/*
* Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
* Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
*
* Module name: iSeries_setup.c
*
* Description:
* Architecture- / platform-specific boot-time initialization code for
* the IBM iSeries LPAR. Adapted from original code by Grant Erickson and
* code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
* <dan@net4x.com>.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/config.h>
#include <linux/init.h>
#include <linux/threads.h>
#include <linux/smp.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/bootmem.h>
#include <linux/initrd.h>
#include <linux/seq_file.h>
#include <linux/root_dev.h>
#include <asm/processor.h>
#include <asm/machdep.h>
#include <asm/page.h>
#include <asm/mmu.h>
#include <asm/pgtable.h>
#include <asm/mmu_context.h>
#include <asm/cputable.h>
#include <asm/time.h>
#include "iSeries_setup.h"
#include <asm/naca.h>
#include <asm/paca.h>
#include <asm/sections.h>
#include <asm/iSeries/LparData.h>
#include <asm/iSeries/HvCallHpt.h>
#include <asm/iSeries/HvLpConfig.h>
#include <asm/iSeries/HvCallEvent.h>
#include <asm/iSeries/HvCallSm.h>
#include <asm/iSeries/HvCallXm.h>
#include <asm/iSeries/ItLpQueue.h>
#include <asm/iSeries/IoHriMainStore.h>
#include <asm/iSeries/iSeries_proc.h>
#include <asm/proc_pmc.h>
#include <asm/iSeries/mf.h>
/* Function Prototypes */
extern void abort(void);
#ifdef CONFIG_PPC_ISERIES
static void build_iSeries_Memory_Map( void );
static void setup_iSeries_cache_sizes( void );
static void iSeries_bolt_kernel(unsigned long saddr, unsigned long eaddr);
#endif
void build_valid_hpte( unsigned long vsid, unsigned long ea, unsigned long pa,
pte_t * ptep, unsigned hpteflags, unsigned bolted );
extern void ppcdbg_initialize(void);
extern void iSeries_pcibios_init(void);
static void iSeries_setup_dprofile(void);
/* Global Variables */
static unsigned long procFreqHz = 0;
static unsigned long procFreqMhz = 0;
static unsigned long procFreqMhzHundreths = 0;
static unsigned long tbFreqHz = 0;
static unsigned long tbFreqMhz = 0;
static unsigned long tbFreqMhzHundreths = 0;
unsigned long dprof_shift = 0;
unsigned long dprof_len = 0;
unsigned int * dprof_buffer = NULL;
int piranha_simulator = 0;
extern char _end[];
extern int rd_size; /* Defined in drivers/block/rd.c */
extern unsigned long klimit;
extern unsigned long embedded_sysmap_start;
extern unsigned long embedded_sysmap_end;
extern unsigned long iSeries_recal_tb;
extern unsigned long iSeries_recal_titan;
static int mf_initialized = 0;
struct MemoryBlock {
unsigned long absStart;
unsigned long absEnd;
unsigned long logicalStart;
unsigned long logicalEnd;
};
/*
* Process the main store vpd to determine where the holes in memory are
* and return the number of physical blocks and fill in the array of
* block data.
*/
unsigned long iSeries_process_Condor_mainstore_vpd( struct MemoryBlock *mb_array, unsigned long max_entries )
{
/* Determine if absolute memory has any
* holes so that we can interpret the
* access map we get back from the hypervisor
* correctly.
