#
# For a description of the syntax of this configuration file,
# see Documentation/kbuild/kconfig-language.txt.
#
config M68K
bool
default y
config MMU
bool
default y
config UID16
bool
default y
config RWSEM_GENERIC_SPINLOCK
bool
default y
config RWSEM_XCHGADD_ALGORITHM
bool
mainmenu "Linux/68k Kernel Configuration"
source "init/Kconfig"
menu "Platform dependent setup"
config EISA
bool
---help---
The Extended Industry Standard Architecture (EISA) bus was
developed as an open alternative to the IBM MicroChannel bus.
The EISA bus provided some of the features of the IBM MicroChannel
bus while maintaining backward compatibility with cards made for
the older ISA bus. The EISA bus saw limited use between 1988 and
1995 when it was made obsolete by the PCI bus.
Say Y here if you are building a kernel for an EISA-based machine.
Otherwise, say N.
config MCA
bool
help
MicroChannel Architecture is found in some IBM PS/2 machines and
laptops. It is a bus system similar to PCI or ISA. See
<file:Documentation/mca.txt> (and especially the web page given
there) before attempting to build an MCA bus kernel.
config PCMCIA
tristate
---help---
Say Y here if you want to attach PCMCIA- or PC-cards to your Linux
computer. These are credit-card size devices such as network cards,
modems or hard drives often used with laptops computers. There are
actually two varieties of these cards: the older 16 bit PCMCIA cards
and the newer 32 bit CardBus cards. If you want to use CardBus
cards, you need to say Y here and also to "CardBus support" below.
To use your PC-cards, you will need supporting software from David
Hinds' pcmcia-cs package (see the file <file:Documentation/Changes>
for location). Please also read the PCMCIA-HOWTO, available from
<http://www.tldp.org/docs.html#howto>.
To compile this driver as modules, choose M here: the
modules will be called pcmcia_core and ds.
config AMIGA
bool "Amiga support"
help
This option enables support for the Amiga series of computers. If
you plan to use this kernel on an Amiga, say Y here and browse the
material available in <file:Documentation/m68k>; otherwise say N.
config ATARI
bool "Atari support"
help
This option enables support for the 68000-based Atari series of
computers (including the TT, Falcon and Medusa). If you plan to use
this kernel on an Atari, say Y here and browse the material
available in <file:Documentation/m68k>; otherwise say N.
config HADES
bool "Hades support"
depends on ATARI && BROKEN
help
This option enables support for the Hades Atari clone. If you plan
to use this kernel on a Hades, say Y here; otherwise say N.
config PCI
bool
depends on HADES
default y
help
Find out whether you have a PCI motherboard. PCI is the name of a
bus system, i.e. the way the CPU talks to the other stuff inside
your box. Other bus systems are ISA, EISA, MicroChannel (MCA) or
VESA. If you have PCI, say Y, otherwise N.
The PCI-HOWTO, available from
<http://www.tldp.org/docs.html#howto>, contains valuable
information about which PCI hardware does work under Linux and which
doesn't.
config MAC
bool "Macintosh support"
help
This option enables support for the Apple Macintosh series of
computers (yes, there is experimental support now, at least for part
of the series).
Say N unless you're willing to code the remaining necessary support.
;)
config NUBUS
bool
depends on MAC
default y
config M68K_L2_CACHE
bool
depends on MAC
default y
config APOLLO
bool "Apollo support"
help
Say Y here if you want to run Linux on an MC680x0-based Apollo
Domain workstation such as the DN3500.
config VME
bool "VME (Motorola and BVM) support"
help
Say Y here if you want to build a kernel for a 680x0 based VME
board. Boards currently supported include Motorola boards MVME147,
MVME162, MVME166, MVME167, MVME172, and MVME177. BVME4000 and
BVME6000 boards from BVM Ltd are also supported.
config MVME147
bool "MVME147 support"
depends on VME
help
Say Y to include support for early Motorola VME boards. This will
build a kernel which can run on MVME147 single-board computers. If
you select this option you will have to select the appropriate
drivers for SCSI, Ethernet and serial ports later on.
config MVME16x
bool "MVME162, 166 and 167 support"
depends on VME
help
Say Y to include support for Motorola VME boards. This will build a
kernel which can run on MVME162, MVME166, MVME167, MVME172, and
MVME177 boards. If you select this option you will have to select
the appropriate drivers for SCSI, Ethernet and serial ports later
on.
config BVME6000
bool "BVME4000 and BVME6000 support"
depends on VME
help
Say Y to include support for VME boards from BVM Ltd. This will
build a kernel which can run on BVME4000 and BVME6000 boards. If
you select this option you will have to select the appropriate
drivers for SCSI, Ethernet and serial ports later on.
config HP300
bool "HP9000/300 support"
help
This option enables support for the HP9000/300 series of
workstations. Support for these machines is still very experimental.
If you plan to try to use the kernel on such a machine say Y here.
