(RELOC(" 4) 0x0 = 0x"));
prom_print_hex(*p);
prom_print_nl();
}
#endif
if (*acknowledge == cpuid) {
prom_print(RELOC("ok\n"));
/* Set the number of active processors. */
_systemcfg->processorCount++;
_xPaca[cpuid].active = 1;
} else {
prom_print(RELOC("failed: "));
prom_print_hex(*acknowledge);
prom_print_nl();
}
}
#ifdef CONFIG_HMT
/* Only enable HMT on processors that provide support. */
if (__is_processor(PV_PULSAR) ||
__is_processor(PV_ICESTAR) ||
__is_processor(PV_SSTAR)) {
prom_print(RELOC(" starting secondary threads\n"));
for (i = 0; i < NR_CPUS; i += 2) {
if (!_xPaca[i].active)
continue;
if (i == boot_cpuid) {
unsigned long pir = _get_PIR();
if (__is_processor(PV_PULSAR)) {
RELOC(hmt_thread_data)[i].pir =
pir & 0x1f;
} else {
RELOC(hmt_thread_data)[i].pir =
pir & 0x3ff;
}
}
_xPaca[i+1].active = 1;
}
_systemcfg->processorCount *= 2;
} else {
prom_print(RELOC("Processor is not HMT capable\n"));
}
#endif
#ifdef DEBUG_PROM
prom_print(RELOC("prom_hold_cpus: end...\n"));
#endif
}
/*
* We enter here early on, when the Open Firmware prom is still
* handling exceptions and the MMU hash table for us.
*/
unsigned long __init
prom_init(unsigned long r3, unsigned long r4, unsigned long pp,
unsigned long r6, unsigned long r7)
{
unsigned long mem;
ihandle prom_root, prom_cpu;
phandle cpu_pkg;
unsigned long offset = reloc_offset();
long l;
char *p, *d;
unsigned long phys;
u32 getprop_rval;
struct systemcfg *_systemcfg = RELOC(systemcfg);
struct paca_struct *_xPaca = PTRRELOC(&paca[0]);
struct prom_t *_prom = PTRRELOC(&prom);
/* Default machine type. */
_systemcfg->platform = PLATFORM_PSERIES;
#if 0
/* Reset klimit to take into account the embedded system map */
if (RELOC(embedded_sysmap_end))
RELOC(klimit) = __va(PAGE_ALIGN(RELOC(embedded_sysmap_end)));
#endif
/* Get a handle to the prom entry point before anything else */
_prom->entry = pp;
_prom->bi_recs = prom_bi_rec_verify((struct bi_record *)r6);
if ( _prom->bi_recs != NULL ) {
RELOC(klimit) = PTRUNRELOC((unsigned long)_prom->bi_recs + _prom->bi_recs->data[1]);
}
/* First get a handle for the stdout device */
_prom->chosen = (ihandle)call_prom(RELOC("finddevice"), 1, 1,
RELOC("/chosen"));
if ((long)_prom->chosen <= 0)
prom_exit();
if ((long)call_prom(RELOC("getprop"), 4, 1, _prom->chosen,
RELOC("stdout"), &getprop_rval,
sizeof(getprop_rval)) <= 0)
prom_exit();
_prom->stdout = (ihandle)(unsigned long)getprop_rval;
mem = RELOC(klimit) - offset;
/* Get the full OF pathname of the stdout device */
p = (char *) mem;
memset(p, 0, 256);
call_prom(RELOC("instance-to-path"), 3, 1, _prom->stdout, p, 255);
RELOC(of_stdout_device) = PTRUNRELOC(p);
mem += strlen(p) + 1;
getprop_rval = 1;
prom_root = (ihandle)call_prom(RELOC("finddevice"), 1, 1, RELOC("/"));