*/
unsigned long holeFirstChunk, holeSizeChunks;
unsigned long numMemoryBlocks = 1;
struct IoHriMainStoreSegment4 * msVpd = (struct IoHriMainStoreSegment4 *)xMsVpd;
unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
unsigned long holeSize = holeEnd - holeStart;
printk("Mainstore_VPD: Condor\n");
mb_array[0].logicalStart = 0;
mb_array[0].logicalEnd = 0x100000000;
mb_array[0].absStart = 0;
mb_array[0].absEnd = 0x100000000;
if ( holeSize ) {
numMemoryBlocks = 2;
holeStart = holeStart & 0x000fffffffffffff;
holeStart = addr_to_chunk(holeStart);
holeFirstChunk = holeStart;
holeSize = addr_to_chunk(holeSize);
holeSizeChunks = holeSize;
printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
holeFirstChunk, holeSizeChunks );
mb_array[0].logicalEnd = holeFirstChunk;
mb_array[0].absEnd = holeFirstChunk;
mb_array[1].logicalStart = holeFirstChunk;
mb_array[1].logicalEnd = 0x100000000 - holeSizeChunks;
mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
mb_array[1].absEnd = 0x100000000;
}
return numMemoryBlocks;
}
#define MaxSegmentAreas 32
#define MaxSegmentAdrRangeBlocks 128
#define MaxAreaRangeBlocks 4
unsigned long iSeries_process_Regatta_mainstore_vpd( struct MemoryBlock *mb_array, unsigned long max_entries )
{
struct IoHriMainStoreSegment5 * msVpdP = (struct IoHriMainStoreSegment5 *)xMsVpd;
unsigned long numSegmentBlocks = 0;
u32 existsBits = msVpdP->msAreaExists;
unsigned long area_num;
printk("Mainstore_VPD: Regatta\n");
for ( area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
unsigned long numAreaBlocks;
struct IoHriMainStoreArea4 * currentArea;
if ( existsBits & 0x80000000 ) {
unsigned long block_num;
currentArea = &msVpdP->msAreaArray[area_num];
numAreaBlocks = currentArea->numAdrRangeBlocks;
printk("ms_vpd: processing area %2ld blocks=%ld", area_num, numAreaBlocks);
for ( block_num = 0; block_num < numAreaBlocks; ++block_num ) {
/* Process an address range block */
struct MemoryBlock tempBlock;
unsigned long i;
tempBlock.absStart = (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
tempBlock.absEnd = (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
tempBlock.logicalStart = 0;
tempBlock.logicalEnd = 0;
printk("\n block %ld absStart=%016lx absEnd=%016lx", block_num,
tempBlock.absStart, tempBlock.absEnd);
for ( i=0; i<numSegmentBlocks; ++i ) {
if ( mb_array[i].absStart == tempBlock.absStart )
break;
}
if ( i == numSegmentBlocks ) {
if ( numSegmentBlocks == max_entries ) {
panic("iSeries_process_mainstore_vpd: too many memory blocks");
}
mb_array[numSegmentBlocks] = tempBlock;
++numSegmentBlocks;
}
else {
printk(" (duplicate)");
}
}
printk("\n");
}
existsBits <<= 1;
}
/* Now sort the blocks found into ascending sequence */
if ( numSegmentBlocks > 1 ) {
unsigned long m, n;
for ( m=0; m<numSegmentBlocks-1; ++m ) {
for ( n=numSegmentBlocks-1; m<n; --n ) {
if ( mb_array[n].absStart < mb_array[n-1].absStart ) {
struct MemoryBlock tempBlock;
tempBlock = mb_array[n];
mb_array[n] = mb_array[n-1];
mb_array[n-1] = tempBlock;
}
}
}
}
/* Assign "logical" addresses to each block. These
* addresses correspond to the hypervisor "bitmap" space.
* Convert all addresses into units of 256K chunks.
