/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 1996 David S. Miller (dm@engr.sgi.com)
* Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
* Copyright (C) 1999, 2000 Silicon Graphics, Inc.
*/
#include <linux/config.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/bitops.h>
#include <asm/bcache.h>
#include <asm/bootinfo.h>
#include <asm/cacheops.h>
#include <asm/cpu.h>
#include <asm/io.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/r4kcache.h>
#include <asm/system.h>
#include <asm/mmu_context.h>
#include <asm/war.h>
static unsigned long icache_size, dcache_size, scache_size;
extern void andes_clear_page(void * page);
extern void r4k_clear_page32_d16(void * page);
extern void r4k_clear_page32_d32(void * page);
extern void r4k_clear_page_d16(void * page);
extern void r4k_clear_page_d32(void * page);
extern void r4k_clear_page_r4600_v1(void * page);
extern void r4k_clear_page_r4600_v2(void * page);
extern void r4k_clear_page_s16(void * page);
extern void r4k_clear_page_s32(void * page);
extern void r4k_clear_page_s64(void * page);
extern void r4k_clear_page_s128(void * page);
extern void andes_copy_page(void * to, void * from);
extern void r4k_copy_page_d16(void * to, void * from);
extern void r4k_copy_page_d32(void * to, void * from);
extern void r4k_copy_page_r4600_v1(void * to, void * from);
extern void r4k_copy_page_r4600_v2(void * to, void * from);
extern void r4k_copy_page_s16(void * to, void * from);
extern void r4k_copy_page_s32(void * to, void * from);
extern void r4k_copy_page_s64(void * to, void * from);
extern void r4k_copy_page_s128(void * to, void * from);
/*
* Dummy cache handling routines for machines without boardcaches
*/
static void no_sc_noop(void) {}
static struct bcache_ops no_sc_ops = {
.bc_enable = (void *)no_sc_noop,
.bc_disable = (void *)no_sc_noop,
.bc_wback_inv = (void *)no_sc_noop,
.bc_inv = (void *)no_sc_noop
};
struct bcache_ops *bcops = &no_sc_ops;
#define R4600_HIT_CACHEOP_WAR_IMPL \
do { \
if (R4600_V2_HIT_CACHEOP_WAR && \
(read_c0_prid() & 0xfff0) == 0x2020) { /* R4600 V2.0 */\
*(volatile unsigned long *)KSEG1; \
} \
if (R4600_V1_HIT_CACHEOP_WAR) \
__asm__ __volatile__("nop;nop;nop;nop"); \
} while (0)
static void r4k_blast_dcache_page(unsigned long addr)
{
static void *l = &&init;
unsigned long dc_lsize;
goto *l;
dc_16:
blast_dcache16_page(addr);
return;
dc_32:
R4600_HIT_CACHEOP_WAR_IMPL;
blast_dcache32_page(addr);
return;
init:
dc_lsize = current_cpu_data.dcache.linesz;
if (dc_lsize == 16)
l = &&dc_16;
else if (dc_lsize == 32)
l = &&dc_32;
goto *l;
}
static void r4k_blast_dcache_page_indexed(unsigned long addr)
{
static void *l = &&init;
unsigned long dc_lsize;
goto *l;
dc_16:
blast_dcache16_page_indexed(addr);
return;
dc_32:
blast_dcache32_page_indexed(addr);
return;
init:
dc_lsize = current_cpu_data.dcache.linesz;
if (dc_lsize == 16)
l = &&dc_16;
else if (dc_lsize == 32)
l = &&dc_32;
goto *l;
}
static void r4k_blast_dcache(void)
{
static void *l = &&init;
unsigned long dc_lsize;
goto *l;
dc_16:
blast_dcache16();
return;
dc_32:
blast_dcache32();
return;
init:
dc_lsize = current_cpu_data.dcache.linesz;
if (dc_lsize == 16)
l = &&dc_16;
else if (dc_lsize == 32)
l = &&dc_32;
goto *l;
}
static void r4k_blast_icache_page(unsigned long addr)
{
unsigned long ic_lsize = current_cpu_data.icache.linesz;
static void *l = &&init;
