/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2000,2002-2003 Silicon Graphics, Inc. All rights reserved.
*
* Routines for PCI DMA mapping. See Documentation/DMA-mapping.txt for
* a description of how these routines should be used.
*/
#include <linux/config.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <asm/delay.h>
#include <asm/io.h>
#include <asm/sn/sgi.h>
#include <asm/sn/io.h>
#include <asm/sn/invent.h>
#include <asm/sn/hcl.h>
#include <asm/sn/pci/pcibr.h>
#include <asm/sn/pci/pcibr_private.h>
#include <asm/sn/driver.h>
#include <asm/sn/types.h>
#include <asm/sn/alenlist.h>
#include <asm/sn/pci/pci_bus_cvlink.h>
#include <asm/sn/nag.h>
/*
* For ATE allocations
*/
pciio_dmamap_t get_free_pciio_dmamap(vertex_hdl_t);
void free_pciio_dmamap(pcibr_dmamap_t);
static struct pcibr_dmamap_s *find_sn_dma_map(dma_addr_t, unsigned char);
void sn_pci_unmap_sg(struct pci_dev *hwdev, struct scatterlist *sg, int nents, int direction);
/*
* Toplogy stuff
*/
extern vertex_hdl_t busnum_to_pcibr_vhdl[];
extern nasid_t busnum_to_nid[];
extern void * busnum_to_atedmamaps[];
/**
* get_free_pciio_dmamap - find and allocate an ATE
* @pci_bus: PCI bus to get an entry for
*
* Finds and allocates an ATE on the PCI bus specified
* by @pci_bus.
*/
pciio_dmamap_t
get_free_pciio_dmamap(vertex_hdl_t pci_bus)
{
int i;
struct pcibr_dmamap_s *sn_dma_map = NULL;
/*
* Darn, we need to get the maps allocated for this bus.
*/
for (i = 0; i < MAX_PCI_XWIDGET; i++) {
if (busnum_to_pcibr_vhdl[i] == pci_bus) {
sn_dma_map = busnum_to_atedmamaps[i];
}
}
/*
* Now get a free dmamap entry from this list.
*/
for (i = 0; i < MAX_ATE_MAPS; i++, sn_dma_map++) {
if (!sn_dma_map->bd_dma_addr) {
sn_dma_map->bd_dma_addr = -1;
return( (pciio_dmamap_t) sn_dma_map );
}
}
return NULL;
}
/**
* free_pciio_dmamap - free an ATE
* @dma_map: ATE to free
*
* Frees the ATE specified by @dma_map.
*/
void
free_pciio_dmamap(pcibr_dmamap_t dma_map)
{
dma_map->bd_dma_addr = 0;
}
/**
* find_sn_dma_map - find an ATE associated with @dma_addr and @busnum
* @dma_addr: DMA address to look for
* @busnum: PCI bus to look on
*
* Finds the ATE associated with @dma_addr and @busnum.
*/
static struct pcibr_dmamap_s *
find_sn_dma_map(dma_addr_t dma_addr, unsigned char busnum)
{
struct pcibr_dmamap_s *sn_dma_map = NULL;
int i;
sn_dma_map = busnum_to_atedmamaps[busnum];
for (i = 0; i < MAX_ATE_MAPS; i++, sn_dma_map++) {
if (sn_dma_map->bd_dma_addr == dma_addr) {
return sn_dma_map;
}
}
return NULL;
}
/**
* sn_pci_alloc_consistent - allocate memory for coherent DMA
* @hwdev: device to allocate for
* @size: size of the region
* @dma_handle: DMA (bus) address
*
* pci_alloc_consistent() returns a pointer to a memory region suitable for
* coherent DMA traffic to/from a PCI device. On SN platforms, this means
* that @dma_handle will have the %PCIIO_DMA_CMD flag set.
*
* This interface is usually used for "command" streams (e.g. the command
* queue for a SCSI controller). See Documentation/DMA-mapping.txt for
* more information. Note that this routine will always put a 32 bit
* DMA address into @dma_handle. This is because most devices
* that are capable of 64 bit PCI DMA transactions can't do 64 bit _coherent_
* DMAs, and unfortunately this interface has to cater to the LCD. Oh well.
*
* Also known as platform_pci_alloc_consistent() by the IA64 machvec code.