Everybody else says N.
config DIO
bool "DIO bus support"
depends on HP300
help
Say Y here to enable support for the "DIO" expansion bus used in
HP300 machines. If you are using such a system you almost certainly
want this.
config SUN3X
bool "Sun3x support"
help
This option enables support for the Sun 3x series of workstations.
Be warned that this support is very experimental. You will also want
to say Y to 68030 support and N to the other processors below.
Note that Sun 3x kernels are not compatible with Sun 3 hardware.
General Linux information on the Sun 3x series (now discontinued)
is at <http://www.angelfire.com/ca2/tech68k/sun3.html>.
If you don't want to compile a kernel for a Sun 3x, say N.
config SUN3
bool "Sun3 support"
help
This option enables support for the Sun 3 series of workstations
(3/50, 3/60, 3/1xx, 3/2xx systems). Enabling this option requires
that all other hardware types must be disabled, as Sun 3 kernels
are incompatible with all other m68k targets (including Sun 3x!).
Also, you will want to say Y to 68020 support and N to the other
processors below.
If you don't want to compile a kernel exclusively for a Sun 3, say N.
config Q40
bool "Q40/Q60 support"
help
The Q40 is a Motorola 68040-based successor to the Sinclair QL
manufactured in Germany. There is an official Q40 home page at
<http://www.q40.de/>. This option enables support for the Q40 and
Q60. Select your CPU below. For 68LC060 don't forget to enable FPU
emulation.
comment "Processor type"
config M68020
bool "68020 support"
help
If you anticipate running this kernel on a computer with a MC68020
processor, say Y. Otherwise, say N. Note that the 68020 requires a
68851 MMU (Memory Management Unit) to run Linux/m68k, except on the
Sun 3, which provides its own version.
config M68030
bool "68030 support"
help
If you anticipate running this kernel on a computer with a MC68030
processor, say Y. Otherwise, say N. Note that a MC68EC030 will not
work, as it does not include an MMU (Memory Management Unit).
config M68040
bool "68040 support"
help
If you anticipate running this kernel on a computer with a MC68LC040
or MC68040 processor, say Y. Otherwise, say N. Note that an
MC68EC040 will not work, as it does not include an MMU (Memory
Management Unit).
config M68060
bool "68060 support"
help
If you anticipate running this kernel on a computer with a MC68060
processor, say Y. Otherwise, say N.
config M68KFPU_EMU
bool "Math emulation support (EXPERIMENTAL)"
depends on EXPERIMENTAL
help
At some point in the future, this will cause floating-point math
instructions to be emulated by the kernel on machines that lack a
floating-point math coprocessor. Thrill-seekers and chronically
sleep-deprived psychotic hacker types can say Y now, everyone else
should probably wait a while.
config M68KFPU_EMU_EXTRAPREC
bool "Math emulation extra precision"
depends on M68KFPU_EMU
help
The fpu uses normally a few bit more during calculations for
correct rounding, the emulator can (often) do the same but this
extra calculation can cost quite some time, so you can disable
it here. The emulator will then "only" calculate with a 64 bit
mantissa and round slightly incorrect, what is more then enough
for normal usage.
config M68KFPU_EMU_ONLY
bool "Math emulation only kernel"
depends on M68KFPU_EMU
help
This option prevents any floating-point instructions from being
compiled into the kernel, thereby the kernel doesn't save any
floating point context anymore during task switches, so this
kernel will only be usable on machines without a floating-point
math coprocessor. This makes the kernel a bit faster as no tests
needs to be executed whether a floating-point instruction in the
kernel should be executed or not.
config ADVANCED
bool "Advanced configuration options"
---help---
This gives you access to some advanced options for the CPU. The
defaults should be fine for most users, but these options may make
it possible for you to improve performance somewhat if you know what
you are doing.
Note that the answer to this question won't directly affect the
kernel: saying N will just cause the configurator to skip all
the questions about these options.
Most users should say N to this question.
config RMW_INSNS
bool "Use read-modify-write instructions"
depends on ADVANCED
---help---
This allows to use certain instructions that work with indivisible
read-modify-write bus cycles. While this is faster than the
workaround of disabling interrupts, it can conflict with DMA
( = direct memory access) on many Amiga systems, and it is also said
to destabilize other machines. It is very likely that this will
cause serious problems on any Amiga or Atari Medusa if set. The only
configuration where it should work are 68030-based Ataris, where it
apparently improves performance. But you've been warned! Unless you
really know what you are doing, say N. Try Y only if you're quite
adventurous.
config SINGLE_MEMORY_CHUNK
bool "Use one physical chunk of memory only"
depends on ADVANCED && !SUN3
help
Ignore all but the first contiguous chunk of physical memory for VM
purposes. This will save a few bytes kernel size and may speed up
some operations. Say N if not sure.
config 060_WRITETHROUGH
bool "Use write-through caching for 68060 supervisor accesses"
depends on ADVANCED && M68060
---help---
The 68060 generally uses copyback caching of recently accessed data.
