/*
* eeh.c
* Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/proc_fs.h>
#include <linux/bootmem.h>
#include <linux/mm.h>
#include <linux/rbtree.h>
#include <linux/spinlock.h>
#include <linux/seq_file.h>
#include <asm/paca.h>
#include <asm/processor.h>
#include <asm/naca.h>
#include <asm/io.h>
#include <asm/machdep.h>
#include <asm/pgtable.h>
#include "pci.h"
#undef DEBUG
#define BUID_HI(buid) ((buid) >> 32)
#define BUID_LO(buid) ((buid) & 0xffffffff)
#define CONFIG_ADDR(busno, devfn) \
(((((busno) & 0xff) << 8) | ((devfn) & 0xf8)) << 8)
/* RTAS tokens */
static int ibm_set_eeh_option;
static int ibm_set_slot_reset;
static int ibm_read_slot_reset_state;
static int eeh_subsystem_enabled;
#define EEH_MAX_OPTS 4096
static char *eeh_opts;
static int eeh_opts_last;
/* System monitoring statistics */
static DEFINE_PER_CPU(unsigned long, total_mmio_ffs);
static DEFINE_PER_CPU(unsigned long, false_positives);
static DEFINE_PER_CPU(unsigned long, ignored_failures);
static int eeh_check_opts_config(struct device_node *dn, int class_code,
int vendor_id, int device_id,
int default_state);
/**
* The pci address cache subsystem. This subsystem places
* PCI device address resources into a red-black tree, sorted
* according to the address range, so that given only an i/o
* address, the corresponding PCI device can be **quickly**
* found.
*
* Currently, the only customer of this code is the EEH subsystem;
* thus, this code has been somewhat tailored to suit EEH better.
* In particular, the cache does *not* hold the addresses of devices
* for which EEH is not enabled.
*
* (Implementation Note: The RB tree seems to be better/faster
* than any hash algo I could think of for this problem, even
* with the penalty of slow pointer chases for d-cache misses).
*/
struct pci_io_addr_range
{
struct rb_node rb_node;
unsigned long addr_lo;
unsigned long addr_hi;
struct pci_dev *pcidev;
unsigned int flags;
};
static struct pci_io_addr_cache
{
struct rb_root rb_root;
spinlock_t piar_lock;
} pci_io_addr_cache_root;
static inline struct pci_dev *__pci_get_device_by_addr(unsigned long addr)
{
struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
while (n) {
struct pci_io_addr_range *piar;
piar = rb_entry(n, struct pci_io_addr_range, rb_node);
if (addr < piar->addr_lo) {
n = n->rb_left;
} else {
if (addr > piar->addr_hi) {
n = n->rb_right;
} else {
pci_dev_get(piar->pcidev);
return piar->pcidev;
}
}
}
return NULL;
}
/**
* pci_get_device_by_addr - Get device, given only address
* @addr: mmio (PIO) phys address or i/o port number
*
* Given an mmio phys address, or a port number, find a pci device
* that implements this address. Be sure to pci_dev_put the device
* when finished. I/O port numbers are assumed to be offset
* from zero (that is, they do *not* have pci_io_addr added in).
* It is safe to call this function within an interrupt.
*/
static struct pci_dev *pci_get_device_by_addr(unsigned long addr)
{
struct pci_dev *dev;
unsigned long flags;
spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
dev = __pci_get_device_by_addr(addr);
spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
return dev;
}
#ifdef DEBUG
/*
* Handy-dandy debug print routine, does nothing more
* than print out the contents of our addr cache.