if (prom_root != (ihandle)-1) {
call_prom(RELOC("getprop"), 4, 1,
prom_root, RELOC("#size-cells"),
&getprop_rval, sizeof(getprop_rval));
}
_prom->encode_phys_size = (getprop_rval==1) ? 32 : 64;
/* Determine which cpu is actually running right _now_ */
if ((long)call_prom(RELOC("getprop"), 4, 1, _prom->chosen,
RELOC("cpu"), &getprop_rval,
sizeof(getprop_rval)) <= 0)
prom_exit();
prom_cpu = (ihandle)(unsigned long)getprop_rval;
cpu_pkg = call_prom(RELOC("instance-to-package"), 1, 1, prom_cpu);
call_prom(RELOC("getprop"), 4, 1,
cpu_pkg, RELOC("reg"),
&getprop_rval, sizeof(getprop_rval));
_prom->cpu = (int)(unsigned long)getprop_rval;
_xPaca[_prom->cpu].active = 1;
#ifdef CONFIG_SMP
cpu_set(_prom->cpu, RELOC(cpu_online_map));
#endif
RELOC(boot_cpuid) = _prom->cpu;
#ifdef DEBUG_PROM
prom_print(RELOC("Booting CPU hw index = 0x"));
prom_print_hex(_prom->cpu);
prom_print_nl();
#endif
/* Get the boot device and translate it to a full OF pathname. */
p = (char *) mem;
l = (long) call_prom(RELOC("getprop"), 4, 1, _prom->chosen,
RELOC("bootpath"), p, 1<<20);
if (l > 0) {
p[l] = 0; /* should already be null-terminated */
RELOC(bootpath) = PTRUNRELOC(p);
mem += l + 1;
d = (char *) mem;
*d = 0;
call_prom(RELOC("canon"), 3, 1, p, d, 1<<20);
RELOC(bootdevice) = PTRUNRELOC(d);
mem = DOUBLEWORD_ALIGN(mem + strlen(d) + 1);
}
mem = prom_initialize_lmb(mem);
mem = prom_bi_rec_reserve(mem);
mem = check_display(mem);
prom_instantiate_rtas();
/* Initialize some system info into the Naca early... */
mem = prom_initialize_naca(mem);
/* If we are on an SMP machine, then we *MUST* do the
* following, regardless of whether we have an SMP
* kernel or not.
*/
if (_systemcfg->processorCount > 1)
prom_hold_cpus(mem);
#ifdef DEBUG_PROM
prom_print(RELOC("copying OF device tree...\n"));
#endif
mem = copy_device_tree(mem);
RELOC(klimit) = mem + offset;
lmb_reserve(0, __pa(RELOC(klimit)));
if (_systemcfg->platform == PLATFORM_PSERIES)
prom_initialize_tce_table();
prom_print(RELOC("Calling quiesce ...\n"));
call_prom(RELOC("quiesce"), 0, 0);
phys = KERNELBASE - offset;
prom_print(RELOC("returning from prom_init\n"));
return phys;
}
static int
prom_set_color(ihandle ih, int i, int r, int g, int b)
{
unsigned long offset = reloc_offset();
return (int)(long)call_prom(RELOC("call-method"), 6, 1,
RELOC("color!"),
ih,
(void *)(long) i,
(void *)(long) b,
(void *)(long) g,
(void *)(long) r );
}
/*
* If we have a display that we don't know how to drive,
* we will want to try to execute OF's open method for it
* later. However, OF will probably fall over if we do that
* we've taken over the MMU.
* So we check whether we will need to open the display,
* and if so, open it now.