Copyback caching means that memory writes will be held in an on-chip
cache and only written back to memory some time later. Saying Y
here will force supervisor (kernel) accesses to use writethrough
caching. Writethrough caching means that data is written to memory
straight away, so that cache and memory data always agree.
Writethrough caching is less efficient, but is needed for some
drivers on 68060 based systems where the 68060 bus snooping signal
is hardwired on. The 53c710 SCSI driver is known to suffer from
this problem.
endmenu
menu "General setup"
source "fs/Kconfig.binfmt"
config ZORRO
bool "Amiga Zorro (AutoConfig) bus support"
depends on AMIGA
help
This enables support for the Zorro bus in the Amiga. If you have
expansion cards in your Amiga that conform to the Amiga
AutoConfig(tm) specification, say Y, otherwise N. Note that even
expansion cards that do not fit in the Zorro slots but fit in e.g.
the CPU slot may fall in this category, so you have to say Y to let
Linux use these.
config AMIGA_PCMCIA
bool "Amiga 1200/600 PCMCIA support (EXPERIMENTAL)"
depends on AMIGA && EXPERIMENTAL
help
Include support in the kernel for pcmcia on Amiga 1200 and Amiga
600. If you intend to use pcmcia cards say Y; otherwise say N.
config STRAM_SWAP
bool "Support for ST-RAM as swap space"
depends on ATARI && BROKEN
---help---
Some Atari 68k macines (including the 520STF and 1020STE) divide
their addressible memory into ST and TT sections. The TT section
(up to 512MB) is the main memory; the ST section (up to 4MB) is
accessible to the built-in graphics board, runs slower, and is
present mainly for backward compatibility with older machines.
This enables support for using (parts of) ST-RAM as swap space,
instead of as normal system memory. This can first enhance system
performance if you have lots of alternate RAM (compared to the size
of ST-RAM), because executable code always will reside in faster
memory. ST-RAM will remain as ultra-fast swap space. On the other
hand, it allows much improved dynamic allocations of ST-RAM buffers
for device driver modules (e.g. floppy, ACSI, SLM printer, DMA
sound). The probability that such allocations at module load time
fail is drastically reduced.
config STRAM_PROC
bool "ST-RAM statistics in /proc"
depends on ATARI
help
Say Y here to report ST-RAM usage statistics in /proc/stram. See
the help for CONFIG_STRAM_SWAP for discussion of ST-RAM and its
uses.
config HEARTBEAT
bool "Use power LED as a heartbeat" if AMIGA || APOLLO || ATARI || MAC ||Q40
default y if !AMIGA && !APOLLO && !ATARI && !MAC && !Q40 && HP300
help
Use the power-on LED on your machine as a load meter. The exact
behavior is platform-dependent, but normally the flash frequency is
a hyperbolic function of the 5-minute load average.
# We have a dedicated heartbeat LED. :-)
config PROC_HARDWARE
bool "/proc/hardware support"
help
Say Y here to support the /proc/hardware file, which gives you
access to information about the machine you're running on,
including the model, CPU, MMU, clock speed, BogoMIPS rating,
and memory size.
config PARPORT
tristate "Parallel port support (EXPERIMENTAL)"
depends on EXPERIMENTAL
---help---
If you want to use devices connected to your machine's parallel port
(the connector at the computer with 25 holes), e.g. printer, ZIP
drive, PLIP link (Parallel Line Internet Protocol is mainly used to
create a mini network by connecting the parallel ports of two local
machines) etc., then you need to say Y here; please read
<file:Documentation/parport.txt> and
<file:drivers/parport/BUGS-parport>.
For extensive information about drivers for many devices attaching
to the parallel port see <http://www.torque.net/linux-pp.html> on
the WWW.
It is possible to share a single parallel port among several devices
and it is safe to compile all the corresponding drivers into the
kernel. To compile parallel port support as a module, choose M here:
the module will be called parport.
If you have more than one parallel port and want to specify which
port and IRQ to be used by this driver at module load time, take a
look at <file:Documentation/parport.txt>.
If unsure, say Y.
config PARPORT_AMIGA
tristate "Amiga builtin port"
depends on AMIGA && PARPORT
help
Say Y here if you need support for the parallel port hardware on
Amiga machines. This code is also available as a module (say M),
called parport_amiga. If in doubt, saying N is the safe plan.
config PARPORT_MFC3
tristate "Multiface III parallel port"
depends on ZORRO && PARPORT
help
Say Y here if you need parallel port support for the MFC3 card.
This code is also available as a module (say M), called
parport_mfc3. If in doubt, saying N is the safe plan.
config PARPORT_PC
bool
depends on Q40 && PARPORT
default y
---help---
You should say Y here if you have a PC-style parallel port. All IBM
PC compatible computers and some Alphas have PC-style parallel
ports.
To compile this driver as a module, choose M here: the
module will be called parport_pc.
