/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 1999,2001-2003 Silicon Graphics, Inc. All rights reserved.
*/
#include <linux/config.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/kdev_t.h>
#include <linux/string.h>
#include <linux/tty.h>
#include <linux/console.h>
#include <linux/timex.h>
#include <linux/sched.h>
#include <linux/ioport.h>
#include <linux/mm.h>
#include <linux/serial.h>
#include <linux/irq.h>
#include <linux/bootmem.h>
#include <linux/mmzone.h>
#include <linux/interrupt.h>
#include <linux/acpi.h>
#include <linux/compiler.h>
#include <linux/sched.h>
#include <linux/root_dev.h>
#include <asm/io.h>
#include <asm/sal.h>
#include <asm/machvec.h>
#include <asm/system.h>
#include <asm/processor.h>
#include <asm/sn/sgi.h>
#include <asm/sn/io.h>
#include <asm/sn/arch.h>
#include <asm/sn/addrs.h>
#include <asm/sn/pda.h>
#include <asm/sn/nodepda.h>
#include <asm/sn/sn_cpuid.h>
#include <asm/sn/sn_private.h>
#include <asm/sn/simulator.h>
#include <asm/sn/leds.h>
#include <asm/sn/bte.h>
#include <asm/sn/clksupport.h>
#include <asm/sn/sn_sal.h>
#include <asm/sn/sn2/shub.h>
DEFINE_PER_CPU(struct pda_s, pda_percpu);
#define pxm_to_nasid(pxm) ((pxm)<<1)
#define MAX_PHYS_MEMORY (1UL << 49) /* 1 TB */
extern void bte_init_node (nodepda_t *, cnodeid_t);
extern void bte_init_cpu (void);
extern void sn_timer_init(void);
extern unsigned long last_time_offset;
extern void init_platform_hubinfo(nodepda_t **nodepdaindr);
extern void (*ia64_mark_idle)(int);
extern void snidle(int);
unsigned long sn_rtc_cycles_per_second;
partid_t sn_partid = -1;
char sn_system_serial_number_string[128];
u64 sn_partition_serial_number;
short physical_node_map[MAX_PHYSNODE_ID];
int numionodes;
/*
* This is the address of the RRegs in the HSpace of the global
* master. It is used by a hack in serial.c (serial_[in|out],
* printk.c (early_printk), and kdb_io.c to put console output on that
* node's Bedrock UART. It is initialized here to 0, so that
* early_printk won't try to access the UART before
* master_node_bedrock_address is properly calculated.
*/
u64 master_node_bedrock_address;
static void sn_init_pdas(char **);
static nodepda_t *nodepdaindr[MAX_COMPACT_NODES];
irqpda_t *irqpdaindr;
/*
* The format of "screen_info" is strange, and due to early i386-setup
* code. This is just enough to make the console code think we're on a
* VGA color display.
*/
struct screen_info sn_screen_info = {
.orig_x = 0,
.orig_y = 0,
.orig_video_mode = 3,
.orig_video_cols = 80,
.orig_video_ega_bx = 3,
.orig_video_lines = 25,
.orig_video_isVGA = 1,
.orig_video_points = 16
};
/*
* This is here so we can use the CMOS detection in ide-probe.c to
* determine what drives are present. In theory, we don't need this
* as the auto-detection could be done via ide-probe.c:do_probe() but
* in practice that would be much slower, which is painful when
* running in the simulator. Note that passing zeroes in DRIVE_INFO
* is sufficient (the IDE driver will autodetect the drive geometry).
*/
#ifdef CONFIG_IA64_GENERIC
extern char drive_info[4*16];
#else
char drive_info[4*16];
#endif
/**
* early_sn_setup - early setup routine for SN platforms
*
* Sets up an initial console to aid debugging. Intended primarily
* for bringup. See start_kernel() in init/main.c.