*/
static unsigned long __init
check_display(unsigned long mem)
{
phandle node;
ihandle ih;
int i;
unsigned long offset = reloc_offset();
struct prom_t *_prom = PTRRELOC(&prom);
char type[64], *path;
static unsigned char default_colors[] = {
0x00, 0x00, 0x00,
0x00, 0x00, 0xaa,
0x00, 0xaa, 0x00,
0x00, 0xaa, 0xaa,
0xaa, 0x00, 0x00,
0xaa, 0x00, 0xaa,
0xaa, 0xaa, 0x00,
0xaa, 0xaa, 0xaa,
0x55, 0x55, 0x55,
0x55, 0x55, 0xff,
0x55, 0xff, 0x55,
0x55, 0xff, 0xff,
0xff, 0x55, 0x55,
0xff, 0x55, 0xff,
0xff, 0xff, 0x55,
0xff, 0xff, 0xff
};
const unsigned char *clut;
_prom->disp_node = 0;
for (node = 0; prom_next_node(&node); ) {
type[0] = 0;
call_prom(RELOC("getprop"), 4, 1, node, RELOC("device_type"),
type, sizeof(type));
if (strcmp(type, RELOC("display")) != 0)
continue;
/* It seems OF doesn't null-terminate the path :-( */
path = (char *) mem;
memset(path, 0, 256);
if ((long) call_prom(RELOC("package-to-path"), 3, 1,
node, path, 255) < 0)
continue;
prom_print(RELOC("opening display "));
prom_print(path);
ih = (ihandle)call_prom(RELOC("open"), 1, 1, path);
if (ih == (ihandle)0 || ih == (ihandle)-1) {
prom_print(RELOC("... failed\n"));
continue;
}
prom_print(RELOC("... ok\n"));
if (_prom->disp_node == 0)
_prom->disp_node = (ihandle)(unsigned long)node;
/* Setup a useable color table when the appropriate
* method is available. Should update this to set-colors */
clut = RELOC(default_colors);
for (i = 0; i < 32; i++, clut += 3)
if (prom_set_color(ih, i, clut[0], clut[1],
clut[2]) != 0)
break;
#ifdef CONFIG_LOGO_LINUX_CLUT224
clut = PTRRELOC(RELOC(logo_linux_clut224.clut));
for (i = 0; i < RELOC(logo_linux_clut224.clutsize); i++, clut += 3)
if (prom_set_color(ih, i + 32, clut[0], clut[1],
clut[2]) != 0)
break;
#endif /* CONFIG_LOGO_LINUX_CLUT224 */
/*
* If this display is the device that OF is using for stdout,
* move it to the front of the list.
*/
mem += strlen(path) + 1;
i = RELOC(prom_num_displays)++;
if (RELOC(of_stdout_device) != 0 && i > 0
&& strcmp(PTRRELOC(RELOC(of_stdout_device)), path) == 0) {
for (; i > 0; --i)
RELOC(prom_display_paths[i]) = RELOC(prom_display_paths[i-1]);
}
RELOC(prom_display_paths[i]) = PTRUNRELOC(path);
if (RELOC(prom_num_displays) >= FB_MAX)
break;
}
return DOUBLEWORD_ALIGN(mem);
}
void
virt_irq_init(void)
{
int i;
for (i = 0; i < NR_IRQS; i++)
virt_irq_to_real_map[i] = UNDEFINED_IRQ;
for (i = 0; i < NR_HW_IRQS; i++)
real_irq_to_virt_map[i] = UNDEFINED_IRQ;
}
/* Create a mapping for a real_irq if it doesn't already exist.
* Return the virtual irq as a convenience.
*/
unsigned long
virt_irq_create_mapping(unsigned long real_irq)
{
unsigned long virq;
if (naca->interrupt_controller == IC_OPEN_PIC)
return real_irq; /* no mapping for openpic (for now) */
virq = real_irq_to_virt(real_irq);
if (virq == UNDEFINED_IRQ) {
/* Assign a virtual IRQ number */
if (real_irq < NR_IRQS && virt_irq_to_real(real_irq) == UNDEFINED_IRQ) {
/* A 1-1 mapping will work. */
virq = real_irq;
} else {
while (last_virt_irq < NR_IRQS &&
virt_irq_to_real(++last_virt_irq) != UNDEFINED_IRQ)
/* skip irq's in use */;
if (last_virt_irq >= NR_IRQS)
panic("Too many IRQs are required on this system. NR_IRQS=%d\n", NR_IRQS);
virq = last_virt_irq;
}
virt_irq_to_real_map[virq] = real_irq;
real_irq_to_virt_map[real_irq] = virq;
}
return virq;
}
static int __init
prom_next_node(phandle *nodep)
{
phandle node;
unsigned long offset = reloc_offset();
if ((node = *nodep) != 0
&& (*nodep = call_prom(RELOC("child"), 1, 1, node)) != 0)
return 1;
if ((*nodep = call_prom(RELOC("peer"), 1, 1, node)) != 0)
return 1;
for (;;) {
if ((node = call_prom(RELOC("parent"), 1, 1, node)) == 0)
return 0;
if ((*nodep = call_prom(RELOC("peer"), 1, 1, node)) != 0)
return 1;
}
}
/*
* Make a copy of the device tree from the PROM.