*/
static void pci_addr_cache_print(struct pci_io_addr_cache *cache)
{
struct rb_node *n;
int cnt = 0;
n = rb_first(&cache->rb_root);
while (n) {
struct pci_io_addr_range *piar;
piar = rb_entry(n, struct pci_io_addr_range, rb_node);
printk(KERN_DEBUG "PCI: %s addr range %d [%lx-%lx]: %s %s\n",
(piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
piar->addr_lo, piar->addr_hi, pci_name(piar->pcidev),
pci_pretty_name(piar->pcidev));
cnt++;
n = rb_next(n);
}
}
#endif
/* Insert address range into the rb tree. */
static struct pci_io_addr_range *
pci_addr_cache_insert(struct pci_dev *dev, unsigned long alo,
unsigned long ahi, unsigned int flags)
{
struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
struct rb_node *parent = NULL;
struct pci_io_addr_range *piar;
/* Walk tree, find a place to insert into tree */
while (*p) {
parent = *p;
piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
if (alo < piar->addr_lo) {
p = &parent->rb_left;
} else if (ahi > piar->addr_hi) {
p = &parent->rb_right;
} else {
if (dev != piar->pcidev ||
alo != piar->addr_lo || ahi != piar->addr_hi) {
printk(KERN_WARNING "PIAR: overlapping address range\n");
}
return piar;
}
}
piar = (struct pci_io_addr_range *)kmalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
if (!piar)
return NULL;
piar->addr_lo = alo;
piar->addr_hi = ahi;
piar->pcidev = dev;
piar->flags = flags;
rb_link_node(&piar->rb_node, parent, p);
rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);
return piar;
}
static void __pci_addr_cache_insert_device(struct pci_dev *dev)
{
struct device_node *dn;
int i;
dn = pci_device_to_OF_node(dev);
if (!dn) {
printk(KERN_WARNING "PCI: no pci dn found for dev=%s %s\n",
pci_name(dev), pci_pretty_name(dev));
pci_dev_put(dev);
return;
}
/* Skip any devices for which EEH is not enabled. */
if (!(dn->eeh_mode & EEH_MODE_SUPPORTED) ||
dn->eeh_mode & EEH_MODE_NOCHECK) {
#ifdef DEBUG
printk(KERN_INFO "PCI: skip building address cache for=%s %s\n",
pci_name(dev), pci_pretty_name(dev));
#endif
pci_dev_put(dev);
return;
}
/* Walk resources on this device, poke them into the tree */
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
unsigned long start = pci_resource_start(dev,i);
unsigned long end = pci_resource_end(dev,i);
unsigned int flags = pci_resource_flags(dev,i);
/* We are interested only bus addresses, not dma or other stuff */
if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
continue;
if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
continue;
pci_addr_cache_insert(dev, start, end, flags);
}
}
/**
* pci_addr_cache_insert_device - Add a device to the address cache
* @dev: PCI device whose I/O addresses we are interested in.
*
* In order to support the fast lookup of devices based on addresses,
* we maintain a cache of devices that can be quickly searched.
* This routine adds a device to that cache.
*/
void pci_addr_cache_insert_device(struct pci_dev *dev)
{
unsigned long flags;
spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
__pci_addr_cache_insert_device(dev);
spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
}
static inline void __pci_addr_cache_remove_device(struct pci_dev *dev)
{
struct rb_node *n;
restart:
n = rb_first(&pci_io_addr_cache_root.rb_root);
while (n) {
struct pci_io_addr_range *piar;
piar = rb_entry(n, struct pci_io_addr_range, rb_node);
if (piar->pcidev == dev) {
rb_erase(n, &pci_io_addr_cache_root.rb_root);
kfree(piar);
goto restart;
}
n = rb_next(n);
}
pci_dev_put(dev);
}
/**
* pci_addr_cache_remove_device - remove pci device from addr cache
* @dev: device to remove
*
* Remove a device from the addr-cache tree.
* This is potentially expensive, since it will walk
* the tree multiple times (once per resource).
* But so what; device removal doesn't need to be that fast.
*/
void pci_addr_cache_remove_device(struct pci_dev *dev)
{
unsigned long flags;
spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
__pci_addr_cache_remove_device(dev);
spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
}
/**
* pci_addr_cache_build - Build a cache of I/O addresses
*
* Build a cache of pci i/o addresses. This cache will be used to
* find the pci device that corresponds to a given address.
* This routine scans all pci busses to build the cache.
* Must be run late in boot process, after the pci controllers
* have been scaned for devices (after all device resources are known).
*/
void __init pci_addr_cache_build(void)
{
struct pci_dev *dev = NULL;
spin_lock_init(&pci_io_addr_cache_root.piar_lock);
while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
/* Ignore PCI bridges ( XXX why ??) */
if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE) {
pci_dev_put(dev);
continue;
}
pci_addr_cache_insert_device(dev);
}
#ifdef DEBUG
/* Verify tree built up above, echo back the list of addrs. */
pci_addr_cache_print(&pci_io_addr_cache_root);
#endif
}
/**
* eeh_token_to_phys - convert EEH address token to phys address
* @token i/o token, should be address in the form 0xA....