If unsure, say Y.
config PARPORT_ATARI
tristate "Atari builtin port"
depends on ATARI && PARPORT
help
Say Y here if you need support for the parallel port hardware on
Atari machines. This code is also available as a module (say M),
called parport_atari. If in doubt, saying N is the safe plan.
config PRINTER
tristate "Parallel printer support"
depends on PARPORT
---help---
If you intend to attach a printer to the parallel port of your Linux
box (as opposed to using a serial printer; if the connector at the
printer has 9 or 25 holes ["female"], then it's serial), say Y.
Also read the Printing-HOWTO, available from
<http://www.tldp.org/docs.html#howto>.
It is possible to share one parallel port among several devices
(e.g. printer and ZIP drive) and it is safe to compile the
corresponding drivers into the kernel.
To compile this driver as a module, choose M here and read
<file:Documentation/parport.txt>. The module will be called lp.
If you have several parallel ports, you can specify which ports to
use with the "lp" kernel command line option. (Try "man bootparam"
or see the documentation of your boot loader (lilo or loadlin) about
how to pass options to the kernel at boot time.) The syntax of the
"lp" command line option can be found in <file:drivers/char/lp.c>.
If you have more than 8 printers, you need to increase the LP_NO
macro in lp.c and the PARPORT_MAX macro in parport.h.
config PARPORT_1284
bool "IEEE 1284 transfer modes"
depends on PRINTER
help
If you have a printer that supports status readback or device ID, or
want to use a device that uses enhanced parallel port transfer modes
such as EPP and ECP, say Y here to enable advanced IEEE 1284
transfer modes. Also say Y if you want device ID information to
appear in /proc/sys/dev/parport/*/autoprobe*. It is safe to say N.
config ISA
bool
depends on Q40 || AMIGA_PCMCIA || GG2
default y
help
Find out whether you have ISA slots on your motherboard. ISA is the
name of a bus system, i.e. the way the CPU talks to the other stuff
inside your box. Other bus systems are PCI, EISA, MicroChannel
(MCA) or VESA. ISA is an older system, now being displaced by PCI;
newer boards don't support it. If you have ISA, say Y, otherwise N.
config GENERIC_ISA_DMA
bool
depends on Q40 || AMIGA_PCMCIA || GG2
default y
source "drivers/pci/Kconfig"
source "drivers/zorro/Kconfig"
if Q40
source "drivers/pnp/Kconfig"
endif
endmenu
source "drivers/base/Kconfig"
source "drivers/mtd/Kconfig"
source "drivers/block/Kconfig"
source "drivers/md/Kconfig"
source "drivers/input/Kconfig"
source "drivers/ide/Kconfig"
source "drivers/scsi/Kconfig"
source "net/Kconfig"
menu "Character devices"
config SERIAL
tristate "Q40 Standard/generic serial support" if Q40
default DN_SERIAL if APOLLO
---help---
This selects whether you want to include the driver for the standard
serial ports. The standard answer is Y. People who might say N
here are those that are setting up dedicated Ethernet WWW/FTP
servers, or users that have one of the various bus mice instead of a
serial mouse and don't intend to use their machine's standard serial
port for anything. (Note that the Cyclades and Stallion multi
serial port drivers do not need this driver built in for them to
work.)
To compile this driver as a module, choose M here: the
module will be called serial.
[WARNING: Do not compile this driver as a module if you are using
non-standard serial ports, since the configuration information will
be lost when the driver is unloaded. This limitation may be lifted
in the future.]
BTW1: If you have a mouseman serial mouse which is not recognized by
the X window system, try running gpm first.
BTW2: If you intend to use a software modem (also called Winmodem)
under Linux, forget it. These modems are crippled and require
proprietary drivers which are only available under Windows.
Most people will say Y or M here, so that they can use serial mice,
modems and similar devices connecting to the standard serial ports.
config SERIAL_EXTENDED
bool "Extended dumb serial driver options"
depends on SERIAL=y
help
If you wish to use any non-standard features of the standard "dumb"
driver, say Y here. This includes HUB6 support, shared serial
interrupts, special multiport support, support for more than the
four COM 1/2/3/4 boards, etc.
Note that the answer to this question won't directly affect the
kernel: saying N will just cause the configurator to skip all
the questions about serial driver options. If unsure, say N.
config SERIAL_MANY_PORTS
bool "Support more than 4 serial ports"
depends on SERIAL_EXTENDED
help
Say Y here if you have dumb serial boards other than the four
standard COM 1/2/3/4 ports. This may happen if you have an AST
FourPort, Accent Async, Boca (read the Boca mini-HOWTO, available
from <http://www.tldp.org/docs.html#howto>), or other custom
serial port hardware which acts similar to standard serial port
hardware. If you only use the standard COM 1/2/3/4 ports, you can
say N here to save some memory. You can also say Y if you have an
"intelligent" multiport card such as Cyclades, Digiboards, etc.
config SERIAL_SHARE_IRQ
bool "Support for sharing serial interrupts"
depends on SERIAL_EXTENDED
help
Some serial boards have hardware support which allows multiple dumb
serial ports on the same board to share a single IRQ. To enable
support for this in the serial driver, say Y here.
