/*
* ip27-irq.c: Highlevel interrupt handling for IP27 architecture.
*
* Copyright (C) 1999, 2000 Ralf Baechle (ralf@gnu.org)
* Copyright (C) 1999, 2000 Silicon Graphics, Inc.
* Copyright (C) 1999 - 2001 Kanoj Sarcar
*/
#include <linux/config.h>
#include <linux/init.h>
#include <linux/irq.h>
#include <linux/errno.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/timex.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/smp_lock.h>
#include <linux/kernel_stat.h>
#include <linux/delay.h>
#include <asm/bitops.h>
#include <asm/bootinfo.h>
#include <asm/io.h>
#include <asm/mipsregs.h>
#include <asm/system.h>
#include <asm/ptrace.h>
#include <asm/processor.h>
#include <asm/pci/bridge.h>
#include <asm/sn/sn0/hub.h>
#include <asm/sn/sn0/ip27.h>
#include <asm/sn/addrs.h>
#include <asm/sn/agent.h>
#include <asm/sn/arch.h>
#include <asm/sn/intr.h>
#include <asm/sn/intr_public.h>
#undef DEBUG_IRQ
#ifdef DEBUG_IRQ
#define DBG(x...) printk(x)
#else
#define DBG(x...)
#endif
/*
* Number of levels in INT_PEND0. Can be set to 128 if we also
* consider INT_PEND1.
*/
#define PERNODE_LEVELS 64
/*
* we need to map irq's up to at least bit 7 of the INT_MASK0_A register
* since bits 0-6 are pre-allocated for other purposes.
*/
#define FAST_IRQ_TO_LEVEL(i) (i)
#define LEVEL_TO_IRQ(c, l) (node_level_to_irq[CPUID_TO_COMPACT_NODEID(c)][(l)])
/*
* Linux has a controller-independent x86 interrupt architecture.
* every controller has a 'controller-template', that is used
* by the main code to do the right thing. Each driver-visible
* interrupt source is transparently wired to the apropriate
* controller. Thus drivers need not be aware of the
* interrupt-controller.
*
* Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC,
* PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC.
* (IO-APICs assumed to be messaging to Pentium local-APICs)
*
* the code is designed to be easily extended with new/different
* interrupt controllers, without having to do assembly magic.
*/
extern asmlinkage void ip27_irq(void);
extern struct bridge_controller *irq_to_bridge[];
extern int irq_to_slot[];
/*
* There is a single intpend register per node, and we want to have
* distinct levels for intercpu intrs for both cpus A and B on a node.
*/
static int node_level_to_irq[MAX_COMPACT_NODES][PERNODE_LEVELS];
/*
* use these macros to get the encoded nasid and widget id
* from the irq value
*/
#define IRQ_TO_BRIDGE(i) irq_to_bridge[(i)]
#define SLOT_FROM_PCI_IRQ(i) irq_to_slot[i]
static inline int alloc_level(cpuid_t cpunum, int irq)
{
cnodeid_t nodenum = CPUID_TO_COMPACT_NODEID(cpunum);
int j = BASE_PCI_IRQ; /* pre-allocated entries */
while (++j < PERNODE_LEVELS) {
if (node_level_to_irq[nodenum][j] == -1) {
node_level_to_irq[nodenum][j] = irq;
return j;
}
}
panic("Cpu %ld flooded with devices\n", cpunum);
}
static inline int find_level(cpuid_t *cpunum, int irq)
{
int j;
cnodeid_t nodenum = INVALID_CNODEID;
while (++nodenum < MAX_COMPACT_NODES) {
j = BASE_PCI_IRQ; /* Pre-allocated entries */
while (++j < PERNODE_LEVELS)
if (node_level_to_irq[nodenum][j] == irq) {
*cpunum = 0; /* XXX Fixme */
return(j);
}
}
panic("Could not identify cpu/level for irq %d\n", irq);
}
/*
* Find first bit set
*/
static int ms1bit(unsigned long x)
{
int b = 0, s;
s = 16; if (x >> 16 == 0) s = 0; b += s; x >>= s;
s = 8; if (x >> 8 == 0) s = 0; b += s; x >>= s;
s = 4; if (x >> 4 == 0) s = 0; b += s; x >>= s;
s = 2; if (x >> 2 == 0) s = 0; b += s; x >>= s;
s = 1; if (x >> 1 == 0) s = 0; b += s;
return b;
}
/*
* This code is unnecessarily complex, because we do SA_INTERRUPT
* intr enabling. Basically, once we grab the set of intrs we need
* to service, we must mask _all_ these interrupts; firstly, to make
* sure the same intr does not intr again, causing recursion that
* can lead to stack overflow. Secondly, we can not just mask the
* one intr we are do_IRQing, because the non-masked intrs in the
* first set might intr again, causing multiple servicings of the
* same intr. This effect is mostly seen for intercpu intrs.