goto *l;
ic_16:
blast_icache16_page(addr);
return;
ic_32:
blast_icache32_page(addr);
return;
ic_64:
blast_icache64_page(addr);
return;
init:
if (ic_lsize == 16)
l = &&ic_16;
else if (ic_lsize == 32)
l = &&ic_32;
else if (ic_lsize == 64)
l = &&ic_64;
goto *l;
}
static void r4k_blast_icache_page_indexed(unsigned long addr)
{
unsigned long ic_lsize = current_cpu_data.icache.linesz;
static void *l = &&init;
goto *l;
ic_16:
blast_icache16_page_indexed(addr);
return;
ic_32:
blast_icache32_page_indexed(addr);
return;
ic_64:
blast_icache64_page_indexed(addr);
return;
init:
if (ic_lsize == 16)
l = &&ic_16;
else if (ic_lsize == 32)
l = &&ic_32;
else if (ic_lsize == 64)
l = &&ic_64;
goto *l;
}
static void r4k_blast_icache(void)
{
unsigned long ic_lsize = current_cpu_data.icache.linesz;
static void *l = &&init;
goto *l;
ic_16:
blast_icache16();
return;
ic_32:
blast_icache32();
return;
ic_64:
blast_icache64();
return;
init:
if (ic_lsize == 16)
l = &&ic_16;
else if (ic_lsize == 32)
l = &&ic_32;
else if (ic_lsize == 64)
l = &&ic_64;
goto *l;
}
static void r4k_blast_scache_page(unsigned long addr)
{
unsigned long sc_lsize = current_cpu_data.scache.linesz;
static void *l = &&init;
goto *l;
sc_16:
blast_scache16_page(addr);
return;
sc_32:
blast_scache32_page(addr);
return;
sc_64:
blast_scache64_page(addr);
return;
sc_128:
blast_scache128_page(addr);
return;
init:
if (sc_lsize == 16)
l = &&sc_16;
else if (sc_lsize == 32)
l = &&sc_32;
else if (sc_lsize == 64)
l = &&sc_64;
else if (sc_lsize == 128)
l = &&sc_128;
goto *l;
}
static void r4k_blast_scache(void)
{
unsigned long sc_lsize = current_cpu_data.scache.linesz;
static void *l = &&init;
goto *l;
sc_16:
blast_scache16();
return;
sc_32:
blast_scache32();
return;
sc_64:
blast_scache64();
return;
sc_128:
blast_scache128();
return;
init:
if (sc_lsize == 16)
l = &&sc_16;
else if (sc_lsize == 32)
l = &&sc_32;
else if (sc_lsize == 64)
l = &&sc_64;
else if (sc_lsize == 128)
l = &&sc_128;
goto *l;
}
static void r4k_flush_cache_all(void)
{
if (!cpu_has_dc_aliases)
return;
r4k_blast_dcache();
r4k_blast_icache();
}
static void r4k___flush_cache_all(void)
{
r4k_blast_dcache();
r4k_blast_icache();
switch (current_cpu_data.cputype) {
case CPU_R4000SC:
case CPU_R4000MC:
case CPU_R4400SC:
case CPU_R4400MC:
case CPU_R10000:
case CPU_R12000:
r4k_blast_scache();
}
}
static void r4k_flush_cache_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
if (cpu_context(smp_processor_id(), vma->vm_mm) != 0) {
r4k_blast_dcache();
if (vma->vm_flags & VM_EXEC)
r4k_blast_icache();
}
}
static void r4k_flush_cache_mm(struct mm_struct *mm)
{
if (!cpu_has_dc_aliases)
return;
if (!cpu_context(smp_processor_id(), mm))
return;
r4k_blast_dcache();
r4k_blast_icache();
/*
* Kludge alert. For obscure reasons R4000SC and R4400SC go nuts if we
* only flush the primary caches but R10000 and R12000 behave sane ...
*/
if (current_cpu_data.cputype == CPU_R4000SC ||
current_cpu_data.cputype == CPU_R4000MC ||
current_cpu_data.cputype == CPU_R4400SC ||
current_cpu_data.cputype == CPU_R4400MC)
r4k_blast_scache();
}
static void r4k_flush_cache_page(struct vm_area_struct *vma,
unsigned long page)
{
int exec = vma->vm_flags & VM_EXEC;
struct mm_struct *mm = vma->vm_mm;
pgd_t *pgdp;
pmd_t *pmdp;
pte_t *ptep;
/*
* If ownes no valid ASID yet, cannot possibly have gotten
* this page into the cache.
