/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2000,2002-2004 Silicon Graphics, Inc. All rights reserved.
*
* Routines for PCI DMA mapping. See Documentation/DMA-mapping.txt for
* a description of how these routines should be used.
*/
#include <linux/module.h>
#include <asm/sn/sn_sal.h>
#include "pci/pcibus_provider_defs.h"
#include "pci/pcidev.h"
#include "pci/pcibr_provider.h"
void sn_pci_unmap_sg(struct pci_dev *hwdev, struct scatterlist *sg, int nents,
int direction);
/**
* sn_pci_alloc_consistent - allocate memory for coherent DMA
* @hwdev: device to allocate for
* @size: size of the region
* @dma_handle: DMA (bus) address
*
* pci_alloc_consistent() returns a pointer to a memory region suitable for
* coherent DMA traffic to/from a PCI device. On SN platforms, this means
* that @dma_handle will have the %PCIIO_DMA_CMD flag set.
*
* This interface is usually used for "command" streams (e.g. the command
* queue for a SCSI controller). See Documentation/DMA-mapping.txt for
* more information.
*
* Also known as platform_pci_alloc_consistent() by the IA64 machvec code.
*/
void *sn_pci_alloc_consistent(struct pci_dev *hwdev, size_t size,
dma_addr_t * dma_handle)
{
void *cpuaddr;
unsigned long phys_addr;
struct pcidev_info *pcidev_info = SN_PCIDEV_INFO(hwdev);
struct pcibus_bussoft *bussoft = SN_PCIDEV_BUSSOFT(hwdev);
if (bussoft == NULL) {
return NULL;
}
if (! IS_PCI_BRIDGE_ASIC(bussoft->bs_asic_type)) {
return NULL; /* unsupported asic type */
}
/*
* Allocate the memory.
* FIXME: We should be doing alloc_pages_node for the node closest
* to the PCI device.
*/
if (!(cpuaddr = (void *)__get_free_pages(GFP_ATOMIC, get_order(size))))
return NULL;
memset(cpuaddr, 0x0, size);
/* physical addr. of the memory we just got */
phys_addr = __pa(cpuaddr);
/*
* 64 bit address translations should never fail.
* 32 bit translations can fail if there are insufficient mapping
* resources.
*/
*dma_handle = pcibr_dma_map(pcidev_info, phys_addr, size, SN_PCIDMA_CONSISTENT);
if (!*dma_handle) {
printk(KERN_ERR
"sn_pci_alloc_consistent(): failed *dma_handle = 0x%lx hwdev->dev.coherent_dma_mask = 0x%lx \n",
*dma_handle, hwdev->dev.coherent_dma_mask);
free_pages((unsigned long)cpuaddr, get_order(size));
return NULL;
}
return cpuaddr;
}
/**
* sn_pci_free_consistent - free memory associated with coherent DMAable region
* @hwdev: device to free for
* @size: size to free
* @vaddr: kernel virtual address to free
* @dma_handle: DMA address associated with this region
*
* Frees the memory allocated by pci_alloc_consistent(). Also known
* as platform_pci_free_consistent() by the IA64 machvec code.
*/
void
sn_pci_free_consistent(struct pci_dev *hwdev, size_t size, void *vaddr,
dma_addr_t dma_handle)
{
struct pcidev_info *pcidev_info = SN_PCIDEV_INFO(hwdev);
struct pcibus_bussoft *bussoft = SN_PCIDEV_BUSSOFT(hwdev);
if (! bussoft) {
return;
}
pcibr_dma_unmap(pcidev_info, dma_handle, 0);
free_pages((unsigned long)vaddr, get_order(size));
}
/**
* sn_pci_map_sg - map a scatter-gather list for DMA
* @hwdev: device to map for
* @sg: scatterlist to map
* @nents: number of entries
* @direction: direction of the DMA transaction
*
* Maps each entry of @sg for DMA. Also known as platform_pci_map_sg by the
* IA64 machvec code.
*/
int
sn_pci_map_sg(struct pci_dev *hwdev, struct scatterlist *sg, int nents,
int direction)
{
int i;
unsigned long phys_addr;
struct scatterlist *saved_sg = sg;
struct pcidev_info *pcidev_info = SN_PCIDEV_INFO(hwdev);
struct pcibus_bussoft *bussoft = SN_PCIDEV_BUSSOFT(hwdev);
/* can't go anywhere w/o a direction in life */
if (direction == PCI_DMA_NONE)
BUG();
if (! bussoft) {
return 0;
}
/* SN cannot support DMA addresses smaller than 32 bits. */
if (hwdev->dma_mask < 0x7fffffff)
return 0;
/*
* Setup a DMA address for each entry in the
* scatterlist.
