File: [Development] / linux-2.6-xfs / arch / ia64 / sn / kernel / sn2 / sn2_smp.c (download)
Revision 1.8, Wed Jan 5 14:17:31 2005 UTC (12 years, 9 months ago) by nathans.longdrop.melbourne.sgi.com
Branch: MAIN
Changes since 1.7: +66 -67
lines
Merge up to 2.6.10.
Merge of 2.6.x-xfs-melb:linux:21010a by kenmcd.
|
/*
* SN2 Platform specific SMP Support
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2000-2004 Silicon Graphics, Inc. All rights reserved.
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/spinlock.h>
#include <linux/threads.h>
#include <linux/sched.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/mmzone.h>
#include <linux/module.h>
#include <linux/bitops.h>
#include <asm/processor.h>
#include <asm/irq.h>
#include <asm/sal.h>
#include <asm/system.h>
#include <asm/delay.h>
#include <asm/io.h>
#include <asm/smp.h>
#include <asm/tlb.h>
#include <asm/numa.h>
#include <asm/hw_irq.h>
#include <asm/current.h>
#include <asm/sn/sn_cpuid.h>
#include <asm/sn/sn_sal.h>
#include <asm/sn/addrs.h>
#include <asm/sn/shub_mmr.h>
#include <asm/sn/nodepda.h>
#include <asm/sn/rw_mmr.h>
void sn2_ptc_deadlock_recovery(unsigned long data0, unsigned long data1);
static spinlock_t sn2_global_ptc_lock __cacheline_aligned = SPIN_LOCK_UNLOCKED;
static unsigned long sn2_ptc_deadlock_count;
static inline unsigned long wait_piowc(void)
{
volatile unsigned long *piows;
unsigned long ws;
piows = pda->pio_write_status_addr;
do {
ia64_mfa();
} while (((ws =
*piows) & SH_PIO_WRITE_STATUS_0_PENDING_WRITE_COUNT_MASK) !=
SH_PIO_WRITE_STATUS_0_PENDING_WRITE_COUNT_MASK);
return ws;
}
void sn_tlb_migrate_finish(struct mm_struct *mm)
{
if (mm == current->mm)
flush_tlb_mm(mm);
}
/**
* sn2_global_tlb_purge - globally purge translation cache of virtual address range
* @start: start of virtual address range
* @end: end of virtual address range
* @nbits: specifies number of bytes to purge per instruction (num = 1<<(nbits & 0xfc))
*
* Purges the translation caches of all processors of the given virtual address
* range.
*
* Note:
* - cpu_vm_mask is a bit mask that indicates which cpus have loaded the context.
* - cpu_vm_mask is converted into a nodemask of the nodes containing the
* cpus in cpu_vm_mask.
* - if only one bit is set in cpu_vm_mask & it is the current cpu,
* then only the local TLB needs to be flushed. This flushing can be done
* using ptc.l. This is the common case & avoids the global spinlock.
* - if multiple cpus have loaded the context, then flushing has to be
* done with ptc.g/MMRs under protection of the global ptc_lock.
*/
void
sn2_global_tlb_purge(unsigned long start, unsigned long end,
unsigned long nbits)
{
int i, cnode, mynasid, cpu, lcpu = 0, nasid, flushed = 0;
volatile unsigned long *ptc0, *ptc1;
unsigned long flags = 0, data0, data1;
struct mm_struct *mm = current->active_mm;
short nasids[NR_NODES], nix;
DECLARE_BITMAP(nodes_flushed, NR_NODES);
bitmap_zero(nodes_flushed, NR_NODES);
i = 0;
for_each_cpu_mask(cpu, mm->cpu_vm_mask) {
cnode = cpu_to_node(cpu);
__set_bit(cnode, nodes_flushed);
lcpu = cpu;
i++;
}
preempt_disable();
if (likely(i == 1 && lcpu == smp_processor_id())) {
do {
ia64_ptcl(start, nbits << 2);
start += (1UL << nbits);
} while (start < end);
ia64_srlz_i();
preempt_enable();
return;
}
if (atomic_read(&mm->mm_users) == 1) {
flush_tlb_mm(mm);
preempt_enable();
return;
}
nix = 0;
for (cnode = find_first_bit(&nodes_flushed, NR_NODES); cnode < NR_NODES;
cnode = find_next_bit(&nodes_flushed, NR_NODES, ++cnode))
nasids[nix++] = cnodeid_to_nasid(cnode);
data0 = (1UL << SH_PTC_0_A_SHFT) |
(nbits << SH_PTC_0_PS_SHFT) |
((ia64_get_rr(start) >> 8) << SH_PTC_0_RID_SHFT) |
(1UL << SH_PTC_0_START_SHFT);
ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH_PTC_0);
ptc1 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH_PTC_1);
mynasid = get_nasid();
spin_lock_irqsave(&sn2_global_ptc_lock, flags);
do {
data1 = start | (1UL << SH_PTC_1_START_SHFT);
for (i = 0; i < nix; i++) {
nasid = nasids[i];
if (likely(nasid == mynasid)) {
ia64_ptcga(start, nbits << 2);
ia64_srlz_i();
} else {
ptc0 = CHANGE_NASID(nasid, ptc0);
ptc1 = CHANGE_NASID(nasid, ptc1);
pio_atomic_phys_write_mmrs(ptc0, data0, ptc1,
data1);
flushed = 1;
}
}
if (flushed
&& (wait_piowc() &
SH_PIO_WRITE_STATUS_0_WRITE_DEADLOCK_MASK)) {
sn2_ptc_deadlock_recovery(data0, data1);
}
start += (1UL << nbits);
} while (start < end);
spin_unlock_irqrestore(&sn2_global_ptc_lock, flags);
preempt_enable();
}
/*
* sn2_ptc_deadlock_recovery
*
* Recover from PTC deadlocks conditions. Recovery requires stepping thru each
* TLB flush transaction. The recovery sequence is somewhat tricky & is
* coded in assembly language.