config SERIAL_MULTIPORT
bool "Support special multiport boards"
depends on SERIAL_EXTENDED
help
Some multiport serial ports have special ports which are used to
signal when there are any serial ports on the board which need
servicing. Say Y here to enable the serial driver to take advantage
of those special I/O ports.
config HUB6
bool "Support the Bell Technologies HUB6 card"
depends on SERIAL_EXTENDED
help
Say Y here to enable support in the dumb serial driver to support
the HUB6 card.
config VT
bool "Virtual terminal"
---help---
If you say Y here, you will get support for terminal devices with
display and keyboard devices. These are called "virtual" because you
can run several virtual terminals (also called virtual consoles) on
one physical terminal. This is rather useful, for example one
virtual terminal can collect system messages and warnings, another
one can be used for a text-mode user session, and a third could run
an X session, all in parallel. Switching between virtual terminals
is done with certain key combinations, usually Alt-<function key>.
The setterm command ("man setterm") can be used to change the
properties (such as colors or beeping) of a virtual terminal. The
man page console_codes(4) ("man console_codes") contains the special
character sequences that can be used to change those properties
directly. The fonts used on virtual terminals can be changed with
the setfont ("man setfont") command and the key bindings are defined
with the loadkeys ("man loadkeys") command.
You need at least one virtual terminal device in order to make use
of your keyboard and monitor. Therefore, only people configuring an
embedded system would want to say N here in order to save some
memory; the only way to log into such a system is then via a serial
or network connection.
If unsure, say Y, or else you won't be able to do much with your new
shiny Linux system :-)
config VT_CONSOLE
bool "Support for console on virtual terminal"
depends on VT
---help---
The system console is the device which receives all kernel messages
and warnings and which allows logins in single user mode. If you
answer Y here, a virtual terminal (the device used to interact with
a physical terminal) can be used as system console. This is the most
common mode of operations, so you should say Y here unless you want
the kernel messages be output only to a serial port (in which case
you should say Y to "Console on serial port", below).
If you do say Y here, by default the currently visible virtual
terminal (/dev/tty0) will be used as system console. You can change
that with a kernel command line option such as "console=tty3" which
would use the third virtual terminal as system console. (Try "man
bootparam" or see the documentation of your boot loader (lilo or
loadlin) about how to pass options to the kernel at boot time.)
If unsure, say Y.
config HW_CONSOLE
bool
depends on VT
default y
config NVRAM
bool
depends on ATARI
default y
---help---
If you say Y here and create a character special file /dev/nvram
with major number 10 and minor number 144 using mknod ("man mknod"),
you get read and write access to the 50 bytes of non-volatile memory
in the real time clock (RTC), which is contained in every PC and
most Ataris.
This memory is conventionally called "CMOS RAM" on PCs and "NVRAM"
on Ataris. /dev/nvram may be used to view settings there, or to
change them (with some utility). It could also be used to frequently
save a few bits of very important data that may not be lost over
power-off and for which writing to disk is too insecure. Note
however that most NVRAM space in a PC belongs to the BIOS and you
should NEVER idly tamper with it. See Ralf Brown's interrupt list
for a guide to the use of CMOS bytes by your BIOS.
On Atari machines, /dev/nvram is always configured and does not need
to be selected.
To compile this driver as a module, choose M here: the
module will be called nvram.
config ATARI_MFPSER
tristate "Atari MFP serial support"
depends on ATARI
---help---
If you like to use the MFP serial ports ("Modem1", "Serial1") under
Linux, say Y. The driver equally supports all kinds of MFP serial
ports and automatically detects whether Serial1 is available.
To compile this driver as a module, choose M here.
Note for Falcon users: You also have an MFP port, it's just not
wired to the outside... But you could use the port under Linux.
config ATARI_SCC
tristate "Atari SCC serial support"
depends on ATARI
---help---
If you have serial ports based on a Zilog SCC chip (Modem2, Serial2,
LAN) and like to use them under Linux, say Y. All built-in SCC's are
supported (TT, MegaSTE, Falcon), and also the ST-ESCC. If you have
two connectors for channel A (Serial2 and LAN), they are visible as
two separate devices.
To compile this driver as a module, choose M here.
config ATARI_SCC_DMA
bool "Atari SCC serial DMA support"
depends on ATARI_SCC
help
This enables DMA support for receiving data on channel A of the SCC.
If you have a TT you may say Y here and read
drivers/char/atari_SCC.README. All other users should say N here,
because only the TT has SCC-DMA, even if your machine keeps claiming
so at boot time.
config ATARI_MIDI
tristate "Atari MIDI serial support"
depends on ATARI
help
If you want to use your Atari's MIDI port in Linux, say Y.
To compile this driver as a module, choose M here.
config ATARI_DSP56K
tristate "Atari DSP56k support (EXPERIMENTAL)"
depends on ATARI && EXPERIMENTAL
help
If you want to be able to use the DSP56001 in Falcons, say Y. This
driver is still experimental, and if you don't know what it is, or
if you don't have this processor, just say N.