*/
if (cpu_context(smp_processor_id(), mm) == 0)
return;
page &= PAGE_MASK;
pgdp = pgd_offset(mm, page);
pmdp = pmd_offset(pgdp, page);
ptep = pte_offset(pmdp, page);
/*
* If the page isn't marked valid, the page cannot possibly be
* in the cache.
*/
if (!(pte_val(*ptep) & _PAGE_PRESENT))
return;
/*
* Doing flushes for another ASID than the current one is
* too difficult since stupid R4k caches do a TLB translation
* for every cache flush operation. So we do indexed flushes
* in that case, which doesn't overly flush the cache too much.
*/
if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID)) {
if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc))
r4k_blast_dcache_page(page);
if (exec)
r4k_blast_icache_page(page);
return;
}
/*
* Do indexed flush, too much work to get the (possible) TLB refills
* to work correctly.
*/
page = (KSEG0 + (page & (dcache_size - 1)));
if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc))
r4k_blast_dcache_page_indexed(page);
if (exec) {
if (cpu_has_vtag_icache) {
int cpu = smp_processor_id();
if (cpu_context(cpu, vma->vm_mm) != 0)
drop_mmu_context(vma->vm_mm, cpu);
} else
r4k_blast_icache_page_indexed(page);
}
}
static void r4k_flush_data_cache_page(unsigned long addr)
{
r4k_blast_dcache_page(addr);
}
static void r4k_flush_icache_range(unsigned long start, unsigned long end)
{
unsigned long dc_lsize = current_cpu_data.dcache.linesz;
unsigned long addr, aend;
if (!cpu_has_ic_fills_f_dc) {
if (end - start > dcache_size)
r4k_blast_dcache();
else {
addr = start & ~(dc_lsize - 1);
aend = (end - 1) & ~(dc_lsize - 1);
while (1) {
/* Hit_Writeback_Inv_D */
protected_writeback_dcache_line(addr);
if (addr == aend)
break;
addr += dc_lsize;
}
}
}
if (end - start > icache_size)
r4k_blast_icache();
else {
addr = start & ~(dc_lsize - 1);
aend = (end - 1) & ~(dc_lsize - 1);
while (1) {
/* Hit_Invalidate_I */
protected_flush_icache_line(addr);
if (addr == aend)
break;
addr += dc_lsize;
}
}
}
/*
* Ok, this seriously sucks. We use them to flush a user page but don't
* know the virtual address, so we have to blast away the whole icache
* which is significantly more expensive than the real thing. Otoh we at
* least know the kernel address of the page so we can flush it
* selectivly.
*/
static void r4k_flush_icache_page(struct vm_area_struct *vma,
struct page *page)
{
/*
* If there's no context yet, or the page isn't executable, no icache
* flush is needed.
*/
if (!(vma->vm_flags & VM_EXEC))
return;
/*
* Tricky ... Because we don't know the virtual address we've got the
* choice of either invalidating the entire primary and secondary
* caches or invalidating the secondary caches also. With the subset
* enforcment on R4000SC, R4400SC, R10000 and R12000 invalidating the
* secondary cache will result in any entries in the primary caches
* also getting invalidated which hopefully is a bit more economical.
*/
if (cpu_has_subset_pcaches) {
unsigned long addr = (unsigned long) page_address(page);
r4k_blast_scache_page(addr);
return;
}
if (!cpu_has_ic_fills_f_dc) {
unsigned long addr = (unsigned long) page_address(page);
r4k_blast_dcache_page(addr);
}
/*
* We're not sure of the virtual address(es) involved here, so
* we have to flush the entire I-cache.