* Kanoj 05.13.00
*/
void ip27_do_irq_mask0(struct pt_regs *regs)
{
int irq, swlevel;
hubreg_t pend0, mask0;
cpuid_t cpu = smp_processor_id();
int pi_int_mask0 =
(cputoslice(cpu) == 0) ? PI_INT_MASK0_A : PI_INT_MASK0_B;
/* copied from Irix intpend0() */
pend0 = LOCAL_HUB_L(PI_INT_PEND0);
mask0 = LOCAL_HUB_L(pi_int_mask0);
pend0 &= mask0; /* Pick intrs we should look at */
if (!pend0)
return;
/* Prevent any of the picked intrs from recursing */
LOCAL_HUB_S(pi_int_mask0, mask0 & ~pend0);
swlevel = ms1bit(pend0);
#ifdef CONFIG_SMP
if (pend0 & (1UL << CPU_RESCHED_A_IRQ)) {
LOCAL_HUB_CLR_INTR(CPU_RESCHED_A_IRQ);
} else if (pend0 & (1UL << CPU_RESCHED_B_IRQ)) {
LOCAL_HUB_CLR_INTR(CPU_RESCHED_B_IRQ);
} else if (pend0 & (1UL << CPU_CALL_A_IRQ)) {
LOCAL_HUB_CLR_INTR(CPU_CALL_A_IRQ);
smp_call_function_interrupt();
} else if (pend0 & (1UL << CPU_CALL_B_IRQ)) {
LOCAL_HUB_CLR_INTR(CPU_CALL_B_IRQ);
smp_call_function_interrupt();
} else
#endif
{
/* "map" swlevel to irq */
irq = LEVEL_TO_IRQ(cpu, swlevel);
do_IRQ(irq, regs);
}
/* clear bit in pend0 */
pend0 ^= 1UL << swlevel;
/* Now allow the set of serviced intrs again */
LOCAL_HUB_S(pi_int_mask0, mask0);
LOCAL_HUB_L(PI_INT_PEND0);
}
void ip27_do_irq_mask1(struct pt_regs *regs)
{
int irq, swlevel;
hubreg_t pend1, mask1;
cpuid_t cpu = smp_processor_id();
int pi_int_mask1 = (cputoslice(cpu) == 0) ? PI_INT_MASK1_A : PI_INT_MASK1_B;
/* copied from Irix intpend0() */
pend1 = LOCAL_HUB_L(PI_INT_PEND1);
mask1 = LOCAL_HUB_L(pi_int_mask1);
pend1 &= mask1; /* Pick intrs we should look at */
if (!pend1)
return;
/* Prevent any of the picked intrs from recursing */
LOCAL_HUB_S(pi_int_mask1, mask1 & ~pend1);
swlevel = ms1bit(pend1);
/* "map" swlevel to irq */
irq = LEVEL_TO_IRQ(cpu, swlevel);
LOCAL_HUB_CLR_INTR(swlevel);
do_IRQ(irq, regs);
/* clear bit in pend1 */
pend1 ^= 1UL << swlevel;
/* Now allow the set of serviced intrs again */
LOCAL_HUB_S(pi_int_mask1, mask1);
LOCAL_HUB_L(PI_INT_PEND1);
}
void ip27_prof_timer(struct pt_regs *regs)
{
panic("CPU %d got a profiling interrupt", smp_processor_id());
}
void ip27_hub_error(struct pt_regs *regs)
{
panic("CPU %d got a hub error interrupt", smp_processor_id());
}
/*
* Get values that vary depending on which CPU and bit we're operating on.