*/
{
unsigned long i, nextBitmapAddress;
printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
nextBitmapAddress = 0;
for ( i=0; i<numSegmentBlocks; ++i ) {
unsigned long length = mb_array[i].absEnd - mb_array[i].absStart;
mb_array[i].logicalStart = nextBitmapAddress;
mb_array[i].logicalEnd = nextBitmapAddress + length;
nextBitmapAddress += length;
printk(" Bitmap range: %016lx - %016lx\n"
" Absolute range: %016lx - %016lx\n",
mb_array[i].logicalStart, mb_array[i].logicalEnd,
mb_array[i].absStart, mb_array[i].absEnd);
mb_array[i].absStart = addr_to_chunk( mb_array[i].absStart & 0x000fffffffffffff );
mb_array[i].absEnd = addr_to_chunk( mb_array[i].absEnd & 0x000fffffffffffff );
mb_array[i].logicalStart = addr_to_chunk( mb_array[i].logicalStart );
mb_array[i].logicalEnd = addr_to_chunk( mb_array[i].logicalEnd );
}
}
return numSegmentBlocks;
}
unsigned long iSeries_process_mainstore_vpd( struct MemoryBlock *mb_array, unsigned long max_entries )
{
unsigned long i;
unsigned long mem_blocks = 0;
if (cur_cpu_spec->cpu_features & CPU_FTR_SLB)
mem_blocks = iSeries_process_Regatta_mainstore_vpd( mb_array, max_entries );
else
mem_blocks = iSeries_process_Condor_mainstore_vpd( mb_array, max_entries );
printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks);
for ( i=0; i<mem_blocks; ++i ) {
printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
" abs chunks %016lx - %016lx\n",
i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
mb_array[i].absStart, mb_array[i].absEnd);
}
return mem_blocks;
}
/*
* void __init iSeries_init_early()
*/
void __init
iSeries_init_early(void)
{
#ifdef CONFIG_PPC_ISERIES
ppcdbg_initialize();
#if defined(CONFIG_BLK_DEV_INITRD)
/*
* If the init RAM disk has been configured and there is
* a non-zero starting address for it, set it up
*/
if ( naca->xRamDisk ) {
initrd_start = (unsigned long)__va(naca->xRamDisk);
initrd_end = initrd_start + naca->xRamDiskSize * PAGE_SIZE;
initrd_below_start_ok = 1; // ramdisk in kernel space
ROOT_DEV = Root_RAM0;
if ( ((rd_size*1024)/PAGE_SIZE) < naca->xRamDiskSize )
rd_size = (naca->xRamDiskSize*PAGE_SIZE)/1024;
} else
#endif /* CONFIG_BLK_DEV_INITRD */
{
/* ROOT_DEV = MKDEV( VIODASD_MAJOR, 1 ); */
}
iSeries_recal_tb = get_tb();
iSeries_recal_titan = HvCallXm_loadTod();
ppc_md.setup_arch = iSeries_setup_arch;
ppc_md.setup_residual = iSeries_setup_residual;
ppc_md.get_cpuinfo = iSeries_get_cpuinfo;
ppc_md.init_IRQ = iSeries_init_IRQ;
ppc_md.get_irq = iSeries_get_irq;
ppc_md.init = NULL;
ppc_md.restart = iSeries_restart;
ppc_md.power_off = iSeries_power_off;
ppc_md.halt = iSeries_halt;
ppc_md.get_boot_time = iSeries_get_boot_time;
ppc_md.set_rtc_time = iSeries_set_rtc_time;
ppc_md.get_rtc_time = iSeries_get_rtc_time;
ppc_md.calibrate_decr = iSeries_calibrate_decr;
ppc_md.progress = iSeries_progress;
hpte_init_iSeries();
tce_init_iSeries();
/* Initialize the table which translate Linux physical addresses to
* AS/400 absolute addresses
*/
build_iSeries_Memory_Map();
setup_iSeries_cache_sizes();
/* Initialize machine-dependency vectors */
#ifdef CONFIG_SMP
smp_init_iSeries();
#endif
if ( itLpNaca.xPirEnvironMode == 0 )
piranha_simulator = 1;
#endif
}
/*
* void __init iSeries_init()
*/
void __init
iSeries_init(unsigned long r3, unsigned long r4, unsigned long r5,
unsigned long r6, unsigned long r7)
{
/* Associate Lp Event Queue 0 with processor 0 */
HvCallEvent_setLpEventQueueInterruptProc( 0, 0 );
{
/* copy the command line parameter from the primary VSP */
char *p, *q;
HvCallEvent_dmaToSp( cmd_line,
2*64*1024,
256,
HvLpDma_Direction_RemoteToLocal );
p = q = cmd_line + 255;
while( p > cmd_line ) {
if ((*p == 0) || (*p == ' ') || (*p == '\n'))
--p;
else
break;
}
if ( p < q )
*(p+1) = 0;
}
if (strstr(cmd_line, "dprofile=")) {
char *p, *q;
for (q = cmd_line; (p = strstr(q, "dprofile=")) != 0; ) {
unsigned long size, new_klimit;
q = p + 9;
if (p > cmd_line && p[-1] != ' ')
continue;
dprof_shift = simple_strtoul(q, &q, 0);
dprof_len = (unsigned long)_etext - (unsigned long)_stext;
dprof_len >>= dprof_shift;