*/
static unsigned long __init
copy_device_tree(unsigned long mem_start)
{
phandle root;
unsigned long new_start;
struct device_node **allnextp;
unsigned long offset = reloc_offset();
unsigned long mem_end = mem_start + (8<<20);
root = call_prom(RELOC("peer"), 1, 1, (phandle)0);
if (root == (phandle)0) {
prom_print(RELOC("couldn't get device tree root\n"));
prom_exit();
}
allnextp = &RELOC(allnodes);
mem_start = DOUBLEWORD_ALIGN(mem_start);
new_start = inspect_node(root, 0, mem_start, mem_end, &allnextp);
*allnextp = 0;
return new_start;
}
__init
static unsigned long
inspect_node(phandle node, struct device_node *dad,
unsigned long mem_start, unsigned long mem_end,
struct device_node ***allnextpp)
{
int l;
phandle child;
struct device_node *np;
struct property *pp, **prev_propp;
char *prev_name, *namep;
unsigned char *valp;
unsigned long offset = reloc_offset();
np = (struct device_node *) mem_start;
mem_start += sizeof(struct device_node);
memset(np, 0, sizeof(*np));
np->node = node;
**allnextpp = PTRUNRELOC(np);
*allnextpp = &np->allnext;
if (dad != 0) {
np->parent = PTRUNRELOC(dad);
/* we temporarily use the `next' field as `last_child'. */
if (dad->next == 0)
dad->child = PTRUNRELOC(np);
else
dad->next->sibling = PTRUNRELOC(np);
dad->next = np;
}
/* get and store all properties */
prev_propp = &np->properties;
prev_name = RELOC("");
for (;;) {
pp = (struct property *) mem_start;
namep = (char *) (pp + 1);
pp->name = PTRUNRELOC(namep);
if ((long) call_prom(RELOC("nextprop"), 3, 1, node, prev_name,
namep) <= 0)
break;
mem_start = DOUBLEWORD_ALIGN((unsigned long)namep + strlen(namep) + 1);
prev_name = namep;
valp = (unsigned char *) mem_start;
pp->value = PTRUNRELOC(valp);
pp->length = (int)(long)
call_prom(RELOC("getprop"), 4, 1, node, namep,
valp, mem_end - mem_start);
if (pp->length < 0)
continue;
mem_start = DOUBLEWORD_ALIGN(mem_start + pp->length);
*prev_propp = PTRUNRELOC(pp);
prev_propp = &pp->next;
}
*prev_propp = 0;
/* get the node's full name */
l = (long) call_prom(RELOC("package-to-path"), 3, 1, node,
(char *) mem_start, mem_end - mem_start);
if (l >= 0) {
np->full_name = PTRUNRELOC((char *) mem_start);
*(char *)(mem_start + l) = 0;
mem_start = DOUBLEWORD_ALIGN(mem_start + l + 1);
}
/* do all our children */
child = call_prom(RELOC("child"), 1, 1, node);
while (child != (phandle)0) {
mem_start = inspect_node(child, np, mem_start, mem_end,
allnextpp);
child = call_prom(RELOC("peer"), 1, 1, child);
}
return mem_start;
}
/*
* finish_device_tree is called once things are running normally
* (i.e. with text and data mapped to the address they were linked at).
* It traverses the device tree and fills in the name, type,
* {n_}addrs and {n_}intrs fields of each node.