*/
static void intr_get_ptrs(cpuid_t cpu, int bit, int *new_bit,
hubreg_t **intpend_masks, int *ip)
{
struct hub_intmasks_s *hub_intmasks = &cpu_data[cpu].p_intmasks;
if (bit < N_INTPEND_BITS) {
*intpend_masks = &hub_intmasks->intpend0_masks;
*ip = 0;
*new_bit = bit;
} else {
*intpend_masks = &hub_intmasks->intpend1_masks;
*ip = 1;
*new_bit = bit - N_INTPEND_BITS;
}
}
static int intr_connect_level(int cpu, int bit)
{
int ip;
int slice = cputoslice(cpu);
volatile hubreg_t *mask_reg;
hubreg_t *intpend_masks;
nasid_t nasid = COMPACT_TO_NASID_NODEID(cputocnode(cpu));
intr_get_ptrs(cpu, bit, &bit, &intpend_masks, &ip);
/* Make sure it's not already pending when we connect it. */
REMOTE_HUB_CLR_INTR(nasid, bit + ip * N_INTPEND_BITS);
*intpend_masks |= (1UL << bit);
if (ip == 0) {
mask_reg = REMOTE_HUB_ADDR(nasid, PI_INT_MASK0_A +
PI_INT_MASK_OFFSET * slice);
} else {
mask_reg = REMOTE_HUB_ADDR(nasid, PI_INT_MASK1_A +
PI_INT_MASK_OFFSET * slice);
}
HUB_S(mask_reg, intpend_masks[0]);
return 0;
}
static int intr_disconnect_level(int cpu, int bit)
{
int ip;
int slice = cputoslice(cpu);
volatile hubreg_t *mask_reg;
hubreg_t *intpend_masks;
nasid_t nasid = COMPACT_TO_NASID_NODEID(cputocnode(cpu));
intr_get_ptrs(cpu, bit, &bit, &intpend_masks, &ip);
intpend_masks[0] &= ~(1ULL << (u64)bit);
if (ip == 0) {
mask_reg = REMOTE_HUB_ADDR(nasid, PI_INT_MASK0_A +
PI_INT_MASK_OFFSET * slice);
} else {
mask_reg = REMOTE_HUB_ADDR(nasid, PI_INT_MASK1_A +
PI_INT_MASK_OFFSET * slice);
}
HUB_S(mask_reg, intpend_masks[0]);
return 0;
}
/* Startup one of the (PCI ...) IRQs routes over a bridge. */
static unsigned int startup_bridge_irq(unsigned int irq)
{
struct bridge_controller *bc;
bridgereg_t device;
bridge_t *bridge;
int pin, swlevel;
if (irq < BASE_PCI_IRQ)
return 0;
pin = SLOT_FROM_PCI_IRQ(irq);
bc = IRQ_TO_BRIDGE(irq);
bridge = bc->base;
DBG("bridge_startup(): irq= 0x%x pin=%d\n", irq, pin);
/*
* "map" irq to a swlevel greater than 6 since the first 6 bits
* of INT_PEND0 are taken
*/
swlevel = alloc_level(bc->irq_cpu, irq);
intr_connect_level(bc->irq_cpu, swlevel);
bridge->b_int_addr[pin].addr = (0x20000 | swlevel | (bc->nasid << 8));
bridge->b_int_enable |= (1 << pin);
/* more stuff in int_enable reg */
bridge->b_int_enable |= 0x7ffffe00;
/*
* Enable sending of an interrupt clear packt to the hub on a high to
* low transition of the interrupt pin.
*
* IRIX sets additional bits in the address which are documented as
* reserved in the bridge docs.
*/
bridge->b_int_mode |= (1UL << pin);
/*
* We assume the bridge to have a 1:1 mapping between devices
* (slots) and intr pins.
