/*
* mf.c
* Copyright (C) 2001 Troy D. Armstrong IBM Corporation
*
* This modules exists as an interface between a Linux secondary partition
* running on an iSeries and the primary partition's Virtual Service
* Processor (VSP) object. The VSP has final authority over powering on/off
* all partitions in the iSeries. It also provides miscellaneous low-level
* machine facility type operations.
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <asm/iSeries/mf.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <asm/iSeries/HvLpConfig.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <asm/nvram.h>
#include <asm/time.h>
#include <asm/iSeries/ItSpCommArea.h>
#include <asm/iSeries/iSeries_proc.h>
#include <asm/uaccess.h>
#include <linux/dma-mapping.h>
#include <linux/bcd.h>
#include <asm/iSeries/vio.h>
/*
* This is the structure layout for the Machine Facilites LPAR event
* flows.
*/
union safe_cast {
u64 ptr_as_u64;
void *ptr;
};
struct VspCmdData {
union safe_cast token;
u16 cmd;
HvLpIndex lp_index;
u8 result_code;
u32 reserved;
union {
u64 state; /* GetStateOut */
u64 ipl_type; /* GetIplTypeOut, Function02SelectIplTypeIn */
u64 ipl_mode; /* GetIplModeOut, Function02SelectIplModeIn */
u64 page[4]; /* GetSrcHistoryIn */
u64 flag; /* GetAutoIplWhenPrimaryIplsOut,
SetAutoIplWhenPrimaryIplsIn,
WhiteButtonPowerOffIn,
Function08FastPowerOffIn,
IsSpcnRackPowerIncompleteOut */
struct {
u64 token;
u64 address_type;
u64 side;
u32 length;
u32 offset;
} kern; /* SetKernelImageIn, GetKernelImageIn,
SetKernelCmdLineIn, GetKernelCmdLineIn */
u32 length_out; /* GetKernelImageOut, GetKernelCmdLineOut */
u8 reserved[80];
} sub_data;
};
struct VspRspData {
struct semaphore *sem;
struct VspCmdData *response;
};
struct AllocData {
u16 size;
u16 type;
u32 count;
u16 reserved1;
u8 reserved2;
HvLpIndex target_lp;
};
struct CeMsgData;
typedef void (*CeMsgCompleteHandler)(void *token, struct CeMsgData *vspCmdRsp);
struct CeMsgCompleteData {
CeMsgCompleteHandler handler;
void *token;
};
struct CeMsgData {
u8 ce_msg[12];
char reserved[4];
struct CeMsgCompleteData *completion;
};
struct IoMFLpEvent {
struct HvLpEvent hp_lp_event;
u16 subtype_result_code;
u16 reserved1;
u32 reserved2;
union {
struct AllocData alloc;
struct CeMsgData ce_msg;
struct VspCmdData vsp_cmd;
} data;
};
#define subtype_data(a, b, c, d) \
(((a) << 24) + ((b) << 16) + ((c) << 8) + (d))
/*
* All outgoing event traffic is kept on a FIFO queue. The first
* pointer points to the one that is outstanding, and all new
* requests get stuck on the end. Also, we keep a certain number of
* preallocated pending events so that we can operate very early in
* the boot up sequence (before kmalloc is ready).
*/
struct pending_event {
struct pending_event *next;
struct IoMFLpEvent event;
MFCompleteHandler hdlr;
char dma_data[72];
unsigned dma_data_length;
unsigned remote_address;
};
static spinlock_t pending_event_spinlock;
static struct pending_event *pending_event_head;
static struct pending_event *pending_event_tail;
static struct pending_event *pending_event_avail;
static struct pending_event pending_event_prealloc[16];
/*
* Put a pending event onto the available queue, so it can get reused.
* Attention! You must have the pending_event_spinlock before calling!
*/
static void free_pending_event(struct pending_event *ev)
{
if (ev != NULL) {
ev->next = pending_event_avail;
pending_event_avail = ev;
}
}
/*
* Enqueue the outbound event onto the stack. If the queue was
* empty to begin with, we must also issue it via the Hypervisor
* interface. There is a section of code below that will touch
* the first stack pointer without the protection of the pending_event_spinlock.
* This is OK, because we know that nobody else will be modifying
* the first pointer when we do this.