*/
void __init
finish_device_tree(void)
{
unsigned long mem = klimit;
virt_irq_init();
mem = finish_node(allnodes, mem, NULL, 0, 0);
dev_tree_size = mem - (unsigned long) allnodes;
mem = _ALIGN(mem, PAGE_SIZE);
lmb_reserve(__pa(klimit), mem-klimit);
klimit = mem;
rtas.dev = find_devices("rtas");
}
static unsigned long __init
finish_node(struct device_node *np, unsigned long mem_start,
interpret_func *ifunc, int naddrc, int nsizec)
{
struct device_node *child;
int *ip;
np->name = get_property(np, "name", 0);
np->type = get_property(np, "device_type", 0);
/* get the device addresses and interrupts */
if (ifunc != NULL) {
mem_start = ifunc(np, mem_start, naddrc, nsizec);
}
mem_start = finish_node_interrupts(np, mem_start);
/* Look for #address-cells and #size-cells properties. */
ip = (int *) get_property(np, "#address-cells", 0);
if (ip != NULL)
naddrc = *ip;
ip = (int *) get_property(np, "#size-cells", 0);
if (ip != NULL)
nsizec = *ip;
/* the f50 sets the name to 'display' and 'compatible' to what we
* expect for the name -- Cort
*/
ifunc = NULL;
if (!strcmp(np->name, "display"))
np->name = get_property(np, "compatible", 0);
if (!strcmp(np->name, "device-tree") || np->parent == NULL)
ifunc = interpret_root_props;
else if (np->type == 0)
ifunc = NULL;
else if (!strcmp(np->type, "pci") || !strcmp(np->type, "vci"))
ifunc = interpret_pci_props;
else if (!strcmp(np->type, "isa"))
ifunc = interpret_isa_props;
for (child = np->child; child != NULL; child = child->sibling)
mem_start = finish_node(child, mem_start, ifunc,
naddrc, nsizec);
return mem_start;
}
/*
* Find the interrupt parent of a node.
*/
static struct device_node * __init
intr_parent(struct device_node *p)
{
phandle *parp;
parp = (phandle *) get_property(p, "interrupt-parent", NULL);
if (parp == NULL)
return p->parent;
return find_phandle(*parp);
}
/*
* Find out the size of each entry of the interrupts property
* for a node.
*/
static int __init
prom_n_intr_cells(struct device_node *np)
{
struct device_node *p;
unsigned int *icp;
for (p = np; (p = intr_parent(p)) != NULL; ) {
icp = (unsigned int *)
get_property(p, "#interrupt-cells", NULL);
if (icp != NULL)
return *icp;
if (get_property(p, "interrupt-controller", NULL) != NULL
|| get_property(p, "interrupt-map", NULL) != NULL) {
printk("oops, node %s doesn't have #interrupt-cells\n",
p->full_name);
return 1;
}
}
#ifdef DEBUG_IRQ
printk("prom_n_intr_cells failed for %s\n", np->full_name);
#endif
return 1;
}
/*
* Map an interrupt from a device up to the platform interrupt
* descriptor.
*/
static int __init
map_interrupt(unsigned int **irq, struct device_node **ictrler,
struct device_node *np, unsigned int *ints, int nintrc)
{
struct device_node *p, *ipar;
unsigned int *imap, *imask, *ip;
int i, imaplen, match;
int newintrc, newaddrc;
unsigned int *reg;
int naddrc;
reg = (unsigned int *) get_property(np, "reg", NULL);
naddrc = prom_n_addr_cells(np);
p = intr_parent(np);
while (p != NULL) {
if (get_property(p, "interrupt-controller", NULL) != NULL)
/* this node is an interrupt controller, stop here */
break;
imap = (unsigned int *)
get_property(p, "interrupt-map", &imaplen);
if (imap == NULL) {
p = intr_parent(p);
continue;
}
imask = (unsigned int *)
get_property(p, "interrupt-map-mask", NULL);
if (imask == NULL) {
printk("oops, %s has interrupt-map but no mask\n",
p->full_name);
return 0;
}
imaplen /= sizeof(unsigned int);
match = 0;
ipar = NULL;
while (imaplen > 0 && !match) {
/* check the child-interrupt field */