*/
void *
sn_pci_alloc_consistent(struct pci_dev *hwdev, size_t size, dma_addr_t *dma_handle)
{
void *cpuaddr;
vertex_hdl_t vhdl;
struct sn_device_sysdata *device_sysdata;
unsigned long phys_addr;
pcibr_dmamap_t dma_map = 0;
*dma_handle = 0;
if (hwdev->dma_mask < 0xffffffffUL)
return NULL;
/*
* Get hwgraph vertex for the device
*/
device_sysdata = (struct sn_device_sysdata *) hwdev->sysdata;
vhdl = device_sysdata->vhdl;
/*
* Allocate the memory. FIXME: if we're allocating for
* two devices on the same bus, we should at least try to
* allocate memory in the same 2 GB window to avoid using
* ATEs for the translation. See the comment above about the
* 32 bit requirement for this function.
*/
if(!(cpuaddr = (void *)__get_free_pages(GFP_ATOMIC, get_order(size))))
return NULL;
/* physical addr. of the memory we just got */
phys_addr = __pa(cpuaddr);
/*
* This will try to use a Direct Map register to do the
* 32 bit DMA mapping, but it may not succeed if another
* device on the same bus is already mapped with different
* attributes or to a different memory region.
*/
*dma_handle = pcibr_dmatrans_addr(vhdl, NULL, phys_addr, size,
((IS_PIC_DEVICE(hwdev)) ? 0 : PCIIO_BYTE_STREAM) |
PCIIO_DMA_CMD);
/*
* If this device is in PCI-X mode, the system would have
* automatically allocated a 64Bits DMA Address. Error out if the
* device cannot support DAC.
*/
if (*dma_handle > hwdev->consistent_dma_mask) {
free_pages((unsigned long) cpuaddr, get_order(size));
return NULL;
}
/*
* It is a 32 bit card and we cannot do direct mapping,
* so we try to use an ATE.
*/
if (!(*dma_handle)) {
dma_map = pcibr_dmamap_alloc(vhdl, NULL, size,
((IS_PIC_DEVICE(hwdev)) ? 0 : PCIIO_BYTE_STREAM) |
PCIIO_DMA_CMD);
if (!dma_map) {
printk(KERN_ERR "sn_pci_alloc_consistent: Unable to "
"allocate anymore 32 bit page map entries.\n");
return 0;
}
*dma_handle = (dma_addr_t) pcibr_dmamap_addr(dma_map,phys_addr,
size);
dma_map->bd_dma_addr = *dma_handle;
}
return cpuaddr;
}
/**
* sn_pci_free_consistent - free memory associated with coherent DMAable region
* @hwdev: device to free for
* @size: size to free
* @vaddr: kernel virtual address to free
* @dma_handle: DMA address associated with this region
*
* Frees the memory allocated by pci_alloc_consistent(). Also known
* as platform_pci_free_consistent() by the IA64 machvec code.
*/
void
sn_pci_free_consistent(struct pci_dev *hwdev, size_t size, void *vaddr, dma_addr_t dma_handle)
{
struct pcibr_dmamap_s *dma_map = NULL;
/*
* Get the sn_dma_map entry.
*/
if (IS_PCI32_MAPPED(dma_handle))
dma_map = find_sn_dma_map(dma_handle, hwdev->bus->number);
/*
* and free it if necessary...
*/
if (dma_map) {
pcibr_dmamap_done(dma_map);
pcibr_dmamap_free(dma_map);
dma_map->bd_dma_addr = 0;
}
free_pages((unsigned long) vaddr, get_order(size));
}
/**
* sn_pci_map_sg - map a scatter-gather list for DMA
* @hwdev: device to map for
* @sg: scatterlist to map
* @nents: number of entries
* @direction: direction of the DMA transaction
*
* Maps each entry of @sg for DMA. Also known as platform_pci_map_sg by the
* IA64 machvec code.
*/
int
sn_pci_map_sg(struct pci_dev *hwdev, struct scatterlist *sg, int nents, int direction)
{
int i;
vertex_hdl_t vhdl;
unsigned long phys_addr;
struct sn_device_sysdata *device_sysdata;
pcibr_dmamap_t dma_map;
struct scatterlist *saved_sg = sg;
/* can't go anywhere w/o a direction in life */
if (direction == PCI_DMA_NONE)
BUG();
/*
* Get the hwgraph vertex for the device
*/
device_sysdata = (struct sn_device_sysdata *) hwdev->sysdata;
vhdl = device_sysdata->vhdl;
/*
* Setup a DMA address for each entry in the
* scatterlist.
*/
for (i = 0; i < nents; i++, sg++) {
phys_addr = __pa((unsigned long)page_address(sg->page) + sg->offset);
/*
* Handle the most common case: 64 bit cards. This
* call should always succeed.