*/
static int signal_event(struct pending_event *ev)
{
int rc = 0;
unsigned long flags;
int go = 1;
struct pending_event *ev1;
HvLpEvent_Rc hvRc;
/* enqueue the event */
if (ev != NULL) {
ev->next = NULL;
spin_lock_irqsave(&pending_event_spinlock, flags);
if (pending_event_head == NULL)
pending_event_head = ev;
else {
go = 0;
pending_event_tail->next = ev;
}
pending_event_tail = ev;
spin_unlock_irqrestore(&pending_event_spinlock, flags);
}
/* send the event */
while (go) {
go = 0;
/* any DMA data to send beforehand? */
if (pending_event_head->dma_data_length > 0)
HvCallEvent_dmaToSp(pending_event_head->dma_data,
pending_event_head->remote_address,
pending_event_head->dma_data_length,
HvLpDma_Direction_LocalToRemote);
hvRc = HvCallEvent_signalLpEvent(
&pending_event_head->event.hp_lp_event);
if (hvRc != HvLpEvent_Rc_Good) {
printk(KERN_ERR "mf.c: HvCallEvent_signalLpEvent() failed with %d\n",
(int)hvRc);
spin_lock_irqsave(&pending_event_spinlock, flags);
ev1 = pending_event_head;
pending_event_head = pending_event_head->next;
if (pending_event_head != NULL)
go = 1;
spin_unlock_irqrestore(&pending_event_spinlock, flags);
if (ev1 == ev)
rc = -EIO;
else if (ev1->hdlr != NULL) {
union safe_cast mySafeCast;
mySafeCast.ptr_as_u64 = ev1->event.hp_lp_event.xCorrelationToken;
(*ev1->hdlr)(mySafeCast.ptr, -EIO);
}
spin_lock_irqsave(&pending_event_spinlock, flags);
free_pending_event(ev1);
spin_unlock_irqrestore(&pending_event_spinlock, flags);
}
}
return rc;
}
/*
* Allocate a new pending_event structure, and initialize it.
*/
static struct pending_event *new_pending_event(void)
{
struct pending_event *ev = NULL;
HvLpIndex primaryLp = HvLpConfig_getPrimaryLpIndex();
unsigned long flags;
struct HvLpEvent *hev;
spin_lock_irqsave(&pending_event_spinlock, flags);
if (pending_event_avail != NULL) {
ev = pending_event_avail;
pending_event_avail = pending_event_avail->next;
}
spin_unlock_irqrestore(&pending_event_spinlock, flags);
if (ev == NULL)
ev = kmalloc(sizeof(struct pending_event),GFP_ATOMIC);
if (ev == NULL) {
printk(KERN_ERR "mf.c: unable to kmalloc %ld bytes\n",
sizeof(struct pending_event));
return NULL;
}
memset(ev, 0, sizeof(struct pending_event));
hev = &ev->event.hp_lp_event;
hev->xFlags.xValid = 1;
hev->xFlags.xAckType = HvLpEvent_AckType_ImmediateAck;
hev->xFlags.xAckInd = HvLpEvent_AckInd_DoAck;
hev->xFlags.xFunction = HvLpEvent_Function_Int;
hev->xType = HvLpEvent_Type_MachineFac;
hev->xSourceLp = HvLpConfig_getLpIndex();
hev->xTargetLp = primaryLp;
hev->xSizeMinus1 = sizeof(ev->event)-1;
hev->xRc = HvLpEvent_Rc_Good;
hev->xSourceInstanceId = HvCallEvent_getSourceLpInstanceId(primaryLp,
HvLpEvent_Type_MachineFac);
hev->xTargetInstanceId = HvCallEvent_getTargetLpInstanceId(primaryLp,
HvLpEvent_Type_MachineFac);
return ev;
}
static int signal_vsp_instruction(struct VspCmdData *vspCmd)
{
struct pending_event *ev = new_pending_event();
int rc;
struct VspRspData response;
DECLARE_MUTEX_LOCKED(Semaphore);
if (ev == NULL)
return -ENOMEM;
response.sem = &Semaphore;
response.response = vspCmd;
ev->event.hp_lp_event.xSubtype = 6;
ev->event.hp_lp_event.x.xSubtypeData =
subtype_data('M', 'F', 'V', 'I');
ev->event.data.vsp_cmd.token.ptr = &response;
ev->event.data.vsp_cmd.cmd = vspCmd->cmd;
ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex();
ev->event.data.vsp_cmd.result_code = 0xFF;
ev->event.data.vsp_cmd.reserved = 0;
memcpy(&(ev->event.data.vsp_cmd.sub_data),
&(vspCmd->sub_data), sizeof(vspCmd->sub_data));
mb();
rc = signal_event(ev);
if (rc == 0)