*/
void __init
early_sn_setup(void)
{
void ia64_sal_handler_init (void *entry_point, void *gpval);
efi_system_table_t *efi_systab;
efi_config_table_t *config_tables;
struct ia64_sal_systab *sal_systab;
struct ia64_sal_desc_entry_point *ep;
char *p;
int i;
/*
* Parse enough of the SAL tables to locate the SAL entry point. Since, console
* IO on SN2 is done via SAL calls, early_printk won't work without this.
*
* This code duplicates some of the ACPI table parsing that is in efi.c & sal.c.
* Any changes to those file may have to be made hereas well.
*/
efi_systab = (efi_system_table_t*)__va(ia64_boot_param->efi_systab);
config_tables = __va(efi_systab->tables);
for (i = 0; i < efi_systab->nr_tables; i++) {
if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
sal_systab = __va(config_tables[i].table);
p = (char*)(sal_systab+1);
for (i = 0; i < sal_systab->entry_count; i++) {
if (*p == SAL_DESC_ENTRY_POINT) {
ep = (struct ia64_sal_desc_entry_point *) p;
ia64_sal_handler_init(__va(ep->sal_proc), __va(ep->gp));
break;
}
p += SAL_DESC_SIZE(*p);
}
}
}
if ( IS_RUNNING_ON_SIMULATOR() ) {
master_node_bedrock_address = (u64)REMOTE_HUB(get_nasid(), SH_JUNK_BUS_UART0);
printk(KERN_DEBUG "early_sn_setup: setting master_node_bedrock_address to 0x%lx\n", master_node_bedrock_address);
}
}
#ifdef CONFIG_IA64_MCA
extern int platform_intr_list[];
#endif
extern nasid_t master_nasid;
static int shub_1_1_found __initdata;
/*
* sn_check_for_wars
*
* Set flag for enabling shub specific wars
*/
static inline int __init
is_shub_1_1(int nasid)
{
unsigned long id;
int rev;
id = REMOTE_HUB_L(nasid, SH_SHUB_ID);
rev = (id & SH_SHUB_ID_REVISION_MASK) >> SH_SHUB_ID_REVISION_SHFT;
return rev <= 2;
}
static void __init
sn_check_for_wars(void)
{
int cnode;
for (cnode=0; cnode< numnodes; cnode++)
if (is_shub_1_1(cnodeid_to_nasid(cnode)))
shub_1_1_found = 1;
}
/**
* sn_setup - SN platform setup routine
* @cmdline_p: kernel command line
*
* Handles platform setup for SN machines. This includes determining
* the RTC frequency (via a SAL call), initializing secondary CPUs, and
* setting up per-node data areas. The console is also initialized here.
*/
void __init
sn_setup(char **cmdline_p)
{
long status, ticks_per_sec, drift;
int pxm;
int major = sn_sal_rev_major(), minor = sn_sal_rev_minor();
extern nasid_t snia_get_master_baseio_nasid(void);
extern void sn_cpu_init(void);
extern nasid_t snia_get_console_nasid(void);
MAX_DMA_ADDRESS = PAGE_OFFSET + MAX_PHYS_MEMORY;
memset(physical_node_map, -1, sizeof(physical_node_map));
for (pxm=0; pxm<MAX_PXM_DOMAINS; pxm++)
if (pxm_to_nid_map[pxm] != -1)
physical_node_map[pxm_to_nasid(pxm)] = pxm_to_nid_map[pxm];
printk("SGI SAL version %x.%02x\n", major, minor);
/*
* Confirm the SAL we're running on is recent enough...