size = ((dprof_len * sizeof(unsigned int)) + (PAGE_SIZE-1)) & PAGE_MASK;
dprof_buffer = (unsigned int *)((klimit + (PAGE_SIZE-1)) & PAGE_MASK);
new_klimit = ((unsigned long)dprof_buffer) + size;
lmb_reserve( __pa(klimit), (new_klimit-klimit));
klimit = new_klimit;
memset( dprof_buffer, 0, size );
}
}
iSeries_setup_dprofile();
iSeries_proc_early_init();
mf_init();
mf_initialized = 1;
mb();
iSeries_proc_callback( &pmc_proc_init );
}
#ifdef CONFIG_PPC_ISERIES
/*
* The iSeries may have very large memories ( > 128 GB ) and a partition
* may get memory in "chunks" that may be anywhere in the 2**52 real
* address space. The chunks are 256K in size. To map this to the
* memory model Linux expects, the AS/400 specific code builds a
* translation table to translate what Linux thinks are "physical"
* addresses to the actual real addresses. This allows us to make
* it appear to Linux that we have contiguous memory starting at
* physical address zero while in fact this could be far from the truth.
* To avoid confusion, I'll let the words physical and/or real address
* apply to the Linux addresses while I'll use "absolute address" to
* refer to the actual hardware real address.
*
* build_iSeries_Memory_Map gets information from the Hypervisor and
* looks at the Main Store VPD to determine the absolute addresses
* of the memory that has been assigned to our partition and builds
* a table used to translate Linux's physical addresses to these
* absolute addresses. Absolute addresses are needed when
* communicating with the hypervisor (e.g. to build HPT entries)
*/
static void __init build_iSeries_Memory_Map(void)
{
u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
u32 nextPhysChunk;
u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
u32 num_ptegs;
u32 totalChunks,moreChunks;
u32 currChunk, thisChunk, absChunk;
u32 currDword;
u32 chunkBit;
u64 map;
struct MemoryBlock mb[32];
unsigned long numMemoryBlocks, curBlock;
/* Chunk size on iSeries is 256K bytes */
totalChunks = (u32)HvLpConfig_getMsChunks();
klimit = msChunks_alloc(klimit, totalChunks, 1UL<<18);
/* Get absolute address of our load area
* and map it to physical address 0
* This guarantees that the loadarea ends up at physical 0
* otherwise, it might not be returned by PLIC as the first
* chunks
*/
loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
loadAreaSize = itLpNaca.xLoadAreaChunks;
/* Only add the pages already mapped here.
* Otherwise we might add the hpt pages
* The rest of the pages of the load area
* aren't in the HPT yet and can still
* be assigned an arbitrary physical address
*/
if ( (loadAreaSize * 64) > HvPagesToMap )
loadAreaSize = HvPagesToMap / 64;
loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;
/* TODO Do we need to do something if the HPT is in the 64MB load area?
* This would be required if the itLpNaca.xLoadAreaChunks includes
* the HPT size
*/
printk( "Mapping load area - physical addr = 0000000000000000\n"
" absolute addr = %016lx\n",
chunk_to_addr(loadAreaFirstChunk) );
printk( "Load area size %dK\n", loadAreaSize*256 );
for ( nextPhysChunk = 0;
nextPhysChunk < loadAreaSize;
++nextPhysChunk ) {
msChunks.abs[nextPhysChunk] = loadAreaFirstChunk+nextPhysChunk;
}
/* Get absolute address of our HPT and remember it so
* we won't map it to any physical address
*/
hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
hptSizePages = (u32)(HvCallHpt_getHptPages());
hptSizeChunks = hptSizePages >> (msChunks.chunk_shift-PAGE_SHIFT);
hptLastChunk = hptFirstChunk + hptSizeChunks - 1;
printk( "HPT absolute addr = %016lx, size = %dK\n",
chunk_to_addr(hptFirstChunk), hptSizeChunks*256 );
/* Fill in the htab_data structure */
/* Fill in size of hashed page table */
num_ptegs = hptSizePages * (PAGE_SIZE/(sizeof(HPTE)*HPTES_PER_GROUP));
htab_data.htab_num_ptegs = num_ptegs;
htab_data.htab_hash_mask = num_ptegs - 1;
/* The actual hashed page table is in the hypervisor, we have no direct access */
htab_data.htab = NULL;
/* Determine if absolute memory has any
* holes so that we can interpret the
* access map we get back from the hypervisor
* correctly.