down(&Semaphore);
return rc;
}
/*
* Send a 12-byte CE message to the primary partition VSP object
*/
static int signal_ce_msg(char *ce_msg, struct CeMsgCompleteData *completion)
{
struct pending_event *ev = new_pending_event();
if (ev == NULL)
return -ENOMEM;
ev->event.hp_lp_event.xSubtype = 0;
ev->event.hp_lp_event.x.xSubtypeData =
subtype_data('M', 'F', 'C', 'E');
memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
ev->event.data.ce_msg.completion = completion;
return signal_event(ev);
}
/*
* Send a 12-byte CE message and DMA data to the primary partition VSP object
*/
static int dma_and_signal_ce_msg(char *ce_msg,
struct CeMsgCompleteData *completion, void *dma_data,
unsigned dma_data_length, unsigned remote_address)
{
struct pending_event *ev = new_pending_event();
if (ev == NULL)
return -ENOMEM;
ev->event.hp_lp_event.xSubtype = 0;
ev->event.hp_lp_event.x.xSubtypeData =
subtype_data('M', 'F', 'C', 'E');
memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
ev->event.data.ce_msg.completion = completion;
memcpy(ev->dma_data, dma_data, dma_data_length);
ev->dma_data_length = dma_data_length;
ev->remote_address = remote_address;
return signal_event(ev);
}
/*
* Initiate a nice (hopefully) shutdown of Linux. We simply are
* going to try and send the init process a SIGINT signal. If
* this fails (why?), we'll simply force it off in a not-so-nice
* manner.
*/
static int shutdown(void)
{
int rc = kill_proc(1, SIGINT, 1);
if (rc) {
printk(KERN_ALERT "mf.c: SIGINT to init failed (%d), "
"hard shutdown commencing\n", rc);
mf_powerOff();
} else
printk(KERN_INFO "mf.c: init has been successfully notified "
"to proceed with shutdown\n");
return rc;
}
/*
* The primary partition VSP object is sending us a new
* event flow. Handle it...
*/
static void intReceived(struct IoMFLpEvent *event)
{
int freeIt = 0;
struct pending_event *two = NULL;
/* ack the interrupt */
event->hp_lp_event.xRc = HvLpEvent_Rc_Good;
HvCallEvent_ackLpEvent(&event->hp_lp_event);
/* process interrupt */
switch (event->hp_lp_event.xSubtype) {
case 0: /* CE message */
switch (event->data.ce_msg.ce_msg[3]) {
case 0x5B: /* power control notification */
if ((event->data.ce_msg.ce_msg[5] & 0x20) != 0) {
printk(KERN_INFO "mf.c: Commencing partition shutdown\n");
if (shutdown() == 0)
signal_ce_msg("\x00\x00\x00\xDB\x00\x00\x00\x00\x00\x00\x00\x00", NULL);
}
break;
case 0xC0: /* get time */
if ((pending_event_head == NULL) ||
(pending_event_head->event.data.ce_msg.ce_msg[3]
!= 0x40))
break;
freeIt = 1;
if (pending_event_head->event.data.ce_msg.completion != 0) {
CeMsgCompleteHandler handler = pending_event_head->event.data.ce_msg.completion->handler;
void *token = pending_event_head->event.data.ce_msg.completion->token;
if (handler != NULL)
(*handler)(token, &(event->data.ce_msg));
}
break;
}
/* remove from queue */
if (freeIt == 1) {
unsigned long flags;
spin_lock_irqsave(&pending_event_spinlock, flags);
if (pending_event_head != NULL) {
struct pending_event *oldHead =
pending_event_head;
pending_event_head = pending_event_head->next;
two = pending_event_head;
free_pending_event(oldHead);
}
spin_unlock_irqrestore(&pending_event_spinlock, flags);
}
/* send next waiting event */
if (two != NULL)
signal_event(NULL);
break;
case 1: /* IT sys shutdown */
printk(KERN_INFO "mf.c: Commencing system shutdown\n");
shutdown();
break;
}
}
/*
* The primary partition VSP object is acknowledging the receipt
* of a flow we sent to them. If there are other flows queued
* up, we must send another one now...