*/
if (cpu_has_vtag_icache) {
int cpu = smp_processor_id();
if (cpu_context(cpu, vma->vm_mm) != 0)
drop_mmu_context(vma->vm_mm, cpu);
} else
r4k_blast_icache();
}
#ifdef CONFIG_NONCOHERENT_IO
static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
{
unsigned long end, a;
if (cpu_has_subset_pcaches) {
unsigned long sc_lsize = current_cpu_data.scache.linesz;
if (size >= scache_size) {
r4k_blast_scache();
return;
}
a = addr & ~(sc_lsize - 1);
end = (addr + size - 1) & ~(sc_lsize - 1);
while (1) {
flush_scache_line(a); /* Hit_Writeback_Inv_SD */
if (a == end)
break;
a += sc_lsize;
}
return;
}
/*
* Either no secondary cache or the available caches don't have the
* subset property so we have to flush the primary caches
* explicitly
*/
if (size >= dcache_size) {
r4k_blast_dcache();
} else {
unsigned long dc_lsize = current_cpu_data.dcache.linesz;
R4600_HIT_CACHEOP_WAR_IMPL;
a = addr & ~(dc_lsize - 1);
end = (addr + size - 1) & ~(dc_lsize - 1);
while (1) {
flush_dcache_line(a); /* Hit_Writeback_Inv_D */
if (a == end)
break;
a += dc_lsize;
}
}
bc_wback_inv(addr, size);
}
static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
{
unsigned long end, a;
if (cpu_has_subset_pcaches) {
unsigned long sc_lsize = current_cpu_data.scache.linesz;
if (size >= scache_size) {
r4k_blast_scache();
return;
}
a = addr & ~(sc_lsize - 1);
end = (addr + size - 1) & ~(sc_lsize - 1);
while (1) {
flush_scache_line(a); /* Hit_Writeback_Inv_SD */
if (a == end)
break;
a += sc_lsize;
}
return;
}
if (size >= dcache_size) {
r4k_blast_dcache();
} else {
unsigned long dc_lsize = current_cpu_data.dcache.linesz;
R4600_HIT_CACHEOP_WAR_IMPL;
a = addr & ~(dc_lsize - 1);
end = (addr + size - 1) & ~(dc_lsize - 1);
while (1) {
flush_dcache_line(a); /* Hit_Writeback_Inv_D */
if (a == end)
break;
a += dc_lsize;
}
}
bc_inv(addr, size);
}
#endif /* CONFIG_NONCOHERENT_IO */
/*
* While we're protected against bad userland addresses we don't care
* very much about what happens in that case. Usually a segmentation
* fault will dump the process later on anyway ...
*/
static void r4k_flush_cache_sigtramp(unsigned long addr)
{
unsigned long ic_lsize = current_cpu_data.icache.linesz;
unsigned long dc_lsize = current_cpu_data.dcache.linesz;
R4600_HIT_CACHEOP_WAR_IMPL;
protected_writeback_dcache_line(addr & ~(dc_lsize - 1));
protected_flush_icache_line(addr & ~(ic_lsize - 1));
}
static void r4k_flush_icache_all(void)
{
if (cpu_has_vtag_icache)
r4k_blast_icache();
}
static inline void rm7k_erratum31(void)
{
const unsigned long ic_lsize = 32;
unsigned long addr;
/* RM7000 erratum #31. The icache is screwed at startup. */
write_c0_taglo(0);
write_c0_taghi(0);
for (addr = KSEG0; addr <= KSEG0 + 4096; addr += ic_lsize) {
__asm__ __volatile__ (
".set noreorder\n\t"
".set mips3\n\t"
"cache\t%1, 0(%0)\n\t"
"cache\t%1, 0x1000(%0)\n\t"
"cache\t%1, 0x2000(%0)\n\t"
"cache\t%1, 0x3000(%0)\n\t"
"cache\t%2, 0(%0)\n\t"
"cache\t%2, 0x1000(%0)\n\t"
"cache\t%2, 0x2000(%0)\n\t"
"cache\t%2, 0x3000(%0)\n\t"
"cache\t%1, 0(%0)\n\t"
"cache\t%1, 0x1000(%0)\n\t"
"cache\t%1, 0x2000(%0)\n\t"
"cache\t%1, 0x3000(%0)\n\t"
".set\tmips0\n\t"
".set\treorder\n\t"
:
: "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill));
}
}
static char *way_string[] = { NULL, "direct mapped", "2-way", "3-way", "4-way",
"5-way", "6-way", "7-way", "8-way"
};
static void __init probe_pcache(void)
{
struct cpuinfo_mips *c = ¤t_cpu_data;
unsigned int config = read_c0_config();
unsigned int prid = read_c0_prid();
unsigned long config1;
unsigned int lsize;
switch (c->cputype) {
case CPU_R4600: /* QED style two way caches? */
case CPU_R4700:
case CPU_R5000:
case CPU_NEVADA:
icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
c->icache.ways = 2;
c->icache.waybit = ffs(icache_size/2) - 1;
dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
c->dcache.ways = 2;
c->dcache.waybit= ffs(dcache_size/2) - 1;
break;
case CPU_R5432:
case CPU_R5500:
icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