*/
for (i = 0; i < nents; i++, sg++) {
phys_addr =
__pa((unsigned long)page_address(sg->page) + sg->offset);
sg->dma_address = pcibr_dma_map(pcidev_info, phys_addr, sg->length, 0);
if (!sg->dma_address) {
printk(KERN_ERR "sn_pci_map_sg: Unable to allocate "
"anymore page map entries.\n");
/*
* We will need to free all previously allocated entries.
*/
if (i > 0) {
sn_pci_unmap_sg(hwdev, saved_sg, i, direction);
}
return (0);
}
sg->dma_length = sg->length;
}
return nents;
}
/**
* sn_pci_unmap_sg - unmap a scatter-gather list
* @hwdev: device to unmap
* @sg: scatterlist to unmap
* @nents: number of scatterlist entries
* @direction: DMA direction
*
* Unmap a set of streaming mode DMA translations. Again, cpu read rules
* concerning calls here are the same as for pci_unmap_single() below. Also
* known as sn_pci_unmap_sg() by the IA64 machvec code.
*/
void
sn_pci_unmap_sg(struct pci_dev *hwdev, struct scatterlist *sg, int nents,
int direction)
{
int i;
struct pcidev_info *pcidev_info = SN_PCIDEV_INFO(hwdev);
struct pcibus_bussoft *bussoft = SN_PCIDEV_BUSSOFT(hwdev);
/* can't go anywhere w/o a direction in life */
if (direction == PCI_DMA_NONE)
BUG();
if (! bussoft) {
return;
}
for (i = 0; i < nents; i++, sg++) {
pcibr_dma_unmap(pcidev_info, sg->dma_address, direction);
sg->dma_address = (dma_addr_t) NULL;
sg->dma_length = 0;
}
}
/**
* sn_pci_map_single - map a single region for DMA
* @hwdev: device to map for
* @ptr: kernel virtual address of the region to map
* @size: size of the region
* @direction: DMA direction
*
* Map the region pointed to by @ptr for DMA and return the
* DMA address. Also known as platform_pci_map_single() by
* the IA64 machvec code.
*
* We map this to the one step pcibr_dmamap_trans interface rather than
* the two step pcibr_dmamap_alloc/pcibr_dmamap_addr because we have
* no way of saving the dmamap handle from the alloc to later free
* (which is pretty much unacceptable).
*
* TODO: simplify our interface;
* get rid of dev_desc and vhdl (seems redundant given a pci_dev);
* figure out how to save dmamap handle so can use two step.
*/
dma_addr_t
sn_pci_map_single(struct pci_dev *hwdev, void *ptr, size_t size, int direction)
{
dma_addr_t dma_addr;
unsigned long phys_addr;
struct pcidev_info *pcidev_info = SN_PCIDEV_INFO(hwdev);
struct pcibus_bussoft *bussoft = SN_PCIDEV_BUSSOFT(hwdev);
if (direction == PCI_DMA_NONE)
BUG();
if (bussoft == NULL) {
return 0;
}
if (! IS_PCI_BRIDGE_ASIC(bussoft->bs_asic_type)) {
return 0; /* unsupported asic type */
}
/* SN cannot support DMA addresses smaller than 32 bits. */
if (hwdev->dma_mask < 0x7fffffff)
return 0;
/*
* Call our dmamap interface
*/
phys_addr = __pa(ptr);
dma_addr = pcibr_dma_map(pcidev_info, phys_addr, size, 0);
if (!dma_addr) {
printk(KERN_ERR "pci_map_single: Unable to allocate anymore "
"page map entries.\n");
return 0;
}
return ((dma_addr_t) dma_addr);
}
/**
* sn_pci_dma_sync_single_* - make sure all DMAs or CPU accesses
* have completed
* @hwdev: device to sync
* @dma_handle: DMA address to sync
* @size: size of region
* @direction: DMA direction
*
* This routine is supposed to sync the DMA region specified
* by @dma_handle into the 'coherence domain'. We do not need to do
* anything on our platform.
*/
void
sn_pci_unmap_single(struct pci_dev *hwdev, dma_addr_t dma_addr, size_t size,
int direction)
{
struct pcidev_info *pcidev_info = SN_PCIDEV_INFO(hwdev);
struct pcibus_bussoft *bussoft = SN_PCIDEV_BUSSOFT(hwdev);
if (direction == PCI_DMA_NONE)
BUG();
if (bussoft == NULL) {
return;
}
if (! IS_PCI_BRIDGE_ASIC(bussoft->bs_asic_type)) {
return; /* unsupported asic type */
}
pcibr_dma_unmap(pcidev_info, dma_addr, direction);
}
/**
* sn_dma_supported - test a DMA mask
* @hwdev: device to test
* @mask: DMA mask to test
*
* Return whether the given PCI device DMA address mask can be supported
* properly. For example, if your device can only drive the low 24-bits
* during PCI bus mastering, then you would pass 0x00ffffff as the mask to
* this function. Of course, SN only supports devices that have 32 or more
* address bits when using the PMU. We could theoretically support <32 bit
* cards using direct mapping, but we'll worry about that later--on the off
* chance that someone actually wants to use such a card.