*/
static void ackReceived(struct IoMFLpEvent *event)
{
unsigned long flags;
struct pending_event * two = NULL;
unsigned long freeIt = 0;
/* handle current event */
if (pending_event_head != NULL) {
switch (event->hp_lp_event.xSubtype) {
case 0: /* CE msg */
if (event->data.ce_msg.ce_msg[3] == 0x40) {
if (event->data.ce_msg.ce_msg[2] != 0) {
freeIt = 1;
if (pending_event_head->event.data.ce_msg.completion
!= 0) {
CeMsgCompleteHandler handler = pending_event_head->event.data.ce_msg.completion->handler;
void *token = pending_event_head->event.data.ce_msg.completion->token;
if (handler != NULL)
(*handler)(token, &(event->data.ce_msg));
}
}
} else
freeIt = 1;
break;
case 4: /* allocate */
case 5: /* deallocate */
if (pending_event_head->hdlr != NULL) {
union safe_cast mySafeCast;
mySafeCast.ptr_as_u64 = event->hp_lp_event.xCorrelationToken;
(*pending_event_head->hdlr)(mySafeCast.ptr, event->data.alloc.count);
}
freeIt = 1;
break;
case 6:
{
struct VspRspData *rsp = (struct VspRspData *)event->data.vsp_cmd.token.ptr;
if (rsp != NULL) {
if (rsp->response != NULL)
memcpy(rsp->response, &(event->data.vsp_cmd), sizeof(event->data.vsp_cmd));
if (rsp->sem != NULL)
up(rsp->sem);
} else
printk(KERN_ERR "mf.c: no rsp\n");
freeIt = 1;
}
break;
}
}
else
printk(KERN_ERR "mf.c: stack empty for receiving ack\n");
/* remove from queue */
spin_lock_irqsave(&pending_event_spinlock, flags);
if ((pending_event_head != NULL) && (freeIt == 1)) {
struct pending_event *oldHead = pending_event_head;
pending_event_head = pending_event_head->next;
two = pending_event_head;
free_pending_event(oldHead);
}
spin_unlock_irqrestore(&pending_event_spinlock, flags);
/* send next waiting event */
if (two != NULL)
signal_event(NULL);
}
/*
* This is the generic event handler we are registering with
* the Hypervisor. Ensure the flows are for us, and then
* parse it enough to know if it is an interrupt or an
* acknowledge.
*/
static void hvHandler(struct HvLpEvent *event, struct pt_regs *regs)
{
if ((event != NULL) && (event->xType == HvLpEvent_Type_MachineFac)) {
switch(event->xFlags.xFunction) {
case HvLpEvent_Function_Ack:
ackReceived((struct IoMFLpEvent *)event);
break;
case HvLpEvent_Function_Int:
intReceived((struct IoMFLpEvent *)event);
break;
default:
printk(KERN_ERR "mf.c: non ack/int event received\n");
break;
}
} else
printk(KERN_ERR "mf.c: alien event received\n");
}
/*
* Global kernel interface to allocate and seed events into the
* Hypervisor.
*/
void mf_allocateLpEvents(HvLpIndex targetLp, HvLpEvent_Type type,
unsigned size, unsigned count, MFCompleteHandler hdlr,
void *userToken)
{
struct pending_event *ev = new_pending_event();
int rc;
if (ev == NULL) {
rc = -ENOMEM;
} else {
union safe_cast mine;
mine.ptr = userToken;
ev->event.hp_lp_event.xSubtype = 4;
ev->event.hp_lp_event.xCorrelationToken = mine.ptr_as_u64;
ev->event.hp_lp_event.x.xSubtypeData =
subtype_data('M', 'F', 'M', 'A');
ev->event.data.alloc.target_lp = targetLp;
ev->event.data.alloc.type = type;
ev->event.data.alloc.size = size;
ev->event.data.alloc.count = count;
ev->hdlr = hdlr;
rc = signal_event(ev);
}
if ((rc != 0) && (hdlr != NULL))
(*hdlr)(userToken, rc);
}
/*
* Global kernel interface to unseed and deallocate events already in
* Hypervisor.