*
* Converts EEH address tokens into physical addresses. Note that
* ths routine does *not* convert I/O BAR addresses (which start
* with 0xE...) to phys addresses!
*/
static unsigned long eeh_token_to_phys(unsigned long token)
{
pte_t *ptep;
unsigned long pa, vaddr;
if (REGION_ID(token) == EEH_REGION_ID)
vaddr = IO_TOKEN_TO_ADDR(token);
else
return token;
ptep = find_linux_pte(ioremap_mm.pgd, vaddr);
pa = pte_pfn(*ptep) << PAGE_SHIFT;
return pa | (vaddr & (PAGE_SIZE-1));
}
/**
* eeh_check_failure - check if all 1's data is due to EEH slot freeze
* @token i/o token, should be address in the form 0xA....
* @val value, should be all 1's (XXX why do we need this arg??)
*
* Check for an eeh failure at the given token address.
* The given value has been read and it should be 1's (0xff, 0xffff or
* 0xffffffff).
*
* Probe to determine if an error actually occurred. If not return val.
* Otherwise panic.
*
* Note this routine might be called in an interrupt context ...
*/
unsigned long eeh_check_failure(void *token, unsigned long val)
{
unsigned long addr;
struct pci_dev *dev;
struct device_node *dn;
unsigned long ret, rets[2];
static spinlock_t lock = SPIN_LOCK_UNLOCKED;
/* dont want this on the stack */
static unsigned char slot_err_buf[RTAS_ERROR_LOG_MAX];
unsigned long flags;
__get_cpu_var(total_mmio_ffs)++;
if (!eeh_subsystem_enabled)
return val;
/* Finding the phys addr + pci device; this is pretty quick. */
addr = eeh_token_to_phys((unsigned long)token);
dev = pci_get_device_by_addr(addr);
if (!dev)
return val;
dn = pci_device_to_OF_node(dev);
if (!dn) {
pci_dev_put(dev);
return val;
}
/* Access to IO BARs might get this far and still not want checking. */
if (!(dn->eeh_mode & EEH_MODE_SUPPORTED) ||
dn->eeh_mode & EEH_MODE_NOCHECK) {
pci_dev_put(dev);
return val;
}
if (!dn->eeh_config_addr) {
pci_dev_put(dev);
return val;
}
/*
* Now test for an EEH failure. This is VERY expensive.
* Note that the eeh_config_addr may be a parent device
* in the case of a device behind a bridge, or it may be
* function zero of a multi-function device.
* In any case they must share a common PHB.
*/
ret = rtas_call(ibm_read_slot_reset_state, 3, 3, rets,
dn->eeh_config_addr, BUID_HI(dn->phb->buid),
BUID_LO(dn->phb->buid));
if (ret == 0 && rets[1] == 1 && rets[0] >= 2) {
unsigned long slot_err_ret;
spin_lock_irqsave(&lock, flags);
memset(slot_err_buf, 0, RTAS_ERROR_LOG_MAX);
slot_err_ret = rtas_call(rtas_token("ibm,slot-error-detail"),
8, 1, NULL, dn->eeh_config_addr,
BUID_HI(dn->phb->buid),
BUID_LO(dn->phb->buid), NULL, 0,
__pa(slot_err_buf),
RTAS_ERROR_LOG_MAX,
2 /* Permanent Error */);
if (slot_err_ret == 0)
log_error(slot_err_buf, ERR_TYPE_RTAS_LOG,
1 /* Fatal */);
spin_unlock_irqrestore(&lock, flags);
/*
* XXX We should create a separate sysctl for this.
*
* Since the panic_on_oops sysctl is used to halt
* the system in light of potential corruption, we
* can use it here.