match = 1;
for (i = 0; i < naddrc && match; ++i)
match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
for (; i < naddrc + nintrc && match; ++i)
match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
imap += naddrc + nintrc;
imaplen -= naddrc + nintrc;
/* grab the interrupt parent */
ipar = find_phandle((phandle) *imap++);
--imaplen;
if (ipar == NULL) {
printk("oops, no int parent %x in map of %s\n",
imap[-1], p->full_name);
return 0;
}
/* find the parent's # addr and intr cells */
ip = (unsigned int *)
get_property(ipar, "#interrupt-cells", NULL);
if (ip == NULL) {
printk("oops, no #interrupt-cells on %s\n",
ipar->full_name);
return 0;
}
newintrc = *ip;
ip = (unsigned int *)
get_property(ipar, "#address-cells", NULL);
newaddrc = (ip == NULL)? 0: *ip;
imap += newaddrc + newintrc;
imaplen -= newaddrc + newintrc;
}
if (imaplen < 0) {
printk("oops, error decoding int-map on %s, len=%d\n",
p->full_name, imaplen);
return 0;
}
if (!match) {
#ifdef DEBUG_IRQ
printk("oops, no match in %s int-map for %s\n",
p->full_name, np->full_name);
#endif
return 0;
}
p = ipar;
naddrc = newaddrc;
nintrc = newintrc;
ints = imap - nintrc;
reg = ints - naddrc;
}
#ifdef DEBUG_IRQ
if (p == NULL)
printk("hmmm, int tree for %s doesn't have ctrler\n",
np->full_name);
#endif
*irq = ints;
*ictrler = p;
return nintrc;
}
/*
* New version of finish_node_interrupts.
*/
static unsigned long __init
finish_node_interrupts(struct device_node *np, unsigned long mem_start)
{
unsigned int *ints;
int intlen, intrcells;
int i, j, n;
unsigned int *irq;
struct device_node *ic;
ints = (unsigned int *) get_property(np, "interrupts", &intlen);
if (ints == NULL)
return mem_start;
intrcells = prom_n_intr_cells(np);
intlen /= intrcells * sizeof(unsigned int);
np->n_intrs = intlen;
np->intrs = (struct interrupt_info *) mem_start;
mem_start += intlen * sizeof(struct interrupt_info);
for (i = 0; i < intlen; ++i) {
np->intrs[i].line = 0;
np->intrs[i].sense = 1;
n = map_interrupt(&irq, &ic, np, ints, intrcells);
if (n <= 0)
continue;
np->intrs[i].line = openpic_to_irq(virt_irq_create_mapping(irq[0]));
if (n > 1)
np->intrs[i].sense = irq[1];
if (n > 2) {
printk("hmmm, got %d intr cells for %s:", n,
np->full_name);
for (j = 0; j < n; ++j)
printk(" %d", irq[j]);
printk("\n");
}
ints += intrcells;
}
return mem_start;
}
int
prom_n_addr_cells(struct device_node* np)
{
int* ip;
do {
if (np->parent)
np = np->parent;
ip = (int *) get_property(np, "#address-cells", 0);
if (ip != NULL)
return *ip;
} while (np->parent);
/* No #address-cells property for the root node, default to 1 */
return 1;
}
int
prom_n_size_cells(struct device_node* np)
{
int* ip;
do {
if (np->parent)
np = np->parent;
ip = (int *) get_property(np, "#size-cells", 0);
if (ip != NULL)
return *ip;
} while (np->parent);
/* No #size-cells property for the root node, default to 1 */
return 1;
}
static unsigned long __init
interpret_pci_props(struct device_node *np, unsigned long mem_start,
int naddrc, int nsizec)
{
struct address_range *adr;
struct pci_reg_property *pci_addrs;
int i, l;
pci_addrs = (struct pci_reg_property *)
get_property(np, "assigned-addresses", &l);
if (pci_addrs != 0 && l >= sizeof(struct pci_reg_property)) {
i = 0;
adr = (struct address_range *) mem_start;
while ((l -= sizeof(struct pci_reg_property)) >= 0) {
adr[i].space = pci_addrs[i].addr.a_hi;
adr[i].address = pci_addrs[i].addr.a_lo;
adr[i].size = pci_addrs[i].size_lo;
++i;
}
np->addrs = adr;
np->n_addrs = i;