*/
void sn2_ptc_deadlock_recovery(unsigned long data0, unsigned long data1)
{
extern void sn2_ptc_deadlock_recovery_core(long *, long, long *, long,
long *);
int cnode, mycnode, nasid;
long *ptc0, *ptc1, *piows;
sn2_ptc_deadlock_count++;
ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH_PTC_0);
ptc1 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH_PTC_1);
piows = (long *)pda->pio_write_status_addr;
mycnode = numa_node_id();
for (cnode = 0; cnode < numnodes; cnode++) {
if (is_headless_node(cnode) || cnode == mycnode)
continue;
nasid = cnodeid_to_nasid(cnode);
ptc0 = CHANGE_NASID(nasid, ptc0);
ptc1 = CHANGE_NASID(nasid, ptc1);
sn2_ptc_deadlock_recovery_core(ptc0, data0, ptc1, data1, piows);
}
}
/**
* sn_send_IPI_phys - send an IPI to a Nasid and slice
* @nasid: nasid to receive the interrupt (may be outside partition)
* @physid: physical cpuid to receive the interrupt.
* @vector: command to send
* @delivery_mode: delivery mechanism
*
* Sends an IPI (interprocessor interrupt) to the processor specified by
* @physid
*
* @delivery_mode can be one of the following
*
* %IA64_IPI_DM_INT - pend an interrupt
* %IA64_IPI_DM_PMI - pend a PMI
* %IA64_IPI_DM_NMI - pend an NMI
* %IA64_IPI_DM_INIT - pend an INIT interrupt
*/
void sn_send_IPI_phys(int nasid, long physid, int vector, int delivery_mode)
{
long val;
unsigned long flags = 0;
volatile long *p;
p = (long *)GLOBAL_MMR_PHYS_ADDR(nasid, SH_IPI_INT);
val = (1UL << SH_IPI_INT_SEND_SHFT) |
(physid << SH_IPI_INT_PID_SHFT) |
((long)delivery_mode << SH_IPI_INT_TYPE_SHFT) |
((long)vector << SH_IPI_INT_IDX_SHFT) |
(0x000feeUL << SH_IPI_INT_BASE_SHFT);
mb();
if (enable_shub_wars_1_1()) {
spin_lock_irqsave(&sn2_global_ptc_lock, flags);
}
pio_phys_write_mmr(p, val);
if (enable_shub_wars_1_1()) {
wait_piowc();
spin_unlock_irqrestore(&sn2_global_ptc_lock, flags);
}
}
EXPORT_SYMBOL(sn_send_IPI_phys);
/**
* sn2_send_IPI - send an IPI to a processor
* @cpuid: target of the IPI
* @vector: command to send
* @delivery_mode: delivery mechanism
* @redirect: redirect the IPI?
*
* Sends an IPI (InterProcessor Interrupt) to the processor specified by
* @cpuid. @vector specifies the command to send, while @delivery_mode can
* be one of the following
*
* %IA64_IPI_DM_INT - pend an interrupt
* %IA64_IPI_DM_PMI - pend a PMI
* %IA64_IPI_DM_NMI - pend an NMI
* %IA64_IPI_DM_INIT - pend an INIT interrupt
*/
void sn2_send_IPI(int cpuid, int vector, int delivery_mode, int redirect)
{
long physid;
int nasid;
physid = cpu_physical_id(cpuid);
nasid = cpuid_to_nasid(cpuid);
/* the following is used only when starting cpus at boot time */
if (unlikely(nasid == -1))
ia64_sn_get_sapic_info(physid, &nasid, NULL, NULL);
sn_send_IPI_phys(nasid, physid, vector, delivery_mode);
}