*/
void mf_deallocateLpEvents(HvLpIndex targetLp, HvLpEvent_Type type,
unsigned count, MFCompleteHandler hdlr, void *userToken)
{
struct pending_event *ev = new_pending_event();
int rc;
if (ev == NULL)
rc = -ENOMEM;
else {
union safe_cast mine;
mine.ptr = userToken;
ev->event.hp_lp_event.xSubtype = 5;
ev->event.hp_lp_event.xCorrelationToken = mine.ptr_as_u64;
ev->event.hp_lp_event.x.xSubtypeData =
subtype_data('M', 'F', 'M', 'D');
ev->event.data.alloc.target_lp = targetLp;
ev->event.data.alloc.type = type;
ev->event.data.alloc.count = count;
ev->hdlr = hdlr;
rc = signal_event(ev);
}
if ((rc != 0) && (hdlr != NULL))
(*hdlr)(userToken, rc);
}
/*
* Global kernel interface to tell the VSP object in the primary
* partition to power this partition off.
*/
void mf_powerOff(void)
{
printk(KERN_INFO "mf.c: Down it goes...\n");
signal_ce_msg("\x00\x00\x00\x4D\x00\x00\x00\x00\x00\x00\x00\x00", NULL);
for (;;);
}
/*
* Global kernel interface to tell the VSP object in the primary
* partition to reboot this partition.
*/
void mf_reboot(void)
{
printk(KERN_INFO "mf.c: Preparing to bounce...\n");
signal_ce_msg("\x00\x00\x00\x4E\x00\x00\x00\x00\x00\x00\x00\x00", NULL);
for (;;);
}
/*
* Display a single word SRC onto the VSP control panel.
*/
void mf_displaySrc(u32 word)
{
u8 ce[12];
memcpy(ce, "\x00\x00\x00\x4A\x00\x00\x00\x01\x00\x00\x00\x00", 12);
ce[8] = word >> 24;
ce[9] = word >> 16;
ce[10] = word >> 8;
ce[11] = word;
signal_ce_msg(ce, NULL);
}
/*
* Display a single word SRC of the form "PROGXXXX" on the VSP control panel.
*/
void mf_displayProgress(u16 value)
{
u8 ce[12];
u8 src[72];
memcpy(ce, "\x00\x00\x04\x4A\x00\x00\x00\x48\x00\x00\x00\x00", 12);
memcpy(src, "\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00PROGxxxx ",
72);
src[6] = value >> 8;
src[7] = value & 255;
src[44] = "0123456789ABCDEF"[(value >> 12) & 15];
src[45] = "0123456789ABCDEF"[(value >> 8) & 15];
src[46] = "0123456789ABCDEF"[(value >> 4) & 15];
src[47] = "0123456789ABCDEF"[value & 15];
dma_and_signal_ce_msg(ce, NULL, src, sizeof(src), 9 * 64 * 1024);
}
/*
* Clear the VSP control panel. Used to "erase" an SRC that was
* previously displayed.
*/
void mf_clearSrc(void)
{
signal_ce_msg("\x00\x00\x00\x4B\x00\x00\x00\x00\x00\x00\x00\x00", NULL);
}
/*
* Initialization code here.
