[BACK]Return to pci_dma.c CVS log [TXT][DIR] Up to [Development] / linux-2.6-xfs / arch / ia64 / sn / io / machvec

File: [Development] / linux-2.6-xfs / arch / ia64 / sn / io / machvec / Attic / pci_dma.c (download)

Revision 1.1, Tue Dec 30 23:58:53 2003 UTC (13 years, 9 months ago) by cattelan
Branch: MAIN

Initial Import 2.6.0

/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (C) 2000,2002-2003 Silicon Graphics, Inc. All rights reserved.
 *
 * Routines for PCI DMA mapping.  See Documentation/DMA-mapping.txt for
 * a description of how these routines should be used.
 */

#include <linux/config.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/module.h>

#include <asm/delay.h>
#include <asm/io.h>
#include <asm/sn/sgi.h>
#include <asm/sn/io.h>
#include <asm/sn/invent.h>
#include <asm/sn/hcl.h>
#include <asm/sn/pci/pcibr.h>
#include <asm/sn/pci/pcibr_private.h>
#include <asm/sn/driver.h>
#include <asm/sn/types.h>
#include <asm/sn/alenlist.h>
#include <asm/sn/pci/pci_bus_cvlink.h>
#include <asm/sn/nag.h>

/*
 * For ATE allocations
 */
pciio_dmamap_t get_free_pciio_dmamap(vertex_hdl_t);
void free_pciio_dmamap(pcibr_dmamap_t);
static struct pcibr_dmamap_s *find_sn_dma_map(dma_addr_t, unsigned char);
void sn_pci_unmap_sg(struct pci_dev *hwdev, struct scatterlist *sg, int nents, int direction);

/*
 * Toplogy stuff
 */
extern vertex_hdl_t busnum_to_pcibr_vhdl[];
extern nasid_t busnum_to_nid[];
extern void * busnum_to_atedmamaps[];

/**
 * get_free_pciio_dmamap - find and allocate an ATE
 * @pci_bus: PCI bus to get an entry for
 *
 * Finds and allocates an ATE on the PCI bus specified
 * by @pci_bus.
 */
pciio_dmamap_t
get_free_pciio_dmamap(vertex_hdl_t pci_bus)
{
	int i;
	struct pcibr_dmamap_s *sn_dma_map = NULL;

	/*
	 * Darn, we need to get the maps allocated for this bus.
	 */
	for (i = 0; i < MAX_PCI_XWIDGET; i++) {
		if (busnum_to_pcibr_vhdl[i] == pci_bus) {
			sn_dma_map = busnum_to_atedmamaps[i];
		}
	}

	/*
	 * Now get a free dmamap entry from this list.
	 */
	for (i = 0; i < MAX_ATE_MAPS; i++, sn_dma_map++) {
		if (!sn_dma_map->bd_dma_addr) {
			sn_dma_map->bd_dma_addr = -1;
			return( (pciio_dmamap_t) sn_dma_map );
		}
	}

	return NULL;
}

/**
 * free_pciio_dmamap - free an ATE
 * @dma_map: ATE to free
 *
 * Frees the ATE specified by @dma_map.
 */
void
free_pciio_dmamap(pcibr_dmamap_t dma_map)
{
	dma_map->bd_dma_addr = 0;
}

/**
 * find_sn_dma_map - find an ATE associated with @dma_addr and @busnum
 * @dma_addr: DMA address to look for
 * @busnum: PCI bus to look on
 *
 * Finds the ATE associated with @dma_addr and @busnum.
 */
static struct pcibr_dmamap_s *
find_sn_dma_map(dma_addr_t dma_addr, unsigned char busnum)
{

	struct pcibr_dmamap_s *sn_dma_map = NULL;
	int i;

	sn_dma_map = busnum_to_atedmamaps[busnum];

	for (i = 0; i < MAX_ATE_MAPS; i++, sn_dma_map++) {
		if (sn_dma_map->bd_dma_addr == dma_addr) {
			return sn_dma_map;
		}
	}