*/
if (panic_on_oops) {
panic("EEH: MMIO failure (%ld) on device:%s %s\n",
rets[0], pci_name(dev), pci_pretty_name(dev));
} else {
__get_cpu_var(ignored_failures)++;
printk(KERN_INFO "EEH: MMIO failure (%ld) on device:%s %s\n",
rets[0], pci_name(dev), pci_pretty_name(dev));
}
} else {
__get_cpu_var(false_positives)++;
}
pci_dev_put(dev);
return val;
}
EXPORT_SYMBOL(eeh_check_failure);
struct eeh_early_enable_info {
unsigned int buid_hi;
unsigned int buid_lo;
};
/* Enable eeh for the given device node. */
static void *early_enable_eeh(struct device_node *dn, void *data)
{
struct eeh_early_enable_info *info = data;
long ret;
char *status = get_property(dn, "status", 0);
u32 *class_code = (u32 *)get_property(dn, "class-code", 0);
u32 *vendor_id = (u32 *)get_property(dn, "vendor-id", 0);
u32 *device_id = (u32 *)get_property(dn, "device-id", 0);
u32 *regs;
int enable;
if (status && strcmp(status, "ok") != 0)
return NULL; /* ignore devices with bad status */
/* Weed out PHBs or other bad nodes. */
if (!class_code || !vendor_id || !device_id)
return NULL;
/* Ignore known PHBs and EADs bridges */
if (*vendor_id == PCI_VENDOR_ID_IBM &&
(*device_id == 0x0102 || *device_id == 0x008b ||
*device_id == 0x0188 || *device_id == 0x0302))
return NULL;
/*
* Now decide if we are going to "Disable" EEH checking
* for this device. We still run with the EEH hardware active,
* but we won't be checking for ff's. This means a driver
* could return bad data (very bad!), an interrupt handler could
* hang waiting on status bits that won't change, etc.
* But there are a few cases like display devices that make sense.
*/
enable = 1; /* i.e. we will do checking */
if ((*class_code >> 16) == PCI_BASE_CLASS_DISPLAY)
enable = 0;
if (!eeh_check_opts_config(dn, *class_code, *vendor_id, *device_id,
enable)) {
if (enable) {
printk(KERN_WARNING "EEH: %s user requested to run "
"without EEH.\n", dn->full_name);
enable = 0;
}
}
if (!enable) {
dn->eeh_mode = EEH_MODE_NOCHECK;
return NULL;
}
/* This device may already have an EEH parent. */
if (dn->parent && (dn->parent->eeh_mode & EEH_MODE_SUPPORTED)) {
/* Parent supports EEH. */
dn->eeh_mode |= EEH_MODE_SUPPORTED;
dn->eeh_config_addr = dn->parent->eeh_config_addr;
return NULL;
}
/* Ok... see if this device supports EEH. */
regs = (u32 *)get_property(dn, "reg", 0);
if (regs) {
/* First register entry is addr (00BBSS00) */
/* Try to enable eeh */
ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
regs[0], info->buid_hi, info->buid_lo,
EEH_ENABLE);
if (ret == 0) {
eeh_subsystem_enabled = 1;
dn->eeh_mode |= EEH_MODE_SUPPORTED;
dn->eeh_config_addr = regs[0];
#ifdef DEBUG
printk(KERN_DEBUG "EEH: %s: eeh enabled\n",
dn->full_name);
#endif
} else {
printk(KERN_WARNING "EEH: %s: rtas_call failed.\n",
dn->full_name);
}
} else {
printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
dn->full_name);
}
return NULL;
}
/*
* Initialize EEH by trying to enable it for all of the adapters in the system.
* As a side effect we can determine here if eeh is supported at all.
* Note that we leave EEH on so failed config cycles won't cause a machine
* check. If a user turns off EEH for a particular adapter they are really
* telling Linux to ignore errors.
*
* We should probably distinguish between "ignore errors" and "turn EEH off"
* but for now disabling EEH for adapters is mostly to work around drivers that
* directly access mmio space (without using the macros).
*
* The eeh-force-off option does literally what it says, so if Linux must
* avoid enabling EEH this must be done.