*/
void mf_init(void)
{
int i;
/* initialize */
spin_lock_init(&pending_event_spinlock);
for (i = 0;
i < sizeof(pending_event_prealloc) / sizeof(*pending_event_prealloc);
++i)
free_pending_event(&pending_event_prealloc[i]);
HvLpEvent_registerHandler(HvLpEvent_Type_MachineFac, &hvHandler);
/* virtual continue ack */
signal_ce_msg("\x00\x00\x00\x57\x00\x00\x00\x00\x00\x00\x00\x00", NULL);
/* initialization complete */
printk(KERN_NOTICE "mf.c: iSeries Linux LPAR Machine Facilities initialized\n");
iSeries_proc_callback(&mf_proc_init);
}
void mf_setSide(char side)
{
u64 newSide;
struct VspCmdData myVspCmd;
memset(&myVspCmd, 0, sizeof(myVspCmd));
switch (side) {
case 'A': newSide = 0;
break;
case 'B': newSide = 1;
break;
case 'C': newSide = 2;
break;
default: newSide = 3;
break;
}
myVspCmd.sub_data.ipl_type = newSide;
myVspCmd.cmd = 10;
(void)signal_vsp_instruction(&myVspCmd);
}
char mf_getSide(void)
{
char returnValue = ' ';
int rc = 0;
struct VspCmdData myVspCmd;
memset(&myVspCmd, 0, sizeof(myVspCmd));
myVspCmd.cmd = 2;
myVspCmd.sub_data.ipl_type = 0;
mb();
rc = signal_vsp_instruction(&myVspCmd);
if (rc != 0)
return returnValue;
if (myVspCmd.result_code == 0) {
switch (myVspCmd.sub_data.ipl_type) {
case 0: returnValue = 'A';
break;
case 1: returnValue = 'B';
break;
case 2: returnValue = 'C';
break;
default: returnValue = 'D';
break;
}
}
return returnValue;
}
void mf_getSrcHistory(char *buffer, int size)
{
#if 0
struct IplTypeReturnStuff returnStuff;
struct pending_event *ev = new_pending_event();
int rc = 0;
char *pages[4];
pages[0] = kmalloc(4096, GFP_ATOMIC);
pages[1] = kmalloc(4096, GFP_ATOMIC);
pages[2] = kmalloc(4096, GFP_ATOMIC);
pages[3] = kmalloc(4096, GFP_ATOMIC);
if ((ev == NULL) || (pages[0] == NULL) || (pages[1] == NULL)
|| (pages[2] == NULL) || (pages[3] == NULL))
return -ENOMEM;
returnStuff.xType = 0;
returnStuff.xRc = 0;
returnStuff.xDone = 0;
ev->event.hp_lp_event.xSubtype = 6;
ev->event.hp_lp_event.x.xSubtypeData =
subtype_data('M', 'F', 'V', 'I');
ev->event.data.vsp_cmd.xEvent = &returnStuff;
ev->event.data.vsp_cmd.cmd = 4;
ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex();
ev->event.data.vsp_cmd.result_code = 0xFF;
ev->event.data.vsp_cmd.reserved = 0;
ev->event.data.vsp_cmd.sub_data.page[0] =
(0x8000000000000000ULL | virt_to_absolute((unsigned long)pages[0]));
ev->event.data.vsp_cmd.sub_data.page[1] =
(0x8000000000000000ULL | virt_to_absolute((unsigned long)pages[1]));
ev->event.data.vsp_cmd.sub_data.page[2] =
(0x8000000000000000ULL | virt_to_absolute((unsigned long)pages[2]));
ev->event.data.vsp_cmd.sub_data.page[3] =
(0x8000000000000000ULL | virt_to_absolute((unsigned long)pages[3]));
mb();
if (signal_event(ev) != 0)
return;
while (returnStuff.xDone != 1)
udelay(10);
if (returnStuff.xRc == 0)
memcpy(buffer, pages[0], size);
kfree(pages[0]);
kfree(pages[1]);
kfree(pages[2]);
kfree(pages[3]);
#endif
}
void mf_setCmdLine(const char *cmdline, int size, u64 side)
{
struct VspCmdData myVspCmd;
dma_addr_t dma_addr = 0;
char *page = dma_alloc_coherent(iSeries_vio_dev, size, &dma_addr,
GFP_ATOMIC);
if (page == NULL) {
printk(KERN_ERR "mf.c: couldn't allocate memory to set command line\n");
return;
}
copy_from_user(page, cmdline, size);
memset(&myVspCmd, 0, sizeof(myVspCmd));
myVspCmd.cmd = 31;
myVspCmd.sub_data.kern.token = dma_addr;
myVspCmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
myVspCmd.sub_data.kern.side = side;
myVspCmd.sub_data.kern.length = size;
mb();
(void)signal_vsp_instruction(&myVspCmd);