	return NULL;
}

/**
 * sn_pci_alloc_consistent - allocate memory for coherent DMA
 * @hwdev: device to allocate for
 * @size: size of the region
 * @dma_handle: DMA (bus) address
 *
 * pci_alloc_consistent() returns a pointer to a memory region suitable for
 * coherent DMA traffic to/from a PCI device.  On SN platforms, this means
 * that @dma_handle will have the %PCIIO_DMA_CMD flag set.
 *
 * This interface is usually used for "command" streams (e.g. the command
 * queue for a SCSI controller).  See Documentation/DMA-mapping.txt for
 * more information.  Note that this routine will always put a 32 bit
 * DMA address into @dma_handle.  This is because most devices
 * that are capable of 64 bit PCI DMA transactions can't do 64 bit _coherent_
 * DMAs, and unfortunately this interface has to cater to the LCD.  Oh well.
 *
 * Also known as platform_pci_alloc_consistent() by the IA64 machvec code.
 */
void *
sn_pci_alloc_consistent(struct pci_dev *hwdev, size_t size, dma_addr_t *dma_handle)
{
        void *cpuaddr;
	vertex_hdl_t vhdl;
	struct sn_device_sysdata *device_sysdata;
	unsigned long phys_addr;
	pcibr_dmamap_t dma_map = 0;

	*dma_handle = 0;

	if (hwdev->dma_mask < 0xffffffffUL)
		return NULL;

	/*
	 * Get hwgraph vertex for the device
	 */
	device_sysdata = (struct sn_device_sysdata *) hwdev->sysdata;
	vhdl = device_sysdata->vhdl;

	/*
	 * Allocate the memory.  FIXME: if we're allocating for
	 * two devices on the same bus, we should at least try to
	 * allocate memory in the same 2 GB window to avoid using
	 * ATEs for the translation.  See the comment above about the
	 * 32 bit requirement for this function.
	 */
	if(!(cpuaddr = (void *)__get_free_pages(GFP_ATOMIC, get_order(size))))
		return NULL;

	/* physical addr. of the memory we just got */
	phys_addr = __pa(cpuaddr);

	/*
	 * This will try to use a Direct Map register to do the
	 * 32 bit DMA mapping, but it may not succeed if another
	 * device on the same bus is already mapped with different
	 * attributes or to a different memory region.
	 */
	*dma_handle = pcibr_dmatrans_addr(vhdl, NULL, phys_addr, size,
			((IS_PIC_DEVICE(hwdev)) ? 0 : PCIIO_BYTE_STREAM) |
					  PCIIO_DMA_CMD);

        /*
	 * If this device is in PCI-X mode, the system would have
	 * automatically allocated a 64Bits DMA Address.  Error out if the 
	 * device cannot support DAC.
	 */
	if (*dma_handle > hwdev->consistent_dma_mask) {
		free_pages((unsigned long) cpuaddr, get_order(size));
		return NULL;
	}

	/*
	 * It is a 32 bit card and we cannot do direct mapping,
	 * so we try to use an ATE.
	 */
	if (!(*dma_handle)) {
		dma_map = pcibr_dmamap_alloc(vhdl, NULL, size,
				((IS_PIC_DEVICE(hwdev)) ? 0 : PCIIO_BYTE_STREAM) |
					     PCIIO_DMA_CMD);
		if (!dma_map) {
			printk(KERN_ERR "sn_pci_alloc_consistent: Unable to "
			       "allocate anymore 32 bit page map entries.\n");
			return 0;
		}
		*dma_handle = (dma_addr_t) pcibr_dmamap_addr(dma_map,phys_addr,
							     size);
		dma_map->bd_dma_addr = *dma_handle;
	}

        return cpuaddr;
}

/**
 * sn_pci_free_consistent - free memory associated with coherent DMAable region
 * @hwdev: device to free for
 * @size: size to free
 * @vaddr: kernel virtual address to free
 * @dma_handle: DMA address associated with this region
 *
 * Frees the memory allocated by pci_alloc_consistent().  Also known
 * as platform_pci_free_consistent() by the IA64 machvec code.
 */
void
sn_pci_free_consistent(struct pci_dev *hwdev, size_t size, void *vaddr, dma_addr_t dma_handle)
{
	struct pcibr_dmamap_s *dma_map = NULL;