*/
void __init eeh_init(void)
{
struct device_node *phb;
struct eeh_early_enable_info info;
char *eeh_force_off = strstr(saved_command_line, "eeh-force-off");
ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
return;
if (eeh_force_off) {
printk(KERN_WARNING "EEH: WARNING: PCI Enhanced I/O Error "
"Handling is user disabled\n");
return;
}
/* Enable EEH for all adapters. Note that eeh requires buid's */
for (phb = of_find_node_by_name(NULL, "pci"); phb;
phb = of_find_node_by_name(phb, "pci")) {
int len;
int *buid_vals;
buid_vals = (int *)get_property(phb, "ibm,fw-phb-id", &len);
if (!buid_vals)
continue;
if (len == sizeof(int)) {
info.buid_lo = buid_vals[0];
info.buid_hi = 0;
} else if (len == sizeof(int)*2) {
info.buid_hi = buid_vals[0];
info.buid_lo = buid_vals[1];
} else {
printk(KERN_INFO "EEH: odd ibm,fw-phb-id len returned: %d\n", len);
continue;
}
traverse_pci_devices(phb, early_enable_eeh, NULL, &info);
}
if (eeh_subsystem_enabled)
printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
}
/**
* eeh_add_device - perform EEH initialization for the indicated pci device
* @dev: pci device for which to set up EEH
*
* This routine can be used to perform EEH initialization for PCI
* devices that were added after system boot (e.g. hotplug, dlpar).
* Whether this actually enables EEH or not for this device depends
* on the type of the device, on earlier boot command-line
* arguments & etc.
*/
void eeh_add_device(struct pci_dev *dev)
{
struct device_node *dn;
struct pci_controller *phb;
struct eeh_early_enable_info info;
if (!dev || !eeh_subsystem_enabled)
return;
#ifdef DEBUG
printk(KERN_DEBUG "EEH: adding device %s %s\n", pci_name(dev),
pci_pretty_name(dev));
#endif
dn = pci_device_to_OF_node(dev);
if (NULL == dn)
return;
phb = PCI_GET_PHB_PTR(dev);
if (NULL == phb || 0 == phb->buid) {
printk(KERN_WARNING "EEH: Expected buid but found none\n");
return;
}
info.buid_hi = BUID_HI(phb->buid);
info.buid_lo = BUID_LO(phb->buid);
early_enable_eeh(dn, &info);
pci_addr_cache_insert_device (dev);
}
EXPORT_SYMBOL(eeh_add_device);
/**
* eeh_remove_device - undo EEH setup for the indicated pci device
* @dev: pci device to be removed
*
* This routine should be when a device is removed from a running
* system (e.g. by hotplug or dlpar).
*/
void eeh_remove_device(struct pci_dev *dev)
{
if (!dev || !eeh_subsystem_enabled)
return;
/* Unregister the device with the EEH/PCI address search system */
#ifdef DEBUG
printk(KERN_DEBUG "EEH: remove device %s %s\n", pci_name(dev),
pci_pretty_name(dev));
#endif
pci_addr_cache_remove_device(dev);
}
EXPORT_SYMBOL(eeh_remove_device);
/*
* If EEH is implemented, find the PCI device using given phys addr
* and check to see if eeh failure checking is disabled.
* Remap the addr (trivially) to the EEH region if EEH checking enabled.
* For addresses not known to PCI the vaddr is simply returned unchanged.
*/
void *eeh_ioremap(unsigned long addr, void *vaddr)
{
struct pci_dev *dev;
struct device_node *dn;
if (!eeh_subsystem_enabled)
return vaddr;
dev = pci_get_device_by_addr(addr);
if (!dev)
return vaddr;
dn = pci_device_to_OF_node(dev);
if (!dn) {
pci_dev_put(dev);
return vaddr;
}
if (dn->eeh_mode & EEH_MODE_NOCHECK) {
pci_dev_put(dev);
return vaddr;
}
pci_dev_put(dev);
return (void *)IO_ADDR_TO_TOKEN(vaddr);
}
static int proc_eeh_show(struct seq_file *m, void *v)
{
unsigned int cpu;
unsigned long ffs = 0, positives = 0, failures = 0;
for_each_cpu(cpu) {
ffs += per_cpu(total_mmio_ffs, cpu);
positives += per_cpu(false_positives, cpu);
failures += per_cpu(ignored_failures, cpu);
}
if (0 == eeh_subsystem_enabled) {
seq_printf(m, "EEH Subsystem is globally disabled\n");
seq_printf(m, "eeh_total_mmio_ffs=%ld\n", ffs);
} else {
seq_printf(m, "EEH Subsystem is enabled\n");
seq_printf(m, "eeh_total_mmio_ffs=%ld\n"
"eeh_false_positives=%ld\n"
"eeh_ignored_failures=%ld\n",
ffs, positives, failures);
}
return 0;
}
static int proc_eeh_open(struct inode *inode, struct file *file)
{
return single_open(file, proc_eeh_show, NULL);
}
static struct file_operations proc_eeh_operations = {
.open = proc_eeh_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int __init eeh_init_proc(void)
{
struct proc_dir_entry *e;
if (systemcfg->platform & PLATFORM_PSERIES) {
e = create_proc_entry("ppc64/eeh", 0, NULL);
if (e)
e->proc_fops = &proc_eeh_operations;
}
return 0;
}
__initcall(eeh_init_proc);
/*
* Test if "dev" should be configured on or off.