*/
numMemoryBlocks = iSeries_process_mainstore_vpd( mb, 32 );
/* Process the main store access map from the hypervisor
* to build up our physical -> absolute translation table
*/
curBlock = 0;
currChunk = 0;
currDword = 0;
moreChunks = totalChunks;
while ( moreChunks ) {
map = HvCallSm_get64BitsOfAccessMap( itLpNaca.xLpIndex,
currDword );
thisChunk = currChunk;
while ( map ) {
chunkBit = map >> 63;
map <<= 1;
if ( chunkBit ) {
--moreChunks;
while ( thisChunk >= mb[curBlock].logicalEnd ) {
++curBlock;
if ( curBlock >= numMemoryBlocks )
panic("out of memory blocks");
}
if ( thisChunk < mb[curBlock].logicalStart )
panic("memory block error");
absChunk = mb[curBlock].absStart + ( thisChunk - mb[curBlock].logicalStart );
if ( ( ( absChunk < hptFirstChunk ) ||
( absChunk > hptLastChunk ) ) &&
( ( absChunk < loadAreaFirstChunk ) ||
( absChunk > loadAreaLastChunk ) ) ) {
msChunks.abs[nextPhysChunk] = absChunk;
++nextPhysChunk;
}
}
++thisChunk;
}
++currDword;
currChunk += 64;
}
/* main store size (in chunks) is
* totalChunks - hptSizeChunks
* which should be equal to
* nextPhysChunk
*/
systemcfg->physicalMemorySize = chunk_to_addr(nextPhysChunk);
/* Bolt kernel mappings for all of memory */
iSeries_bolt_kernel( 0, systemcfg->physicalMemorySize );
lmb_init();
lmb_add( 0, systemcfg->physicalMemorySize );
lmb_analyze(); /* ?? */
lmb_reserve( 0, __pa(klimit));
/*
* Hardcode to GP size. I am not sure where to get this info. DRENG
*/
naca->slb_size = 64;
}
/*
* Set up the variables that describe the cache line sizes
* for this machine.
*/
static void __init setup_iSeries_cache_sizes(void)
{
unsigned int i, n;
unsigned int procIx = get_paca()->xLpPaca.xDynHvPhysicalProcIndex;
systemcfg->iCacheL1Size = xIoHriProcessorVpd[procIx].xInstCacheSize * 1024;
systemcfg->iCacheL1LineSize = xIoHriProcessorVpd[procIx].xInstCacheOperandSize;
systemcfg->dCacheL1Size = xIoHriProcessorVpd[procIx].xDataL1CacheSizeKB * 1024;
systemcfg->dCacheL1LineSize = xIoHriProcessorVpd[procIx].xDataCacheOperandSize;
naca->iCacheL1LinesPerPage = PAGE_SIZE / systemcfg->iCacheL1LineSize;
naca->dCacheL1LinesPerPage = PAGE_SIZE / systemcfg->dCacheL1LineSize;
i = systemcfg->iCacheL1LineSize;
n = 0;
while ((i=(i/2))) ++n;
naca->iCacheL1LogLineSize = n;
i = systemcfg->dCacheL1LineSize;
n = 0;
while ((i=(i/2))) ++n;
naca->dCacheL1LogLineSize = n;
printk( "D-cache line size = %d\n", (unsigned int)systemcfg->dCacheL1LineSize);
printk( "I-cache line size = %d\n", (unsigned int)systemcfg->iCacheL1LineSize);
}
/*
* Bolt the kernel addr space into the HPT
*/
static void __init iSeries_bolt_kernel(unsigned long saddr, unsigned long eaddr)
{
unsigned long pa;
unsigned long mode_rw = _PAGE_ACCESSED | _PAGE_COHERENT | PP_RWXX;
HPTE hpte;