*/
if ((major < SN_SAL_MIN_MAJOR) || (major == SN_SAL_MIN_MAJOR &&
minor < SN_SAL_MIN_MINOR)) {
printk(KERN_ERR "This kernel needs SGI SAL version >= "
"%x.%02x\n", SN_SAL_MIN_MAJOR, SN_SAL_MIN_MINOR);
panic("PROM version too old\n");
}
master_nasid = get_nasid();
(void)snia_get_console_nasid();
(void)snia_get_master_baseio_nasid();
status = ia64_sal_freq_base(SAL_FREQ_BASE_REALTIME_CLOCK, &ticks_per_sec, &drift);
if (status != 0 || ticks_per_sec < 100000) {
printk(KERN_WARNING "unable to determine platform RTC clock frequency, guessing.\n");
/* PROM gives wrong value for clock freq. so guess */
sn_rtc_cycles_per_second = 1000000000000UL/30000UL;
}
else
sn_rtc_cycles_per_second = ticks_per_sec;
platform_intr_list[ACPI_INTERRUPT_CPEI] = IA64_CPE_VECTOR;
if ( IS_RUNNING_ON_SIMULATOR() )
{
master_node_bedrock_address = (u64)REMOTE_HUB(get_nasid(), SH_JUNK_BUS_UART0);
printk(KERN_DEBUG "sn_setup: setting master_node_bedrock_address to 0x%lx\n",
master_node_bedrock_address);
}
/*
* we set the default root device to /dev/hda
* to make simulation easy
*/
ROOT_DEV = Root_HDA1;
/*
* Create the PDAs and NODEPDAs for all the cpus.
*/
sn_init_pdas(cmdline_p);
/*
* Check for WARs.
*/
sn_check_for_wars();
ia64_mark_idle = &snidle;
/*
* For the bootcpu, we do this here. All other cpus will make the
* call as part of cpu_init in slave cpu initialization.
*/
sn_cpu_init();
/*
* Setup hubinfo stuff. Has to happen AFTER sn_cpu_init(),
* because it uses the cnode to nasid tables.
*/
init_platform_hubinfo(nodepdaindr);
#ifdef CONFIG_SMP
init_smp_config();
#endif
screen_info = sn_screen_info;
sn_timer_init();
}
/**
* sn_init_pdas - setup node data areas
*
* One time setup for Node Data Area. Called by sn_setup().
*/
void
sn_init_pdas(char **cmdline_p)
{
cnodeid_t cnode;
void scan_for_ionodes(void);
/*
* Make sure that the PDA fits entirely in the same page as the
* cpu_data area.
*/
if ((((unsigned long)pda & (~PAGE_MASK)) + sizeof(pda_t)) > PAGE_SIZE)
panic("overflow of cpu_data page");
memset(pda->cnodeid_to_nasid_table, -1, sizeof(pda->cnodeid_to_nasid_table));
for (cnode=0; cnode<numnodes; cnode++)
pda->cnodeid_to_nasid_table[cnode] = pxm_to_nasid(nid_to_pxm_map[cnode]);
numionodes = numnodes;
scan_for_ionodes();
/*
* Allocate & initalize the nodepda for each node.
*/
for (cnode=0; cnode < numnodes; cnode++) {
nodepdaindr[cnode] = alloc_bootmem_node(NODE_DATA(cnode), sizeof(nodepda_t));
memset(nodepdaindr[cnode], 0, sizeof(nodepda_t));
}
/*
* Now copy the array of nodepda pointers to each nodepda.
*/
for (cnode=0; cnode < numnodes; cnode++)
memcpy(nodepdaindr[cnode]->pernode_pdaindr, nodepdaindr, sizeof(nodepdaindr));
/*
* Set up IO related platform-dependent nodepda fields.
* The following routine actually sets up the hubinfo struct
* in nodepda.
*/
for (cnode = 0; cnode < numnodes; cnode++) {
init_platform_nodepda(nodepdaindr[cnode], cnode);
bte_init_node (nodepdaindr[cnode], cnode);
}
}
/**
* sn_cpu_init - initialize per-cpu data areas
* @cpuid: cpuid of the caller
*
* Called during cpu initialization on each cpu as it starts.
* Currently, initializes the per-cpu data area for SNIA.
* Also sets up a few fields in the nodepda. Also known as
* platform_cpu_init() by the ia64 machvec code.