dma_free_coherent(iSeries_vio_dev, size, page, dma_addr);
}
int mf_getCmdLine(char *cmdline, int *size, u64 side)
{
struct VspCmdData myVspCmd;
int rc;
int len = *size;
dma_addr_t dma_addr;
dma_addr = dma_map_single(iSeries_vio_dev, cmdline, len,
DMA_FROM_DEVICE);
memset(cmdline, 0, len);
memset(&myVspCmd, 0, sizeof(myVspCmd));
myVspCmd.cmd = 33;
myVspCmd.sub_data.kern.token = dma_addr;
myVspCmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
myVspCmd.sub_data.kern.side = side;
myVspCmd.sub_data.kern.length = len;
mb();
rc = signal_vsp_instruction(&myVspCmd);
if (rc == 0) {
if (myVspCmd.result_code == 0)
len = myVspCmd.sub_data.length_out;
#if 0
else
memcpy(cmdline, "Bad cmdline", 11);
#endif
}
dma_unmap_single(iSeries_vio_dev, dma_addr, *size, DMA_FROM_DEVICE);
return len;
}
int mf_setVmlinuxChunk(const char *buffer, int size, int offset, u64 side)
{
struct VspCmdData myVspCmd;
int rc;
dma_addr_t dma_addr = 0;
char *page = dma_alloc_coherent(iSeries_vio_dev, size, &dma_addr,
GFP_ATOMIC);
if (page == NULL) {
printk(KERN_ERR "mf.c: couldn't allocate memory to set vmlinux chunk\n");
return -ENOMEM;
}
copy_from_user(page, buffer, size);
memset(&myVspCmd, 0, sizeof(myVspCmd));
myVspCmd.cmd = 30;
myVspCmd.sub_data.kern.token = dma_addr;
myVspCmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
myVspCmd.sub_data.kern.side = side;
myVspCmd.sub_data.kern.offset = offset;
myVspCmd.sub_data.kern.length = size;
mb();
rc = signal_vsp_instruction(&myVspCmd);
if (rc == 0) {
if (myVspCmd.result_code == 0)
rc = 0;
else
rc = -ENOMEM;
}
dma_free_coherent(iSeries_vio_dev, size, page, dma_addr);
return rc;
}
int mf_getVmlinuxChunk(char *buffer, int *size, int offset, u64 side)
{
struct VspCmdData myVspCmd;
int rc;
int len = *size;
dma_addr_t dma_addr;
dma_addr = dma_map_single(iSeries_vio_dev, buffer, len,
DMA_FROM_DEVICE);
memset(buffer, 0, len);
memset(&myVspCmd, 0, sizeof(myVspCmd));
myVspCmd.cmd = 32;
myVspCmd.sub_data.kern.token = dma_addr;
myVspCmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
myVspCmd.sub_data.kern.side = side;
myVspCmd.sub_data.kern.offset = offset;
myVspCmd.sub_data.kern.length = len;
mb();
rc = signal_vsp_instruction(&myVspCmd);
if (rc == 0) {
if (myVspCmd.result_code == 0)
*size = myVspCmd.sub_data.length_out;
else
rc = -ENOMEM;
}
dma_unmap_single(iSeries_vio_dev, dma_addr, len, DMA_FROM_DEVICE);
return rc;
}
int mf_setRtcTime(unsigned long time)
{
struct rtc_time tm;
to_tm(time, &tm);
return mf_setRtc(&tm);
}
struct RtcTimeData {
struct semaphore *sem;
struct CeMsgData xCeMsg;
int xRc;
};
void getRtcTimeComplete(void * token, struct CeMsgData *ceMsg)
{
struct RtcTimeData *rtc = (struct RtcTimeData *)token;
memcpy(&(rtc->xCeMsg), ceMsg, sizeof(rtc->xCeMsg));
rtc->xRc = 0;
up(rtc->sem);
}
static unsigned long lastsec = 1;
int mf_getRtcTime(unsigned long *time)
{
u32 dataWord1 = *((u32 *)(&xSpCommArea.xBcdTimeAtIplStart));
u32 dataWord2 = *(((u32 *)&(xSpCommArea.xBcdTimeAtIplStart)) + 1);
int year = 1970;
int year1 = (dataWord1 >> 24) & 0x000000FF;
int year2 = (dataWord1 >> 16) & 0x000000FF;
int sec = (dataWord1 >> 8) & 0x000000FF;
int min = dataWord1 & 0x000000FF;
int hour = (dataWord2 >> 24) & 0x000000FF;
int day = (dataWord2 >> 8) & 0x000000FF;
int mon = dataWord2 & 0x000000FF;
BCD_TO_BIN(sec);
BCD_TO_BIN(min);
BCD_TO_BIN(hour);
BCD_TO_BIN(day);
BCD_TO_BIN(mon);
BCD_TO_BIN(year1);
BCD_TO_BIN(year2);
year = year1 * 100 + year2;
*time = mktime(year, mon, day, hour, min, sec);
*time += (jiffies / HZ);
/*
* Now THIS is a nasty hack!