*/
device = bridge->b_int_device;
device &= ~(7 << (pin*3));
device |= (pin << (pin*3));
bridge->b_int_device = device;
bridge->b_widget.w_tflush; /* Flush */
return 0; /* Never anything pending. */
}
/* Shutdown one of the (PCI ...) IRQs routes over a bridge. */
static void shutdown_bridge_irq(unsigned int irq)
{
struct bridge_controller *bc = IRQ_TO_BRIDGE(irq);
bridge_t *bridge = bc->base;
int pin, swlevel;
cpuid_t cpu;
BUG_ON(irq < BASE_PCI_IRQ);
DBG("bridge_shutdown: irq 0x%x\n", irq);
pin = SLOT_FROM_PCI_IRQ(irq);
/*
* map irq to a swlevel greater than 6 since the first 6 bits
* of INT_PEND0 are taken
*/
swlevel = find_level(&cpu, irq);
intr_disconnect_level(cpu, swlevel);
LEVEL_TO_IRQ(cpu, swlevel) = -1;
bridge->b_int_enable &= ~(1 << pin);
bridge->b_widget.w_tflush; /* Flush */
}
static inline void enable_bridge_irq(unsigned int irq)
{
/* All the braindamage happens magically for us in ip27_do_irq */
}
static void disable_bridge_irq(unsigned int irq)
{
/* All the braindamage happens magically for us in ip27_do_irq */
}
static void mask_and_ack_bridge_irq(unsigned int irq)
{
/* All the braindamage happens magically for us in ip27_do_irq */
}
static void end_bridge_irq(unsigned int irq)
{
}
static struct hw_interrupt_type bridge_irq_type = {
.typename = "bridge",
.startup = startup_bridge_irq,
.shutdown = shutdown_bridge_irq,
.enable = enable_bridge_irq,
.disable = disable_bridge_irq,
.ack = mask_and_ack_bridge_irq,
.end = end_bridge_irq,
};
void irq_debug(void)
{
bridge_t *bridge = (bridge_t *) 0x9200000008000000;
printk("bridge->b_int_status = 0x%x\n", bridge->b_int_status);
printk("bridge->b_int_enable = 0x%x\n", bridge->b_int_enable);
printk("PI_INT_PEND0 = 0x%lx\n", LOCAL_HUB_L(PI_INT_PEND0));
printk("PI_INT_MASK0_A = 0x%lx\n", LOCAL_HUB_L(PI_INT_MASK0_A));
}
void __init init_IRQ(void)
{
int i, j;
for (i = 0; i < MAX_COMPACT_NODES; i++)
for (j = 0; j < PERNODE_LEVELS; j++)
node_level_to_irq[i][j] = -1;
set_except_vector(0, ip27_irq);
/*
* Right now the bridge irq is our kitchen sink interrupt type
*/
for (i = 0; i <= NR_IRQS; i++) {
irq_desc[i].status = IRQ_DISABLED;
irq_desc[i].action = 0;
irq_desc[i].depth = 1;
irq_desc[i].handler = &bridge_irq_type;
}
}
void install_ipi(void)
{
int slice = LOCAL_HUB_L(PI_CPU_NUM);
int cpu = smp_processor_id();
hubreg_t mask, set;
if (slice == 0) {
LOCAL_HUB_CLR_INTR(CPU_RESCHED_A_IRQ);
LOCAL_HUB_CLR_INTR(CPU_CALL_A_IRQ);
mask = LOCAL_HUB_L(PI_INT_MASK0_A); /* Slice A */
set = (1UL << FAST_IRQ_TO_LEVEL(CPU_RESCHED_A_IRQ)) |
(1UL << FAST_IRQ_TO_LEVEL(CPU_CALL_A_IRQ));
mask |= set;
cpu_data[cpu].p_intmasks.intpend0_masks |= set;
LOCAL_HUB_S(PI_INT_MASK0_A, mask);
} else {
LOCAL_HUB_CLR_INTR(CPU_RESCHED_B_IRQ);
LOCAL_HUB_CLR_INTR(CPU_CALL_B_IRQ);
mask = LOCAL_HUB_L(PI_INT_MASK0_B); /* Slice B */
set = (1UL << FAST_IRQ_TO_LEVEL(CPU_RESCHED_B_IRQ)) |
(1UL << FAST_IRQ_TO_LEVEL(CPU_CALL_B_IRQ));
mask |= set;
cpu_data[cpu].p_intmasks.intpend0_masks |= set;
LOCAL_HUB_S(PI_INT_MASK0_B, mask);
}
}