	/*
	 * Get the sn_dma_map entry.
	 */
	if (IS_PCI32_MAPPED(dma_handle))
		dma_map = find_sn_dma_map(dma_handle, hwdev->bus->number);

	/*
	 * and free it if necessary...
	 */
	if (dma_map) {
		pcibr_dmamap_done(dma_map);
		pcibr_dmamap_free(dma_map);
		dma_map->bd_dma_addr = 0;
	}
	free_pages((unsigned long) vaddr, get_order(size));
}

/**
 * sn_pci_map_sg - map a scatter-gather list for DMA
 * @hwdev: device to map for
 * @sg: scatterlist to map
 * @nents: number of entries
 * @direction: direction of the DMA transaction
 *
 * Maps each entry of @sg for DMA.  Also known as platform_pci_map_sg by the
 * IA64 machvec code.
 */
int
sn_pci_map_sg(struct pci_dev *hwdev, struct scatterlist *sg, int nents, int direction)
{

	int i;
	vertex_hdl_t vhdl;
	unsigned long phys_addr;
	struct sn_device_sysdata *device_sysdata;
	pcibr_dmamap_t dma_map;
	struct scatterlist *saved_sg = sg;

	/* can't go anywhere w/o a direction in life */
	if (direction == PCI_DMA_NONE)
		BUG();

	/*
	 * Get the hwgraph vertex for the device
	 */
	device_sysdata = (struct sn_device_sysdata *) hwdev->sysdata;
	vhdl = device_sysdata->vhdl;

	/*
	 * Setup a DMA address for each entry in the
	 * scatterlist.
	 */
	for (i = 0; i < nents; i++, sg++) {
		phys_addr = __pa((unsigned long)page_address(sg->page) + sg->offset);

		/*
		 * Handle the most common case: 64 bit cards.  This
		 * call should always succeed.
		 */
		if (IS_PCIA64(hwdev)) {
			sg->dma_address = pcibr_dmatrans_addr(vhdl, NULL, phys_addr,
						       sg->length,
			       ((IS_PIC_DEVICE(hwdev)) ? 0 : PCIIO_BYTE_STREAM) |
						       PCIIO_DMA_DATA |
						       PCIIO_DMA_A64);
			sg->dma_length = sg->length;
			continue;
		}

		/*
		 * Handle 32-63 bit cards via direct mapping
		 */
		if (IS_PCI32G(hwdev)) {
			sg->dma_address = pcibr_dmatrans_addr(vhdl, NULL, phys_addr,
						       sg->length,
					((IS_PIC_DEVICE(hwdev)) ? 0 : PCIIO_BYTE_STREAM) |
						       PCIIO_DMA_DATA);
			sg->dma_length = sg->length;
			/*
			 * See if we got a direct map entry
			 */
			if (sg->dma_address) {
				continue;
			}

		}

		/*
		 * It is a 32 bit card and we cannot do direct mapping,
		 * so we use an ATE.
		 */
		dma_map = pcibr_dmamap_alloc(vhdl, NULL, sg->length,
				((IS_PIC_DEVICE(hwdev)) ? 0 : PCIIO_BYTE_STREAM) |
					     PCIIO_DMA_DATA);
		if (!dma_map) {
			printk(KERN_ERR "sn_pci_map_sg: Unable to allocate "
			       "anymore 32 bit page map entries.\n");
			/*
			 * We will need to free all previously allocated entries.
			 */
			if (i > 0) {
				sn_pci_unmap_sg(hwdev, saved_sg, i, direction);
			}
			return (0);
		}

		sg->dma_address = pcibr_dmamap_addr(dma_map, phys_addr, sg->length);
		sg->dma_length = sg->length;
		dma_map->bd_dma_addr = sg->dma_address;
	}

	return nents;