* It ensures that the first two calls to mf_getRtcTime get different
* answers. That way the loop in init_time (time.c) will not think
* the clock is stuck.
*/
if (lastsec) {
*time -= lastsec;
--lastsec;
}
return 0;
}
int mf_getRtc(struct rtc_time *tm)
{
struct CeMsgCompleteData ceComplete;
struct RtcTimeData rtcData;
int rc;
DECLARE_MUTEX_LOCKED(Semaphore);
memset(&ceComplete, 0, sizeof(ceComplete));
memset(&rtcData, 0, sizeof(rtcData));
rtcData.sem = &Semaphore;
ceComplete.handler = &getRtcTimeComplete;
ceComplete.token = (void *)&rtcData;
rc = signal_ce_msg("\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00",
&ceComplete);
if (rc == 0) {
down(&Semaphore);
if (rtcData.xRc == 0) {
if ((rtcData.xCeMsg.ce_msg[2] == 0xa9) ||
(rtcData.xCeMsg.ce_msg[2] == 0xaf)) {
/* TOD clock is not set */
tm->tm_sec = 1;
tm->tm_min = 1;
tm->tm_hour = 1;
tm->tm_mday = 10;
tm->tm_mon = 8;
tm->tm_year = 71;
mf_setRtc(tm);
}
{
u32 dataWord1 = *((u32 *)(rtcData.xCeMsg.ce_msg+4));
u32 dataWord2 = *((u32 *)(rtcData.xCeMsg.ce_msg+8));
u8 year = (dataWord1 >> 16) & 0x000000FF;
u8 sec = (dataWord1 >> 8) & 0x000000FF;
u8 min = dataWord1 & 0x000000FF;
u8 hour = (dataWord2 >> 24) & 0x000000FF;
u8 day = (dataWord2 >> 8) & 0x000000FF;
u8 mon = dataWord2 & 0x000000FF;
BCD_TO_BIN(sec);
BCD_TO_BIN(min);
BCD_TO_BIN(hour);
BCD_TO_BIN(day);
BCD_TO_BIN(mon);
BCD_TO_BIN(year);
if (year <= 69)
year += 100;
tm->tm_sec = sec;
tm->tm_min = min;
tm->tm_hour = hour;
tm->tm_mday = day;
tm->tm_mon = mon;
tm->tm_year = year;
}
} else {
rc = rtcData.xRc;
tm->tm_sec = 0;
tm->tm_min = 0;
tm->tm_hour = 0;
tm->tm_mday = 15;
tm->tm_mon = 5;
tm->tm_year = 52;
}
tm->tm_wday = 0;
tm->tm_yday = 0;
tm->tm_isdst = 0;
}
return rc;
}
int mf_setRtc(struct rtc_time * tm)
{
char ceTime[12] = "\x00\x00\x00\x41\x00\x00\x00\x00\x00\x00\x00\x00";
u8 day, mon, hour, min, sec, y1, y2;
unsigned year;
year = 1900 + tm->tm_year;
y1 = year / 100;
y2 = year % 100;
sec = tm->tm_sec;
min = tm->tm_min;
hour = tm->tm_hour;
day = tm->tm_mday;
mon = tm->tm_mon + 1;
BIN_TO_BCD(sec);
BIN_TO_BCD(min);
BIN_TO_BCD(hour);
BIN_TO_BCD(mon);
BIN_TO_BCD(day);
BIN_TO_BCD(y1);
BIN_TO_BCD(y2);
ceTime[4] = y1;
ceTime[5] = y2;
ceTime[6] = sec;
ceTime[7] = min;
ceTime[8] = hour;
ceTime[10] = day;
ceTime[11] = mon;
return signal_ce_msg(ceTime, NULL);
}