c->icache.ways = 2;
c->icache.waybit= 0;
dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
c->dcache.ways = 2;
c->dcache.waybit = 0;
break;
case CPU_TX49XX:
icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
c->icache.ways = 4;
c->icache.waybit= 0;
dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
c->dcache.ways = 4;
c->dcache.waybit = 0;
break;
case CPU_R4000PC:
case CPU_R4000SC:
case CPU_R4000MC:
case CPU_R4400PC:
case CPU_R4400SC:
case CPU_R4400MC:
case CPU_R4300:
icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
c->icache.ways = 1;
c->icache.waybit = 0; /* doesn't matter */
dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
c->dcache.ways = 1;
c->dcache.waybit = 0; /* does not matter */
break;
case CPU_R10000:
case CPU_R12000:
icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
c->icache.linesz = 64;
c->icache.ways = 2;
c->icache.waybit = 0;
dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
c->dcache.linesz = 32;
c->dcache.ways = 2;
c->dcache.waybit = 0;
break;
case CPU_VR4131:
icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
c->icache.ways = 2;
c->icache.waybit = ffs(icache_size/2) - 1;
dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
c->dcache.ways = 2;
c->dcache.waybit = ffs(dcache_size/2) - 1;
break;
case CPU_VR41XX:
case CPU_VR4111:
case CPU_VR4121:
case CPU_VR4122:
case CPU_VR4181:
case CPU_VR4181A:
icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
c->icache.ways = 1;
c->icache.waybit = 0; /* doesn't matter */
dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
c->dcache.ways = 1;
c->dcache.waybit = 0; /* does not matter */
break;
case CPU_RM7000:
rm7k_erratum31();
icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
c->icache.ways = 4;
c->icache.waybit = ffs(icache_size / c->icache.ways) - 1;
dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
c->dcache.ways = 4;
c->dcache.waybit = ffs(dcache_size / c->dcache.ways) - 1;
break;
default:
if (!(config & MIPS_CONF_M))
panic("Don't know how to probe P-caches on this cpu.");
/*
* So we seem to be a MIPS32 or MIPS64 CPU
* So let's probe the I-cache ...
*/
config1 = read_c0_config1();
if ((lsize = ((config1 >> 19) & 7)))
c->icache.linesz = 2 << lsize;
else
c->icache.linesz = lsize;
c->icache.sets = 64 << ((config1 >> 22) & 7);
c->icache.ways = 1 + ((config1 >> 16) & 7);
icache_size = c->icache.sets *
c->icache.ways *
c->icache.linesz;
c->icache.waybit = ffs(icache_size/c->icache.ways) - 1;
/*
* Now probe the MIPS32 / MIPS64 data cache.
*/
c->dcache.flags = 0;
if ((lsize = ((config1 >> 10) & 7)))
c->dcache.linesz = 2 << lsize;
else
c->dcache.linesz= lsize;
c->dcache.sets = 64 << ((config1 >> 13) & 7);
c->dcache.ways = 1 + ((config1 >> 7) & 7);
dcache_size = c->dcache.sets *
c->dcache.ways *
c->dcache.linesz;
c->dcache.waybit = ffs(dcache_size/c->dcache.ways) - 1;
break;
}
/*
* Processor configuration sanity check for the R4000SC erratum
* #5. With page sizes larger than 32kB there is no possibility
* to get a VCE exception anymore so we don't care about this
* misconfiguration. The case is rather theoretical anyway;
* presumably no vendor is shipping his hardware in the "bad"
* configuration.
*/
if ((prid & 0xff00) == PRID_IMP_R4000 && (prid & 0xff) < 0x40 &&
!(config & CONF_SC) && c->icache.linesz != 16 &&
PAGE_SIZE <= 0x8000)
panic("Improper R4000SC processor configuration detected");
/* compute a couple of other cache variables */
c->icache.waysize = icache_size / c->icache.ways;
c->dcache.waysize = dcache_size / c->dcache.ways;
c->icache.sets = icache_size / (c->icache.linesz * c->icache.ways);
c->dcache.sets = dcache_size / (c->dcache.linesz * c->dcache.ways);
/*
* R10000 and R12000 P-caches are odd in a positive way. They're 32kB
* 2-way virtually indexed so normally would suffer from aliases. So
* normally they'd suffer from aliases but magic in the hardware deals
* with that for us so we don't need to take care ourselves.