mem_start += i * sizeof(struct address_range);
}
return mem_start;
}
static unsigned long __init
interpret_isa_props(struct device_node *np, unsigned long mem_start,
int naddrc, int nsizec)
{
struct isa_reg_property *rp;
struct address_range *adr;
int i, l;
rp = (struct isa_reg_property *) get_property(np, "reg", &l);
if (rp != 0 && l >= sizeof(struct isa_reg_property)) {
i = 0;
adr = (struct address_range *) mem_start;
while ((l -= sizeof(struct reg_property)) >= 0) {
adr[i].space = rp[i].space;
adr[i].address = rp[i].address;
adr[i].size = rp[i].size;
++i;
}
np->addrs = adr;
np->n_addrs = i;
mem_start += i * sizeof(struct address_range);
}
return mem_start;
}
static unsigned long __init
interpret_root_props(struct device_node *np, unsigned long mem_start,
int naddrc, int nsizec)
{
struct address_range *adr;
int i, l;
unsigned int *rp;
int rpsize = (naddrc + nsizec) * sizeof(unsigned int);
rp = (unsigned int *) get_property(np, "reg", &l);
if (rp != 0 && l >= rpsize) {
i = 0;
adr = (struct address_range *) mem_start;
while ((l -= rpsize) >= 0) {
adr[i].space = 0;
adr[i].address = rp[naddrc - 1];
adr[i].size = rp[naddrc + nsizec - 1];
++i;
rp += naddrc + nsizec;
}
np->addrs = adr;
np->n_addrs = i;
mem_start += i * sizeof(struct address_range);
}
return mem_start;
}
/*
* Work out the sense (active-low level / active-high edge)
* of each interrupt from the device tree.
*/
void __init
prom_get_irq_senses(unsigned char *senses, int off, int max)
{
struct device_node *np;
int i, j;
/* default to level-triggered */
memset(senses, 1, max - off);
for (np = allnodes; np != 0; np = np->allnext) {
for (j = 0; j < np->n_intrs; j++) {
i = np->intrs[j].line;
if (i >= off && i < max)
senses[i-off] = np->intrs[j].sense;
}
}
}
/*
* Construct and return a list of the device_nodes with a given name.
*/
struct device_node *
find_devices(const char *name)
{
struct device_node *head, **prevp, *np;
prevp = &head;
for (np = allnodes; np != 0; np = np->allnext) {
if (np->name != 0 && strcasecmp(np->name, name) == 0) {
*prevp = np;
prevp = &np->next;
}
}
*prevp = 0;
return head;
}
/*
* Construct and return a list of the device_nodes with a given type.
*/
struct device_node *
find_type_devices(const char *type)
{
struct device_node *head, **prevp, *np;
prevp = &head;
for (np = allnodes; np != 0; np = np->allnext) {
if (np->type != 0 && strcasecmp(np->type, type) == 0) {
*prevp = np;
prevp = &np->next;
}
}
*prevp = 0;
return head;
}
/*
* Returns all nodes linked together
*/
struct device_node *
find_all_nodes(void)
{
struct device_node *head, **prevp, *np;
prevp = &head;
for (np = allnodes; np != 0; np = np->allnext) {
*prevp = np;
prevp = &np->next;
}
*prevp = 0;
return head;
}
/* Checks if the given "compat" string matches one of the strings in
* the device's "compatible" property
*/
int
device_is_compatible(struct device_node *device, const char *compat)
{
const char* cp;
int cplen, l;
cp = (char *) get_property(device, "compatible", &cplen);
if (cp == NULL)
return 0;
while (cplen > 0) {
if (strncasecmp(cp, compat, strlen(compat)) == 0)
return 1;
l = strlen(cp) + 1;
cp += l;
cplen -= l;
}
return 0;
}
/*
* Indicates whether the root node has a given value in its
* compatible property.
*/
int
machine_is_compatible(const char *compat)
{
struct device_node *root;
root = find_path_device("/");
if (root == 0)
return 0;
return device_is_compatible(root, compat);
}
/*
* Construct and return a list of the device_nodes with a given type
* and compatible property.