}

/**
 * sn_pci_unmap_sg - unmap a scatter-gather list
 * @hwdev: device to unmap
 * @sg: scatterlist to unmap
 * @nents: number of scatterlist entries
 * @direction: DMA direction
 *
 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
 * concerning calls here are the same as for pci_unmap_single() below.  Also
 * known as sn_pci_unmap_sg() by the IA64 machvec code.
 */
void
sn_pci_unmap_sg(struct pci_dev *hwdev, struct scatterlist *sg, int nents, int direction)
{
	int i;
	struct pcibr_dmamap_s *dma_map;

	/* can't go anywhere w/o a direction in life */
	if (direction == PCI_DMA_NONE)
		BUG();

	for (i = 0; i < nents; i++, sg++){

		if (IS_PCI32_MAPPED(sg->dma_address)) {
                	dma_map = find_sn_dma_map(sg->dma_address, hwdev->bus->number);
        		if (dma_map) {
                		pcibr_dmamap_done(dma_map);
                		pcibr_dmamap_free(dma_map);
                		dma_map->bd_dma_addr = 0;
			}
        	}

		sg->dma_address = (dma_addr_t)NULL;
		sg->dma_length = 0;
	}
}

/**
 * sn_pci_map_single - map a single region for DMA
 * @hwdev: device to map for
 * @ptr: kernel virtual address of the region to map
 * @size: size of the region
 * @direction: DMA direction
 *
 * Map the region pointed to by @ptr for DMA and return the
 * DMA address.   Also known as platform_pci_map_single() by
 * the IA64 machvec code.
 *
 * We map this to the one step pcibr_dmamap_trans interface rather than
 * the two step pciio_dmamap_alloc/pciio_dmamap_addr because we have
 * no way of saving the dmamap handle from the alloc to later free
 * (which is pretty much unacceptable).
 *
 * TODO: simplify our interface;
 *       get rid of dev_desc and vhdl (seems redundant given a pci_dev);
 *       figure out how to save dmamap handle so can use two step.
 */
dma_addr_t
sn_pci_map_single(struct pci_dev *hwdev, void *ptr, size_t size, int direction)
{
	vertex_hdl_t vhdl;
	dma_addr_t dma_addr;
	unsigned long phys_addr;
	struct sn_device_sysdata *device_sysdata;
	pcibr_dmamap_t dma_map = NULL;

	if (direction == PCI_DMA_NONE)
		BUG();

	/* SN cannot support DMA addresses smaller than 32 bits. */
	if (IS_PCI32L(hwdev))
		return 0;

	/*
	 * find vertex for the device
	 */
	device_sysdata = (struct sn_device_sysdata *)hwdev->sysdata;
	vhdl = device_sysdata->vhdl;

	/*
	 * Call our dmamap interface
	 */
	dma_addr = 0;
	phys_addr = __pa(ptr);

	if (IS_PCIA64(hwdev)) {
		/* This device supports 64 bit DMA addresses. */
		dma_addr = pcibr_dmatrans_addr(vhdl, NULL, phys_addr, size,
		       ((IS_PIC_DEVICE(hwdev)) ? 0 : PCIIO_BYTE_STREAM) |
					       PCIIO_DMA_DATA |
					       PCIIO_DMA_A64);
		return dma_addr;
	}

	/*
	 * Devices that support 32 bit to 63 bit DMA addresses get
	 * 32 bit DMA addresses.
	 *
	 * First try to get a 32 bit direct map register.
	 */
	if (IS_PCI32G(hwdev)) {
		dma_addr = pcibr_dmatrans_addr(vhdl, NULL, phys_addr, size,
			((IS_PIC_DEVICE(hwdev)) ? 0 : PCIIO_BYTE_STREAM) |
					       PCIIO_DMA_DATA);
		if (dma_addr)
			return dma_addr;
	}