for (pa=saddr; pa < eaddr ;pa+=PAGE_SIZE) {
unsigned long ea = (unsigned long)__va(pa);
unsigned long vsid = get_kernel_vsid( ea );
unsigned long va = ( vsid << 28 ) | ( pa & 0xfffffff );
unsigned long vpn = va >> PAGE_SHIFT;
unsigned long slot = HvCallHpt_findValid( &hpte, vpn );
if ( hpte.dw0.dw0.v ) {
/* HPTE exists, so just bolt it */
HvCallHpt_setSwBits( slot, 0x10, 0 );
} else {
/* No HPTE exists, so create a new bolted one */
build_valid_hpte(vsid, ea, pa, NULL, mode_rw, 1);
}
}
}
#endif /* CONFIG_PPC_ISERIES */
extern unsigned long ppc_proc_freq;
extern unsigned long ppc_tb_freq;
/*
* Document me.
*/
void __init
iSeries_setup_arch(void)
{
void * eventStack;
unsigned procIx = get_paca()->xLpPaca.xDynHvPhysicalProcIndex;
/* Add an eye catcher and the systemcfg layout version number */
strcpy(systemcfg->eye_catcher, "SYSTEMCFG:PPC64");
systemcfg->version.major = SYSTEMCFG_MAJOR;
systemcfg->version.minor = SYSTEMCFG_MINOR;
/* Setup the Lp Event Queue */
/* Allocate a page for the Event Stack
* The hypervisor wants the absolute real address, so
* we subtract out the KERNELBASE and add in the
* absolute real address of the kernel load area
*/
eventStack = alloc_bootmem_pages( LpEventStackSize );
memset( eventStack, 0, LpEventStackSize );
/* Invoke the hypervisor to initialize the event stack */
HvCallEvent_setLpEventStack( 0, eventStack, LpEventStackSize );
/* Initialize fields in our Lp Event Queue */
xItLpQueue.xSlicEventStackPtr = (char *)eventStack;
xItLpQueue.xSlicCurEventPtr = (char *)eventStack;
xItLpQueue.xSlicLastValidEventPtr = (char *)eventStack +
(LpEventStackSize - LpEventMaxSize);
xItLpQueue.xIndex = 0;
/* Compute processor frequency */
procFreqHz = (((1UL<<34) * 1000000) / xIoHriProcessorVpd[procIx].xProcFreq );
procFreqMhz = procFreqHz / 1000000;
procFreqMhzHundreths = (procFreqHz/10000) - (procFreqMhz*100);
ppc_proc_freq = procFreqHz;
/* Compute time base frequency */
tbFreqHz = (((1UL<<32) * 1000000) / xIoHriProcessorVpd[procIx].xTimeBaseFreq );
tbFreqMhz = tbFreqHz / 1000000;
tbFreqMhzHundreths = (tbFreqHz/10000) - (tbFreqMhz*100);
ppc_tb_freq = tbFreqHz;
printk("Max logical processors = %d\n",
itVpdAreas.xSlicMaxLogicalProcs );
printk("Max physical processors = %d\n",
itVpdAreas.xSlicMaxPhysicalProcs );
printk("Processor frequency = %lu.%02lu\n",
procFreqMhz,
procFreqMhzHundreths );
printk("Time base frequency = %lu.%02lu\n",
tbFreqMhz,
tbFreqMhzHundreths );
systemcfg->processor = xIoHriProcessorVpd[procIx].xPVR;
printk("Processor version = %x\n", systemcfg->processor);
}
/*
* int as400_setup_residual()
*
* Description:
* This routine pretty-prints CPU information gathered from the VPD
* for use in /proc/cpuinfo
*
* Input(s):
* *buffer - Buffer into which CPU data is to be printed.