*/
struct device_node *
find_compatible_devices(const char *type, const char *compat)
{
struct device_node *head, **prevp, *np;
prevp = &head;
for (np = allnodes; np != 0; np = np->allnext) {
if (type != NULL
&& !(np->type != 0 && strcasecmp(np->type, type) == 0))
continue;
if (device_is_compatible(np, compat)) {
*prevp = np;
prevp = &np->next;
}
}
*prevp = 0;
return head;
}
/*
* Find the device_node with a given full_name.
*/
struct device_node *
find_path_device(const char *path)
{
struct device_node *np;
for (np = allnodes; np != 0; np = np->allnext)
if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
return np;
return NULL;
}
/*
* Find the device_node with a given phandle.
*/
static struct device_node * __init
find_phandle(phandle ph)
{
struct device_node *np;
for (np = allnodes; np != 0; np = np->allnext)
if (np->node == ph)
return np;
return NULL;
}
/*
* Find a property with a given name for a given node
* and return the value.
*/
unsigned char *
get_property(struct device_node *np, const char *name, int *lenp)
{
struct property *pp;
for (pp = np->properties; pp != 0; pp = pp->next)
if (strcmp(pp->name, name) == 0) {
if (lenp != 0)
*lenp = pp->length;
return pp->value;
}
return 0;
}
/*
* Add a property to a node
*/
void
prom_add_property(struct device_node* np, struct property* prop)
{
struct property **next = &np->properties;
prop->next = NULL;
while (*next)
next = &(*next)->next;
*next = prop;
}
#if 0
void
print_properties(struct device_node *np)
{
struct property *pp;
char *cp;
int i, n;
for (pp = np->properties; pp != 0; pp = pp->next) {
printk(KERN_INFO "%s", pp->name);
for (i = strlen(pp->name); i < 16; ++i)
printk(" ");
cp = (char *) pp->value;
for (i = pp->length; i > 0; --i, ++cp)
if ((i > 1 && (*cp < 0x20 || *cp > 0x7e))
|| (i == 1 && *cp != 0))
break;
if (i == 0 && pp->length > 1) {
/* looks like a string */
printk(" %s\n", (char *) pp->value);
} else {
/* dump it in hex */
n = pp->length;
if (n > 64)
n = 64;
if (pp->length % 4 == 0) {
unsigned int *p = (unsigned int *) pp->value;
n /= 4;
for (i = 0; i < n; ++i) {
if (i != 0 && (i % 4) == 0)
printk("\n ");
printk(" %08x", *p++);
}
} else {
unsigned char *bp = pp->value;
for (i = 0; i < n; ++i) {
if (i != 0 && (i % 16) == 0)
printk("\n ");
printk(" %02x", *bp++);
}
}
printk("\n");
if (pp->length > 64)
printk(" ... (length = %d)\n",
pp->length);
}
}
}
#endif
void __init
abort()
{
#ifdef CONFIG_XMON
xmon(NULL);
#endif
for (;;)
prom_exit();
}
/* Verify bi_recs are good */
static struct bi_record *
prom_bi_rec_verify(struct bi_record *bi_recs)
{
struct bi_record *first, *last;
if ( bi_recs == NULL || bi_recs->tag != BI_FIRST )
return NULL;
last = (struct bi_record *)(long)bi_recs->data[0];
if ( last == NULL || last->tag != BI_LAST )
return NULL;
first = (struct bi_record *)(long)last->data[0];
if ( first == NULL || first != bi_recs )
return NULL;
return bi_recs;
}
static unsigned long
prom_bi_rec_reserve(unsigned long mem)
{
unsigned long offset = reloc_offset();
struct prom_t *_prom = PTRRELOC(&prom);
struct bi_record *rec;
if ( _prom->bi_recs != NULL) {
for ( rec=_prom->bi_recs;
rec->tag != BI_LAST;
rec=bi_rec_next(rec) ) {
switch (rec->tag) {
#ifdef CONFIG_BLK_DEV_INITRD
case BI_INITRD:
lmb_reserve(rec->data[0], rec->data[1]);
break;
#endif /* CONFIG_BLK_DEV_INITRD */
}
}
/* The next use of this field will be after relocation
* is enabled, so convert this physical address into a
* virtual address.
*/
_prom->bi_recs = PTRUNRELOC(_prom->bi_recs);
}
return mem;
}