*/
if (c->cputype != CPU_R10000 && c->cputype != CPU_R12000)
if (c->dcache.waysize > PAGE_SIZE)
c->dcache.flags |= MIPS_CACHE_ALIASES;
if (config & 0x8) /* VI bit */
c->icache.flags |= MIPS_CACHE_VTAG;
switch (c->cputype) {
case CPU_20KC:
/*
* Some older 20Kc chips doesn't have the 'VI' bit in
* the config register.
*/
c->icache.flags |= MIPS_CACHE_VTAG;
break;
case CPU_AU1500:
c->icache.flags |= MIPS_CACHE_IC_F_DC;
break;
}
printk("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
icache_size >> 10,
cpu_has_vtag_icache ? "virtually tagged" : "physically tagged",
way_string[c->icache.ways], c->icache.linesz);
printk("Primary data cache %ldkB %s, linesize %d bytes.\n",
dcache_size >> 10, way_string[c->dcache.ways], c->dcache.linesz);
}
/*
* If you even _breathe_ on this function, look at the gcc output and make sure
* it does not pop things on and off the stack for the cache sizing loop that
* executes in KSEG1 space or else you will crash and burn badly. You have
* been warned.
*/
static int __init probe_scache(void)
{
extern unsigned long stext;
unsigned long flags, addr, begin, end, pow2;
unsigned int config = read_c0_config();
struct cpuinfo_mips *c = ¤t_cpu_data;
int tmp;
if (config & CONF_SC)
return 0;
begin = (unsigned long) &stext;
begin &= ~((4 * 1024 * 1024) - 1);
end = begin + (4 * 1024 * 1024);
/*
* This is such a bitch, you'd think they would make it easy to do
* this. Away you daemons of stupidity!
*/
local_irq_save(flags);
/* Fill each size-multiple cache line with a valid tag. */
pow2 = (64 * 1024);
for (addr = begin; addr < end; addr = (begin + pow2)) {
unsigned long *p = (unsigned long *) addr;
__asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
pow2 <<= 1;
}
/* Load first line with zero (therefore invalid) tag. */
write_c0_taglo(0);
write_c0_taghi(0);
__asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
cache_op(Index_Store_Tag_I, begin);
cache_op(Index_Store_Tag_D, begin);
cache_op(Index_Store_Tag_SD, begin);
/* Now search for the wrap around point. */
pow2 = (128 * 1024);
tmp = 0;
for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
cache_op(Index_Load_Tag_SD, addr);
__asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
if (!read_c0_taglo())
break;
pow2 <<= 1;
}
local_irq_restore(flags);
addr -= begin;
scache_size = addr;
c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
c->scache.ways = 1;
c->dcache.waybit = 0; /* does not matter */
return 1;
}
static void __init setup_noscache_funcs(void)
{
unsigned int prid;
switch (current_cpu_data.dcache.linesz) {
case 16:
if (cpu_has_64bits)
_clear_page = r4k_clear_page_d16;
else
_clear_page = r4k_clear_page32_d16;
_copy_page = r4k_copy_page_d16;
break;
case 32:
prid = read_c0_prid() & 0xfff0;
if (prid == 0x2010) { /* R4600 V1.7 */
_clear_page = r4k_clear_page_r4600_v1;
_copy_page = r4k_copy_page_r4600_v1;
} else if (prid == 0x2020) { /* R4600 V2.0 */
_clear_page = r4k_clear_page_r4600_v2;
_copy_page = r4k_copy_page_r4600_v2;
} else {
if (cpu_has_64bits)
_clear_page = r4k_clear_page_d32;
else
_clear_page = r4k_clear_page32_d32;
_copy_page = r4k_copy_page_d32;
}
break;
}
}
static void __init setup_scache_funcs(void)
{
struct cpuinfo_mips *c = ¤t_cpu_data;
if (c->dcache.linesz > c->scache.linesz)
panic("Invalid primary cache configuration detected");
if (c->cputype == CPU_R10000 || c->cputype == CPU_R12000) {
_clear_page = andes_clear_page;
_copy_page = andes_copy_page;
return;
}
switch (c->scache.linesz) {
case 16:
_clear_page = r4k_clear_page_s16;
_copy_page = r4k_copy_page_s16;
break;
case 32:
_clear_page = r4k_clear_page_s32;
_copy_page = r4k_copy_page_s32;
break;
case 64:
_clear_page = r4k_clear_page_s64;
_copy_page = r4k_copy_page_s64;
break;
case 128:
_clear_page = r4k_clear_page_s128;
_copy_page = r4k_copy_page_s128;
break;
}
}
typedef int (*probe_func_t)(unsigned long);
extern int r5k_sc_init(void);
extern int rm7k_sc_init(void);
static void __init setup_scache(void)
{
struct cpuinfo_mips *c = ¤t_cpu_data;
unsigned int config = read_c0_config();
probe_func_t probe_scache_kseg1;
int sc_present = 0;
/*
* Do the probing thing on R4000SC and R4400SC processors. Other
* processors don't have a S-cache that would be relevant to the
* Linux memory managment.