*
* Output(s):
* *buffer - Buffer with CPU data.
*
* Returns:
* The number of bytes copied into 'buffer' if OK, otherwise zero or less
* on error.
*/
void iSeries_setup_residual(struct seq_file *m)
{
seq_printf(m,"clock\t\t: %lu.%02luMhz\n",
procFreqMhz, procFreqMhzHundreths );
seq_printf(m,"time base\t: %lu.%02luMHz\n",
tbFreqMhz, tbFreqMhzHundreths );
seq_printf(m,"i-cache\t\t: %d\n",
systemcfg->iCacheL1LineSize);
seq_printf(m,"d-cache\t\t: %d\n",
systemcfg->dCacheL1LineSize);
}
void iSeries_get_cpuinfo(struct seq_file *m)
{
seq_printf(m,"machine\t\t: 64-bit iSeries Logical Partition\n");
}
/*
* Document me.
* and Implement me.
*/
int
iSeries_get_irq(struct pt_regs *regs)
{
/* -2 means ignore this interrupt */
return -2;
}
/*
* Document me.
*/
void
iSeries_restart(char *cmd)
{
mf_reboot();
}
/*
* Document me.
*/
void
iSeries_power_off(void)
{
mf_powerOff();
}
/*
* Document me.
*/
void
iSeries_halt(void)
{
mf_powerOff();
}
/* JDH Hack */
unsigned long jdh_time = 0;
extern void setup_default_decr(void);
/*
* void __init iSeries_calibrate_decr()
*
* Description:
* This routine retrieves the internal processor frequency from the VPD,
* and sets up the kernel timer decrementer based on that value.
*
*/
void __init
iSeries_calibrate_decr(void)
{
unsigned long cyclesPerUsec;
struct div_result divres;
/* Compute decrementer (and TB) frequency
* in cycles/sec
*/
cyclesPerUsec = ppc_tb_freq / 1000000; /* cycles / usec */
/* Set the amount to refresh the decrementer by. This
* is the number of decrementer ticks it takes for
* 1/HZ seconds.
*/
tb_ticks_per_jiffy = ppc_tb_freq / HZ;
#if 0
/* TEST CODE FOR ADJTIME */
tb_ticks_per_jiffy += tb_ticks_per_jiffy / 5000;
/* END OF TEST CODE */
#endif
/*
* tb_ticks_per_sec = freq; would give better accuracy
* but tb_ticks_per_sec = tb_ticks_per_jiffy*HZ; assures
* that jiffies (and xtime) will match the time returned
* by do_gettimeofday.
*/
tb_ticks_per_sec = tb_ticks_per_jiffy * HZ;
tb_ticks_per_usec = cyclesPerUsec;
tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
div128_by_32( 1024*1024, 0, tb_ticks_per_sec, &divres );
tb_to_xs = divres.result_low;
setup_default_decr();
}
void __init
iSeries_progress( char * st, unsigned short code )
{
printk( "Progress: [%04x] - %s\n", (unsigned)code, st );
if ( !piranha_simulator && mf_initialized ) {
if (code != 0xffff)
mf_displayProgress( code );
else
mf_clearSrc();
}
}
void iSeries_fixup_klimit(void)
{
/* Change klimit to take into account any ram disk that may be included */
if (naca->xRamDisk)
klimit = KERNELBASE + (u64)naca->xRamDisk + (naca->xRamDiskSize * PAGE_SIZE);
else {
/* No ram disk was included - check and see if there was an embedded system map */
/* Change klimit to take into account any embedded system map */
if (embedded_sysmap_end)
klimit = KERNELBASE + ((embedded_sysmap_end+4095) & 0xfffffffffffff000);
}
}
static void iSeries_setup_dprofile(void)
{
if ( dprof_buffer ) {
unsigned i;
for (i=0; i<NR_CPUS; ++i) {
paca[i].prof_shift = dprof_shift;
paca[i].prof_len = dprof_len-1;
paca[i].prof_buffer = dprof_buffer;
paca[i].prof_stext = (unsigned *)_stext;
mb();
paca[i].prof_enabled = 1;
}
}
}