#include <linux/kernel.h>
#include <linux/mmzone.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <asm/atomic.h>
#include <asm/sn/types.h>
#include <asm/sn/addrs.h>
#include <asm/sn/nmi.h>
#include <asm/sn/arch.h>
#include <asm/sn/sn0/hub.h>
#if 0
#define NODE_NUM_CPUS(n) CNODE_NUM_CPUS(n)
#else
#define NODE_NUM_CPUS(n) CPUS_PER_NODE
#endif
#define CNODEID_NONE (cnodeid_t)-1
#define enter_panic_mode() spin_lock(&nmi_lock)
typedef unsigned long machreg_t;
spinlock_t nmi_lock = SPIN_LOCK_UNLOCKED;
/*
* Lets see what else we need to do here. Set up sp, gp?
*/
void nmi_dump(void)
{
void cont_nmi_dump(void);
cont_nmi_dump();
}
void install_cpu_nmi_handler(int slice)
{
nmi_t *nmi_addr;
nmi_addr = (nmi_t *)NMI_ADDR(get_nasid(), slice);
if (nmi_addr->call_addr)
return;
nmi_addr->magic = NMI_MAGIC;
nmi_addr->call_addr = (void *)nmi_dump;
nmi_addr->call_addr_c =
(void *)(~((unsigned long)(nmi_addr->call_addr)));
nmi_addr->call_parm = 0;
}
/*
* Copy the cpu registers which have been saved in the IP27prom format
* into the eframe format for the node under consideration.
*/
void
nmi_cpu_eframe_save(nasid_t nasid,
int slice)
{
int i, numberof_nmi_cpu_regs;
machreg_t *prom_format;
/* Get the total number of registers being saved by the prom */
numberof_nmi_cpu_regs = sizeof(struct reg_struct) / sizeof(machreg_t);
/* Get the pointer to the current cpu's register set. */
prom_format =
(machreg_t *)(TO_UNCAC(TO_NODE(nasid, IP27_NMI_KREGS_OFFSET)) +
slice * IP27_NMI_KREGS_CPU_SIZE);
printk("NMI nasid %d: slice %d\n", nasid, slice);
for (i = 0; i < numberof_nmi_cpu_regs; i++)
printk("0x%lx ", prom_format[i]);
printk("\n\n");
}
/*
* Copy the cpu registers which have been saved in the IP27prom format
* into the eframe format for the node under consideration.
*/
void
nmi_node_eframe_save(cnodeid_t cnode)
{
int cpu;
nasid_t nasid;
/* Make sure that we have a valid node */
if (cnode == CNODEID_NONE)
return;
nasid = COMPACT_TO_NASID_NODEID(cnode);
if (nasid == INVALID_NASID)
return;
/* Save the registers into eframe for each cpu */
for(cpu = 0; cpu < NODE_NUM_CPUS(cnode); cpu++)
nmi_cpu_eframe_save(nasid, cpu);
}
/*
* Save the nmi cpu registers for all cpus in the system.
*/
void
nmi_eframes_save(void)
{
cnodeid_t cnode;
for(cnode = 0 ; cnode < numnodes; cnode++)
nmi_node_eframe_save(cnode);
}
void
cont_nmi_dump(void)
{
#ifndef REAL_NMI_SIGNAL
static atomic_t nmied_cpus = ATOMIC_INIT(0);
atomic_inc(&nmied_cpus);
#endif
/*
* Use enter_panic_mode to allow only 1 cpu to proceed
*/
enter_panic_mode();
#ifdef REAL_NMI_SIGNAL
/*
* Wait up to 15 seconds for the other cpus to respond to the NMI.
* If a cpu has not responded after 10 sec, send it 1 additional NMI.
* This is for 2 reasons:
* - sometimes a MMSC fail to NMI all cpus.
* - on 512p SN0 system, the MMSC will only send NMIs to
* half the cpus. Unfortunately, we don't know which cpus may be
* NMIed - it depends on how the site chooses to configure.
*
* Note: it has been measure that it takes the MMSC up to 2.3 secs to
* send NMIs to all cpus on a 256p system.
*/
for (i=0; i < 1500; i++) {
for (node=0; node < numnodes; node++)
if (NODEPDA(node)->dump_count == 0)
break;
if (node == numnodes)
break;
if (i == 1000) {
for (node=0; node < numnodes; node++)
if (NODEPDA(node)->dump_count == 0) {
cpu = CNODE_TO_CPU_BASE(node);
for (n=0; n < CNODE_NUM_CPUS(node); cpu++, n++) {
CPUMASK_SETB(nmied_cpus, cpu);
/*
* cputonasid, cputoslice
* needs kernel cpuid
*/
SEND_NMI((cputonasid(cpu)), (cputoslice(cpu)));
}
}
}
udelay(10000);
}
#else
while (atomic_read(&nmied_cpus) != num_online_cpus());
#endif
/*
* Save the nmi cpu registers for all cpu in the eframe format.
*/
nmi_eframes_save();
LOCAL_HUB_S(NI_PORT_RESET, NPR_PORTRESET | NPR_LOCALRESET);
}