To compile this driver as a module, choose M here.
config AMIGA_BUILTIN_SERIAL
tristate "Amiga builtin serial support"
depends on AMIGA
help
If you want to use your Amiga's built-in serial port in Linux,
answer Y.
To compile this driver as a module, choose M here.
config WHIPPET_SERIAL
tristate "Hisoft Whippet PCMCIA serial support"
depends on AMIGA_PCMCIA
help
HiSoft has a web page at <http://www.hisoft.co.uk/>, but there
is no listing for the Whippet in their Amiga section.
config MULTIFACE_III_TTY
tristate "Multiface Card III serial support"
depends on AMIGA
help
If you want to use a Multiface III card's serial port in Linux,
answer Y.
To compile this driver as a module, choose M here.
config A2232
tristate "Commodore A2232 serial support (EXPERIMENTAL)"
depends on AMIGA && EXPERIMENTAL
---help---
This option supports the 2232 7-port serial card shipped with the
Amiga 2000 and other Zorro-bus machines, dating from 1989. At
a max of 19,200 bps, the ports are served by a 6551 ACIA UART chip
each, plus a 8520 CIA, and a master 6502 CPU and buffer as well. The
ports were connected with 8 pin DIN connectors on the card bracket,
for which 8 pin to DB25 adapters were supplied. The card also had
jumpers internally to toggle various pinning configurations.
This driver can be built as a module; but then "generic_serial"
will also be built as a module. This has to be loaded before
"ser_a2232". If you want to do this, answer M here.
config GVPIOEXT
tristate "GVP IO-Extender support"
depends on PARPORT=n && ZORRO
help
If you want to use a GVP IO-Extender serial card in Linux, say Y.
Otherwise, say N.
config GVPIOEXT_LP
tristate "GVP IO-Extender parallel printer support"
depends on GVPIOEXT
help
Say Y to enable driving a printer from the parallel port on your
GVP IO-Extender card, N otherwise.
config GVPIOEXT_PLIP
tristate "GVP IO-Extender PLIP support"
depends on GVPIOEXT
help
Say Y to enable doing IP over the parallel port on your GVP
IO-Extender card, N otherwise.
config MAC_SCC
tristate "Macintosh serial support"
depends on MAC
config ADB
bool "Apple Desktop Bus (ADB) support"
depends on MAC
help
Apple Desktop Bus (ADB) support is for support of devices which
are connected to an ADB port. ADB devices tend to have 4 pins.
If you have an Apple Macintosh prior to the iMac, or a
"Blue and White G3", you probably want to say Y here. Otherwise
say N.
config ADB_MACII
bool "Include Mac II ADB driver"
depends on ADB
help
Say Y here if want your kernel to support Macintosh systems that use
the Mac II style ADB. This includes the II, IIx, IIcx, SE/30, IIci,
Quadra 610, Quadra 650, Quadra 700, Quadra 800, Centris 610 and
Centris 650.
config ADB_MACIISI
bool "Include Mac IIsi ADB driver"
depends on ADB
help
Say Y here if want your kernel to support Macintosh systems that use
the Mac IIsi style ADB. This includes the IIsi, IIvi, IIvx, Classic
II, LC, LC II, LC III, Performa 460, and the Performa 600.
config ADB_CUDA
bool "Include CUDA ADB driver"
depends on ADB
help
This provides support for CUDA based Power Macintosh systems. This
includes most OldWorld PowerMacs, the first generation iMacs, the
Blue&White G3 and the Yikes G4 (PCI Graphics). All later models
should use CONFIG_ADB_PMU instead.
If unsure say Y.
config ADB_IOP
bool "Include IOP (IIfx/Quadra 9x0) ADB driver"
depends on ADB
help
The I/O Processor (IOP) is an Apple custom IC designed to provide
intelligent support for I/O controllers. It is described at
<http://www.angelfire.com/ca2/dev68k/iopdesc.html> to enable direct
support for it, say 'Y' here.
config ADB_PMU68K
bool "Include PMU (Powerbook) ADB driver"
depends on ADB
help
Say Y here if want your kernel to support the m68k based Powerbooks.
This includes the PowerBook 140, PowerBook 145, PowerBook 150,
PowerBook 160, PowerBook 165, PowerBook 165c, PowerBook 170,
PowerBook 180, PowerBook, 180c, PowerBook 190cs, PowerBook 520,
PowerBook Duo 210, PowerBook Duo 230, PowerBook Duo 250,
PowerBook Duo 270c, PowerBook Duo 280 and PowerBook Duo 280c.
config INPUT_ADBHID
bool "Use input layer for ADB devices"
depends on MAC && INPUT=y
---help---
Say Y here if you want to have ADB (Apple Desktop Bus) HID devices
such as keyboards, mice, joysticks, or graphic tablets handled by
the input layer. If you say Y here, make sure to say Y to the
corresponding drivers "Keyboard support" (CONFIG_INPUT_KEYBDEV),
"Mouse Support" (CONFIG_INPUT_MOUSEDEV) and "Event interface
support" (CONFIG_INPUT_EVDEV) as well.