* This processes the options literally from left to right.
* This lets the user specify stupid combinations of options,
* but at least the result should be very predictable.
*/
static int eeh_check_opts_config(struct device_node *dn,
int class_code, int vendor_id, int device_id,
int default_state)
{
char devname[32], classname[32];
char *strs[8], *s;
int nstrs, i;
int ret = default_state;
/* Build list of strings to match */
nstrs = 0;
s = (char *)get_property(dn, "ibm,loc-code", 0);
if (s)
strs[nstrs++] = s;
sprintf(devname, "dev%04x:%04x", vendor_id, device_id);
strs[nstrs++] = devname;
sprintf(classname, "class%04x", class_code);
strs[nstrs++] = classname;
strs[nstrs++] = ""; /* yes, this matches the empty string */
/*
* Now see if any string matches the eeh_opts list.
* The eeh_opts list entries start with + or -.
*/
for (s = eeh_opts; s && (s < (eeh_opts + eeh_opts_last));
s += strlen(s)+1) {
for (i = 0; i < nstrs; i++) {
if (strcasecmp(strs[i], s+1) == 0) {
ret = (strs[i][0] == '+') ? 1 : 0;
}
}
}
return ret;
}
/*
* Handle kernel eeh-on & eeh-off cmd line options for eeh.
*
* We support:
* eeh-off=loc1,loc2,loc3...
*
* and this option can be repeated so
* eeh-off=loc1,loc2 eeh-off=loc3
* is the same as eeh-off=loc1,loc2,loc3
*
* loc is an IBM location code that can be found in a manual or
* via openfirmware (or the Hardware Management Console).
*
* We also support these additional "loc" values:
*
* dev#:# vendor:device id in hex (e.g. dev1022:2000)
* class# class id in hex (e.g. class0200)
*
* If no location code is specified all devices are assumed
* so eeh-off means eeh by default is off.
*/
/*
* This is implemented as a null separated list of strings.
* Each string looks like this: "+X" or "-X"
* where X is a loc code, vendor:device, class (as shown above)
* or empty which is used to indicate all.
*
* We interpret this option string list so that it will literally
* behave left-to-right even if some combinations don't make sense.
*/
static int __init eeh_parm(char *str, int state)
{
char *s, *cur, *curend;
if (!eeh_opts) {
eeh_opts = alloc_bootmem(EEH_MAX_OPTS);
eeh_opts[eeh_opts_last++] = '+'; /* default */
eeh_opts[eeh_opts_last++] = '\0';
}
if (*str == '\0') {
eeh_opts[eeh_opts_last++] = state ? '+' : '-';
eeh_opts[eeh_opts_last++] = '\0';
return 1;
}
if (*str == '=')
str++;
for (s = str; s && *s != '\0'; s = curend) {
cur = s;
/* ignore empties. Don't treat as "all-on" or "all-off" */
while (*cur == ',')
cur++;
curend = strchr(cur, ',');
if (!curend)
curend = cur + strlen(cur);
if (*cur) {
int curlen = curend-cur;
if (eeh_opts_last + curlen > EEH_MAX_OPTS-2) {
printk(KERN_WARNING "EEH: sorry...too many "
"eeh cmd line options\n");
return 1;
}
eeh_opts[eeh_opts_last++] = state ? '+' : '-';
strncpy(eeh_opts+eeh_opts_last, cur, curlen);
eeh_opts_last += curlen;
eeh_opts[eeh_opts_last++] = '\0';
}
}
return 1;
}
static int __init eehoff_parm(char *str)
{
return eeh_parm(str, 0);
}
static int __init eehon_parm(char *str)
{
return eeh_parm(str, 1);
}
__setup("eeh-off", eehoff_parm);
__setup("eeh-on", eehon_parm);