*/
int sn_pci_dma_supported(struct pci_dev *hwdev, u64 mask)
{
if (mask < 0x7fffffff)
return 0;
return 1;
}
/*
* New generic DMA routines just wrap sn2 PCI routines until we
* support other bus types (if ever).
*/
int sn_dma_supported(struct device *dev, u64 mask)
{
BUG_ON(dev->bus != &pci_bus_type);
return sn_pci_dma_supported(to_pci_dev(dev), mask);
}
EXPORT_SYMBOL(sn_dma_supported);
int sn_dma_set_mask(struct device *dev, u64 dma_mask)
{
BUG_ON(dev->bus != &pci_bus_type);
if (!sn_dma_supported(dev, dma_mask))
return 0;
*dev->dma_mask = dma_mask;
return 1;
}
EXPORT_SYMBOL(sn_dma_set_mask);
void *sn_dma_alloc_coherent(struct device *dev, size_t size,
dma_addr_t * dma_handle, int flag)
{
BUG_ON(dev->bus != &pci_bus_type);
return sn_pci_alloc_consistent(to_pci_dev(dev), size, dma_handle);
}
EXPORT_SYMBOL(sn_dma_alloc_coherent);
void
sn_dma_free_coherent(struct device *dev, size_t size, void *cpu_addr,
dma_addr_t dma_handle)
{
BUG_ON(dev->bus != &pci_bus_type);
sn_pci_free_consistent(to_pci_dev(dev), size, cpu_addr, dma_handle);
}
EXPORT_SYMBOL(sn_dma_free_coherent);
dma_addr_t
sn_dma_map_single(struct device *dev, void *cpu_addr, size_t size,
int direction)
{
BUG_ON(dev->bus != &pci_bus_type);
return sn_pci_map_single(to_pci_dev(dev), cpu_addr, size,
(int)direction);
}
EXPORT_SYMBOL(sn_dma_map_single);
void
sn_dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
int direction)
{
BUG_ON(dev->bus != &pci_bus_type);
sn_pci_unmap_single(to_pci_dev(dev), dma_addr, size, (int)direction);
}
EXPORT_SYMBOL(sn_dma_unmap_single);
dma_addr_t
sn_dma_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size, int direction)
{
BUG_ON(dev->bus != &pci_bus_type);
return pci_map_page(to_pci_dev(dev), page, offset, size,
(int)direction);
}
EXPORT_SYMBOL(sn_dma_map_page);
void
sn_dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size,
int direction)
{
BUG_ON(dev->bus != &pci_bus_type);
pci_unmap_page(to_pci_dev(dev), dma_address, size, (int)direction);
}
EXPORT_SYMBOL(sn_dma_unmap_page);
int
sn_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
int direction)
{
BUG_ON(dev->bus != &pci_bus_type);
return sn_pci_map_sg(to_pci_dev(dev), sg, nents, (int)direction);
}
EXPORT_SYMBOL(sn_dma_map_sg);
void
sn_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries,
int direction)
{
BUG_ON(dev->bus != &pci_bus_type);
sn_pci_unmap_sg(to_pci_dev(dev), sg, nhwentries, (int)direction);
}
EXPORT_SYMBOL(sn_dma_unmap_sg);
void
sn_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle,
size_t size, int direction)
{
BUG_ON(dev->bus != &pci_bus_type);
}
EXPORT_SYMBOL(sn_dma_sync_single_for_cpu);
void
sn_dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,
size_t size, int direction)
{
BUG_ON(dev->bus != &pci_bus_type);
}
EXPORT_SYMBOL(sn_dma_sync_single_for_device);
void
sn_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems,
int direction)
{
BUG_ON(dev->bus != &pci_bus_type);
}
EXPORT_SYMBOL(sn_dma_sync_sg_for_cpu);
void
sn_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
int nelems, int direction)
{
BUG_ON(dev->bus != &pci_bus_type);
}
int sn_dma_mapping_error(dma_addr_t dma_addr)
{
return 0;
}
EXPORT_SYMBOL(sn_dma_sync_sg_for_device);
EXPORT_SYMBOL(sn_pci_unmap_single);
EXPORT_SYMBOL(sn_pci_map_single);
EXPORT_SYMBOL(sn_pci_map_sg);
EXPORT_SYMBOL(sn_pci_unmap_sg);
EXPORT_SYMBOL(sn_pci_alloc_consistent);
EXPORT_SYMBOL(sn_pci_free_consistent);
EXPORT_SYMBOL(sn_pci_dma_supported);
EXPORT_SYMBOL(sn_dma_mapping_error);