If you say N here, you still have the option of using the old ADB
keyboard and mouse drivers.
If unsure, say Y.
config MAC_HID
bool
depends on INPUT_ADBHID
default y
config MAC_ADBKEYCODES
bool "Support for ADB raw keycodes"
depends on INPUT_ADBHID
help
This provides support for sending raw ADB keycodes to console
devices. This is the default up to 2.4.0, but in future this may be
phased out in favor of generic Linux keycodes. If you say Y here,
you can dynamically switch via the
/proc/sys/dev/mac_hid/keyboard_sends_linux_keycodes
sysctl and with the "keyboard_sends_linux_keycodes=" kernel
argument.
If unsure, say Y here.
config MAC_EMUMOUSEBTN
bool "Support for mouse button 2+3 emulation"
depends on INPUT_ADBHID
help
This provides generic support for emulating the 2nd and 3rd mouse
button with keypresses. If you say Y here, the emulation is still
disabled by default. The emulation is controlled by these sysctl
entries:
/proc/sys/dev/mac_hid/mouse_button_emulation
/proc/sys/dev/mac_hid/mouse_button2_keycode
/proc/sys/dev/mac_hid/mouse_button3_keycode
config ADB_KEYBOARD
bool "Support for ADB keyboard (old driver)"
depends on MAC && !INPUT_ADBHID
help
This option allows you to use an ADB keyboard attached to your
machine. Note that this disables any other (ie. PS/2) keyboard
support, even if your machine is physically capable of using both at
the same time.
If you use an ADB keyboard (4 pin connector), say Y here.
If you use a PS/2 keyboard (6 pin connector), say N here.
config HPDCA
tristate "HP DCA serial support"
depends on DIO
help
If you want to use the internal "DCA" serial ports on an HP300
machine, say Y here.
config MVME147_SCC
bool "SCC support for MVME147 serial ports"
depends on MVME147
help
This is the driver for the serial ports on the Motorola MVME147
boards. Everyone using one of these boards should say Y here.
config SERIAL167
bool "CD2401 support for MVME166/7 serial ports"
depends on MVME16x && BROKEN
help
This is the driver for the serial ports on the Motorola MVME166,
167, and 172 boards. Everyone using one of these boards should say
Y here.
config MVME162_SCC
bool "SCC support for MVME162 serial ports"
depends on MVME16x
help
This is the driver for the serial ports on the Motorola MVME162 and
172 boards. Everyone using one of these boards should say Y here.
config BVME6000_SCC
bool "SCC support for BVME6000 serial ports"
depends on BVME6000
help
This is the driver for the serial ports on the BVME4000 and BVME6000
boards from BVM Ltd. Everyone using one of these boards should say
Y here.
config DN_SERIAL
bool "Support for DN serial port (dummy)"
depends on APOLLO
config SERIAL_CONSOLE
bool "Support for serial port console"
depends on (AMIGA || ATARI || MAC || HP300 || SUN3 || SUN3X || VME || APOLLO) && (ATARI_MFPSER=y || ATARI_SCC=y || ATARI_MIDI=y || MAC_SCC=y || AMIGA_BUILTIN_SERIAL=y || GVPIOEXT=y || MULTIFACE_III_TTY=y || HPDCA=y || SERIAL=y || MVME147_SCC || SERIAL167 || MVME162_SCC || BVME6000_SCC || DN_SERIAL)
---help---
If you say Y here, it will be possible to use a serial port as the
system console (the system console is the device which receives all
kernel messages and warnings and which allows logins in single user
mode). This could be useful if some terminal or printer is connected
to that serial port.
Even if you say Y here, the currently visible virtual console
(/dev/tty0) will still be used as the system console by default, but
you can alter that using a kernel command line option such as
"console=ttyS1". (Try "man bootparam" or see the documentation of
your boot loader (lilo or loadlin) about how to pass options to the
kernel at boot time.)
If you don't have a VGA card installed and you say Y here, the
kernel will automatically use the first serial line, /dev/ttyS0, as
system console.
If unsure, say N.
config USERIAL
bool "Support for user serial device modules"
config WATCHDOG
bool "Watchdog Timer Support"
---help---
If you say Y here (and to one of the following options) and create a
character special file /dev/watchdog with major number 10 and minor
number 130 using mknod ("man mknod"), you will get a watchdog, i.e.:
subsequently opening the file and then failing to write to it for
longer than 1 minute will result in rebooting the machine. This
could be useful for a networked machine that needs to come back
online as fast as possible after a lock-up. There's both a watchdog
implementation entirely in software (which can sometimes fail to
reboot the machine) and a driver for hardware watchdog boards, which
are more robust and can also keep track of the temperature inside
your computer. For details, read <file:Documentation/watchdog.txt>
in the kernel source.