*/
switch (c->cputype) {
case CPU_R4000PC:
case CPU_R4000SC:
case CPU_R4000MC:
case CPU_R4400PC:
case CPU_R4400SC:
case CPU_R4400MC:
probe_scache_kseg1 = (probe_func_t) (KSEG1ADDR(&probe_scache));
sc_present = probe_scache_kseg1(config);
break;
case CPU_R10000:
case CPU_R12000:
scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
c->scache.linesz = 64 << ((config >> 13) & 1);
c->scache.ways = 2;
c->scache.waybit= 0;
sc_present = 1;
break;
case CPU_R5000:
case CPU_NEVADA:
setup_noscache_funcs();
#ifdef CONFIG_R5000_CPU_SCACHE
r5k_sc_init();
#endif
return;
case CPU_RM7000:
setup_noscache_funcs();
#ifdef CONFIG_RM7000_CPU_SCACHE
rm7k_sc_init();
#endif
return;
default:
sc_present = 0;
}
if (!sc_present) {
setup_noscache_funcs();
return;
}
if ((c->isa_level == MIPS_CPU_ISA_M32 ||
c->isa_level == MIPS_CPU_ISA_M64) &&
!(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
/* compute a couple of other cache variables */
c->scache.waysize = scache_size / c->scache.ways;
c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
c->options |= MIPS_CPU_SUBSET_CACHES;
setup_scache_funcs();
}
static inline void coherency_setup(void)
{
change_c0_config(CONF_CM_CMASK, CONF_CM_DEFAULT);
/*
* c0_status.cu=0 specifies that updates by the sc instruction use
* the coherency mode specified by the TLB; 1 means cachable
* coherent update on write will be used. Not all processors have
* this bit and; some wire it to zero, others like Toshiba had the
* silly idea of putting something else there ...
*/
switch (current_cpu_data.cputype) {
case CPU_R4000PC:
case CPU_R4000SC:
case CPU_R4000MC:
case CPU_R4400PC:
case CPU_R4400SC:
case CPU_R4400MC:
clear_c0_config(CONF_CU);
break;
}
}
void __init ld_mmu_r4xx0(void)
{
extern char except_vec2_generic;
struct cpuinfo_mips *c = ¤t_cpu_data;
/* Default cache error handler for R4000 and R5000 family */
memcpy((void *)(KSEG0 + 0x100), &except_vec2_generic, 0x80);
memcpy((void *)(KSEG1 + 0x100), &except_vec2_generic, 0x80);
probe_pcache();
setup_scache();
coherency_setup();
if (c->dcache.sets * c->dcache.ways > PAGE_SIZE)
c->dcache.flags |= MIPS_CACHE_ALIASES;
/*
* Some MIPS32 and MIPS64 processors have physically indexed caches.
* This code supports virtually indexed processors and will be
* unnecessarily unefficient on physically indexed processors.
*/
shm_align_mask = max_t( unsigned long,
c->dcache.sets * c->dcache.linesz - 1,
PAGE_SIZE - 1);
flush_cache_all = r4k_flush_cache_all;
__flush_cache_all = r4k___flush_cache_all;
flush_cache_mm = r4k_flush_cache_mm;
flush_cache_page = r4k_flush_cache_page;
flush_icache_page = r4k_flush_icache_page;
flush_cache_range = r4k_flush_cache_range;
flush_cache_sigtramp = r4k_flush_cache_sigtramp;
flush_icache_all = r4k_flush_icache_all;
flush_data_cache_page = r4k_flush_data_cache_page;
flush_icache_range = r4k_flush_icache_range;
#ifdef CONFIG_NONCOHERENT_IO
_dma_cache_wback_inv = r4k_dma_cache_wback_inv;
_dma_cache_wback = r4k_dma_cache_wback_inv;
_dma_cache_inv = r4k_dma_cache_inv;
#endif
__flush_cache_all();
}