	/*
	 * It's a 32 bit card and we cannot do direct mapping so
	 * let's use the PMU instead.
	 */
	dma_map = NULL;
	dma_map = pcibr_dmamap_alloc(vhdl, NULL, size, 
			((IS_PIC_DEVICE(hwdev)) ? 0 : PCIIO_BYTE_STREAM) |
			PCIIO_DMA_DATA);

	if (!dma_map) {
		printk(KERN_ERR "pci_map_single: Unable to allocate anymore "
		       "32 bit page map entries.\n");
		return 0;
	}

	dma_addr = (dma_addr_t) pcibr_dmamap_addr(dma_map, phys_addr, size);
	dma_map->bd_dma_addr = dma_addr;

	return ((dma_addr_t)dma_addr);
}

/**
 * sn_pci_unmap_single - unmap a region used for DMA
 * @hwdev: device to unmap
 * @dma_addr: DMA address to unmap
 * @size: size of region
 * @direction: DMA direction
 *
 * Unmaps the region pointed to by @dma_addr.  Also known as
 * platform_pci_unmap_single() by the IA64 machvec code.
 */
void
sn_pci_unmap_single(struct pci_dev *hwdev, dma_addr_t dma_addr, size_t size, int direction)
{
	struct pcibr_dmamap_s *dma_map = NULL;

        if (direction == PCI_DMA_NONE)
		BUG();

	/*
	 * Get the sn_dma_map entry.
	 */
	if (IS_PCI32_MAPPED(dma_addr))
		dma_map = find_sn_dma_map(dma_addr, hwdev->bus->number);

	/*
	 * and free it if necessary...
	 */
	if (dma_map) {
		pcibr_dmamap_done(dma_map);
		pcibr_dmamap_free(dma_map);
		dma_map->bd_dma_addr = 0;
	}
}

/**
 * sn_pci_dma_sync_single - make sure all DMAs have completed
 * @hwdev: device to sync
 * @dma_handle: DMA address to sync
 * @size: size of region
 * @direction: DMA direction
 *
 * This routine is supposed to sync the DMA region specified
 * by @dma_handle into the 'coherence domain'.  We do not need to do 
 * anything on our platform.
 */
void
sn_pci_dma_sync_single(struct pci_dev *hwdev, dma_addr_t dma_handle, size_t size, int direction)
{
	return;

}

/**
 * sn_pci_dma_sync_sg - make sure all DMAs have completed
 * @hwdev: device to sync
 * @sg: scatterlist to sync
 * @nents: number of entries in the scatterlist
 * @direction: DMA direction
 *
 * This routine is supposed to sync the DMA regions specified
 * by @sg into the 'coherence domain'.  We do not need to do anything 
 * on our platform.
 */
void
sn_pci_dma_sync_sg(struct pci_dev *hwdev, struct scatterlist *sg, int nents, int direction)
{
	return;

}

/**
 * sn_dma_supported - test a DMA mask
 * @hwdev: device to test
 * @mask: DMA mask to test
 *
 * Return whether the given PCI device DMA address mask can be supported
 * properly.  For example, if your device can only drive the low 24-bits
 * during PCI bus mastering, then you would pass 0x00ffffff as the mask to
 * this function.  Of course, SN only supports devices that have 32 or more
 * address bits when using the PMU.  We could theoretically support <32 bit
 * cards using direct mapping, but we'll worry about that later--on the off
 * chance that someone actually wants to use such a card.
 */
int
sn_pci_dma_supported(struct pci_dev *hwdev, u64 mask)
{
	if (mask < 0xffffffff)
		return 0;
	return 1;
}

/*
 * New generic DMA routines just wrap sn2 PCI routines until we
 * support other bus types (if ever).
 */

int
sn_dma_supported(struct device *dev, u64 mask)
{
	BUG_ON(dev->bus != &pci_bus_type);

	return sn_pci_dma_supported(to_pci_dev(dev), mask);
}
EXPORT_SYMBOL(sn_dma_supported);

int
sn_dma_set_mask(struct device *dev, u64 dma_mask)
{
	BUG_ON(dev->bus != &pci_bus_type);

	if (!sn_dma_supported(dev, dma_mask))
		return 0;