The watchdog is usually used together with the watchdog daemon
which is available from
<ftp://ibiblio.org/pub/Linux/system/daemons/watchdog/>. This daemon can
also monitor NFS connections and can reboot the machine when the process
table is full.
If unsure, say N.
config WATCHDOG_NOWAYOUT
bool "Disable watchdog shutdown on close"
depends on WATCHDOG
help
The default watchdog behaviour (which you get if you say N here) is
to stop the timer if the process managing it closes the file
/dev/watchdog. It's always remotely possible that this process might
get killed. If you say Y here, the watchdog cannot be stopped once
it has been started.
config SOFT_WATCHDOG
bool "Software watchdog"
depends on WATCHDOG
help
A software monitoring watchdog. This will fail to reboot your system
from some situations that the hardware watchdog will recover
from. Equally it's a lot cheaper to install.
To compile this driver as a module, choose M here: the
module will be called softdog.
config GEN_RTC
tristate "Generic /dev/rtc emulation" if !SUN3
default y if SUN3
---help---
If you say Y here and create a character special file /dev/rtc with
major number 10 and minor number 135 using mknod ("man mknod"), you
will get access to the real time clock (or hardware clock) built
into your computer.
It reports status information via the file /proc/driver/rtc and its
behaviour is set by various ioctls on /dev/rtc. If you enable the
"extended RTC operation" below it will also provide an emulation
for RTC_UIE which is required by some programs and may improve
precision in some cases.
To compile this driver as a module, choose M here: the
module will be called genrtc. To load the module automatically
add 'alias char-major-10-135 genrtc' to your /etc/modules.conf
config GEN_RTC_X
bool "Extended RTC operation"
depends on GEN_RTC
help
Provides an emulation for RTC_UIE which is required by some programs
and may improve precision of the generic RTC support in some cases.
config UNIX98_PTYS
bool "Unix98 PTY support"
---help---
A pseudo terminal (PTY) is a software device consisting of two
halves: a master and a slave. The slave device behaves identical to
a physical terminal; the master device is used by a process to
read data from and write data to the slave, thereby emulating a
terminal. Typical programs for the master side are telnet servers
and xterms.
Linux has traditionally used the BSD-like names /dev/ptyxx for
masters and /dev/ttyxx for slaves of pseudo terminals. This scheme
has a number of problems. The GNU C library glibc 2.1 and later,
however, supports the Unix98 naming standard: in order to acquire a
pseudo terminal, a process opens /dev/ptmx; the number of the pseudo
terminal is then made available to the process and the pseudo
terminal slave can be accessed as /dev/pts/<number>. What was
traditionally /dev/ttyp2 will then be /dev/pts/2, for example.
The entries in /dev/pts/ are created on the fly by a virtual
file system; therefore, if you say Y here you should say Y to
"/dev/pts file system for Unix98 PTYs" as well.
If you want to say Y here, you need to have the C library glibc 2.1
or later (equal to libc-6.1, check with "ls -l /lib/libc.so.*").
Read the instructions in <file:Documentation/Changes> pertaining to
pseudo terminals. It's safe to say N.
config UNIX98_PTY_COUNT
int "Maximum number of Unix98 PTYs in use (0-2048)"
depends on UNIX98_PTYS
default "256"
help
The maximum number of Unix98 PTYs that can be used at any one time.
The default is 256, and should be enough for desktop systems. Server
machines which support incoming telnet/rlogin/ssh connections and/or
serve several X terminals may want to increase this: every incoming
connection and every xterm uses up one PTY.
When not in use, each additional set of 256 PTYs occupy
approximately 8 KB of kernel memory on 32-bit architectures.
endmenu
source "sound/Kconfig"
source "fs/Kconfig"
source "drivers/video/Kconfig"
menu "Kernel hacking"
config DEBUG_KERNEL
bool "Kernel debugging"
config MAGIC_SYSRQ
bool "Magic SysRq key"
depends on DEBUG_KERNEL
help
If you say Y here, you will have some control over the system even
if the system crashes for example during kernel debugging (e.g., you
will be able to flush the buffer cache to disk, reboot the system
immediately or dump some status information). This is accomplished
by pressing various keys while holding SysRq (Alt+PrintScreen). It
also works on a serial console (on PC hardware at least), if you
send a BREAK and then within 5 seconds a command keypress. The
keys are documented in <file:Documentation/sysrq.txt>. Don't say Y
unless you really know what this hack does.
config DEBUG_SLAB
bool "Debug memory allocations"
depends on DEBUG_KERNEL
config DEBUG_BUGVERBOSE
bool "Verbose BUG() reporting"
depends on DEBUG_KERNEL
config DEBUG_INFO
bool "Compile the kernel with debug info"
depends on DEBUG_KERNEL
help
If you say Y here the resulting kernel image will include
debugging info resulting in a larger kernel image.
Say Y here only if you plan to use gdb to debug the kernel.
If you don't debug the kernel, you can say N.
endmenu
source "security/Kconfig"
source "crypto/Kconfig"
source "lib/Kconfig"