*/
void __init
sn_cpu_init(void)
{
int cpuid;
int cpuphyid;
int nasid;
int slice;
int cnode, i;
/*
* The boot cpu makes this call again after platform initialization is
* complete.
*/
if (nodepdaindr[0] == NULL)
return;
cpuid = smp_processor_id();
cpuphyid = ((ia64_getreg(_IA64_REG_CR_LID) >> 16) & 0xffff);
nasid = cpu_physical_id_to_nasid(cpuphyid);
cnode = nasid_to_cnodeid(nasid);
slice = cpu_physical_id_to_slice(cpuphyid);
memset(pda, 0, sizeof(pda));
pda->p_nodepda = nodepdaindr[cnode];
pda->led_address = (typeof(pda->led_address)) (LED0 + (slice<<LED_CPU_SHIFT));
pda->led_state = LED_ALWAYS_SET;
pda->hb_count = HZ/2;
pda->hb_state = 0;
pda->idle_flag = 0;
pda->shub_1_1_found = shub_1_1_found;
memset(pda->cnodeid_to_nasid_table, -1, sizeof(pda->cnodeid_to_nasid_table));
for (i=0; i<numnodes; i++)
pda->cnodeid_to_nasid_table[i] = pxm_to_nasid(nid_to_pxm_map[i]);
if (local_node_data->active_cpu_count == 1)
nodepda->node_first_cpu = cpuid;
/*
* We must use different memory allocators for first cpu (bootmem
* allocator) than for the other cpus (regular allocator).
*/
if (cpuid == 0)
irqpdaindr = alloc_bootmem_node(NODE_DATA(cpuid_to_cnodeid(cpuid)),sizeof(irqpda_t));
memset(irqpdaindr, 0, sizeof(irqpda_t));
irqpdaindr->irq_flags[SGI_PCIBR_ERROR] = SN2_IRQ_SHARED;
irqpdaindr->irq_flags[SGI_PCIBR_ERROR] |= SN2_IRQ_RESERVED;
irqpdaindr->irq_flags[SGI_II_ERROR] = SN2_IRQ_SHARED;
irqpdaindr->irq_flags[SGI_II_ERROR] |= SN2_IRQ_RESERVED;
pda->pio_write_status_addr = (volatile unsigned long *)
LOCAL_MMR_ADDR((slice < 2 ? SH_PIO_WRITE_STATUS_0 : SH_PIO_WRITE_STATUS_1 ) );
pda->mem_write_status_addr = (volatile u64 *)
LOCAL_MMR_ADDR((slice < 2 ? SH_MEMORY_WRITE_STATUS_0 : SH_MEMORY_WRITE_STATUS_1 ) );
if (nodepda->node_first_cpu == cpuid) {
int buddy_nasid;
buddy_nasid = cnodeid_to_nasid(numa_node_id() == numnodes-1 ? 0 : numa_node_id()+ 1);
pda->pio_shub_war_cam_addr = (volatile unsigned long*)GLOBAL_MMR_ADDR(nasid, SH_PI_CAM_CONTROL);
}
bte_init_cpu();
}
/*
* Scan klconfig for ionodes. Add the nasids to the
* physical_node_map and the pda and increment numionodes.
*/
void
scan_for_ionodes(void) {
int nasid = 0;
/* Setup ionodes with memory */
for (nasid = 0; nasid < MAX_PHYSNODE_ID; nasid +=2) {
u64 klgraph_header;
cnodeid_t cnodeid;
if (physical_node_map[nasid] == -1)
continue;
klgraph_header = cnodeid = -1;
klgraph_header = ia64_sn_get_klconfig_addr(nasid);
if (klgraph_header <= 0)
BUG(); /* All nodes must have klconfig tables! */
cnodeid = nasid_to_cnodeid(nasid);
root_lboard[cnodeid] = (lboard_t *)
NODE_OFFSET_TO_LBOARD( (nasid),
((kl_config_hdr_t *)(klgraph_header))->
ch_board_info);
}
}