	*dev->dma_mask = dma_mask;
	return 1;
}
EXPORT_SYMBOL(sn_dma_set_mask);

void *
sn_dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
		   int flag)
{
	BUG_ON(dev->bus != &pci_bus_type);

	return sn_pci_alloc_consistent(to_pci_dev(dev), size, dma_handle);
}
EXPORT_SYMBOL(sn_dma_alloc_coherent);

void
sn_dma_free_coherent(struct device *dev, size_t size, void *cpu_addr,
		    dma_addr_t dma_handle)
{
	BUG_ON(dev->bus != &pci_bus_type);

	sn_pci_free_consistent(to_pci_dev(dev), size, cpu_addr, dma_handle);
}
EXPORT_SYMBOL(sn_dma_free_coherent);

dma_addr_t
sn_dma_map_single(struct device *dev, void *cpu_addr, size_t size,
	       int direction)
{
	BUG_ON(dev->bus != &pci_bus_type);

	return sn_pci_map_single(to_pci_dev(dev), cpu_addr, size, (int)direction);
}
EXPORT_SYMBOL(sn_dma_map_single);

void
sn_dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
		 int direction)
{
	BUG_ON(dev->bus != &pci_bus_type);

	sn_pci_unmap_single(to_pci_dev(dev), dma_addr, size, (int)direction);
}
EXPORT_SYMBOL(sn_dma_unmap_single);

dma_addr_t
sn_dma_map_page(struct device *dev, struct page *page,
	     unsigned long offset, size_t size,
	     int direction)
{
	BUG_ON(dev->bus != &pci_bus_type);

	return pci_map_page(to_pci_dev(dev), page, offset, size, (int)direction);
}
EXPORT_SYMBOL(sn_dma_map_page);

void
sn_dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size,
	       int direction)
{
	BUG_ON(dev->bus != &pci_bus_type);

	pci_unmap_page(to_pci_dev(dev), dma_address, size, (int)direction);
}
EXPORT_SYMBOL(sn_dma_unmap_page);

int
sn_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
	   int direction)
{
	BUG_ON(dev->bus != &pci_bus_type);

	return sn_pci_map_sg(to_pci_dev(dev), sg, nents, (int)direction);
}
EXPORT_SYMBOL(sn_dma_map_sg);

void
sn_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries,
	     int direction)
{
	BUG_ON(dev->bus != &pci_bus_type);

	sn_pci_unmap_sg(to_pci_dev(dev), sg, nhwentries, (int)direction);
}
EXPORT_SYMBOL(sn_dma_unmap_sg);

void
sn_dma_sync_single(struct device *dev, dma_addr_t dma_handle, size_t size,
		int direction)
{
	BUG_ON(dev->bus != &pci_bus_type);

	sn_pci_dma_sync_single(to_pci_dev(dev), dma_handle, size, (int)direction);
}
EXPORT_SYMBOL(sn_dma_sync_single);

void
sn_dma_sync_sg(struct device *dev, struct scatterlist *sg, int nelems,
	    int direction)
{
	BUG_ON(dev->bus != &pci_bus_type);

	sn_pci_dma_sync_sg(to_pci_dev(dev), sg, nelems, (int)direction);
}
EXPORT_SYMBOL(sn_dma_sync_sg);

EXPORT_SYMBOL(sn_pci_unmap_single);
EXPORT_SYMBOL(sn_pci_map_single);
EXPORT_SYMBOL(sn_pci_dma_sync_single);
EXPORT_SYMBOL(sn_pci_map_sg);
EXPORT_SYMBOL(sn_pci_unmap_sg);
EXPORT_SYMBOL(sn_pci_alloc_consistent);
EXPORT_SYMBOL(sn_pci_free_consistent);
EXPORT_SYMBOL(sn_pci_dma_supported);