*/
if (IS_PCIA64(hwdev)) {
sg->dma_address = pcibr_dmatrans_addr(vhdl, NULL, phys_addr,
sg->length,
((IS_PIC_DEVICE(hwdev)) ? 0 : PCIIO_BYTE_STREAM) |
PCIIO_DMA_DATA |
PCIIO_DMA_A64);
sg->dma_length = sg->length;
continue;
}
/*
* Handle 32-63 bit cards via direct mapping
*/
if (IS_PCI32G(hwdev)) {
sg->dma_address = pcibr_dmatrans_addr(vhdl, NULL, phys_addr,
sg->length,
((IS_PIC_DEVICE(hwdev)) ? 0 : PCIIO_BYTE_STREAM) |
PCIIO_DMA_DATA);
sg->dma_length = sg->length;
/*
* See if we got a direct map entry
*/
if (sg->dma_address) {
continue;
}
}
/*
* It is a 32 bit card and we cannot do direct mapping,
* so we use an ATE.
*/
dma_map = pcibr_dmamap_alloc(vhdl, NULL, sg->length,
((IS_PIC_DEVICE(hwdev)) ? 0 : PCIIO_BYTE_STREAM) |
PCIIO_DMA_DATA);
if (!dma_map) {
printk(KERN_ERR "sn_pci_map_sg: Unable to allocate "
"anymore 32 bit page map entries.\n");
/*
* We will need to free all previously allocated entries.
*/
if (i > 0) {
sn_pci_unmap_sg(hwdev, saved_sg, i, direction);
}
return (0);
}
sg->dma_address = pcibr_dmamap_addr(dma_map, phys_addr, sg->length);
sg->dma_length = sg->length;
dma_map->bd_dma_addr = sg->dma_address;
}
return nents;
}
/**
* sn_pci_unmap_sg - unmap a scatter-gather list
* @hwdev: device to unmap
* @sg: scatterlist to unmap
* @nents: number of scatterlist entries
* @direction: DMA direction
*
* Unmap a set of streaming mode DMA translations. Again, cpu read rules
* concerning calls here are the same as for pci_unmap_single() below. Also
* known as sn_pci_unmap_sg() by the IA64 machvec code.
*/
void
sn_pci_unmap_sg(struct pci_dev *hwdev, struct scatterlist *sg, int nents, int direction)
{
int i;
struct pcibr_dmamap_s *dma_map;
/* can't go anywhere w/o a direction in life */
if (direction == PCI_DMA_NONE)
BUG();
for (i = 0; i < nents; i++, sg++){
if (IS_PCI32_MAPPED(sg->dma_address)) {
dma_map = find_sn_dma_map(sg->dma_address, hwdev->bus->number);
if (dma_map) {
pcibr_dmamap_done(dma_map);
pcibr_dmamap_free(dma_map);
dma_map->bd_dma_addr = 0;
}
}
sg->dma_address = (dma_addr_t)NULL;
sg->dma_length = 0;
}
}
/**
* sn_pci_map_single - map a single region for DMA
* @hwdev: device to map for
* @ptr: kernel virtual address of the region to map
* @size: size of the region
* @direction: DMA direction
*
* Map the region pointed to by @ptr for DMA and return the
* DMA address. Also known as platform_pci_map_single() by
* the IA64 machvec code.
*
* We map this to the one step pcibr_dmamap_trans interface rather than
* the two step pciio_dmamap_alloc/pciio_dmamap_addr because we have
* no way of saving the dmamap handle from the alloc to later free
* (which is pretty much unacceptable).
*
* TODO: simplify our interface;
* get rid of dev_desc and vhdl (seems redundant given a pci_dev);
* figure out how to save dmamap handle so can use two step.
*/
dma_addr_t
sn_pci_map_single(struct pci_dev *hwdev, void *ptr, size_t size, int direction)
{
vertex_hdl_t vhdl;
dma_addr_t dma_addr;
unsigned long phys_addr;
struct sn_device_sysdata *device_sysdata;
pcibr_dmamap_t dma_map = NULL;
if (direction == PCI_DMA_NONE)
BUG();
/* SN cannot support DMA addresses smaller than 32 bits. */
if (IS_PCI32L(hwdev))
return 0;
/*
* find vertex for the device
*/
device_sysdata = (struct sn_device_sysdata *)hwdev->sysdata;
vhdl = device_sysdata->vhdl;
/*
* Call our dmamap interface
*/
dma_addr = 0;
phys_addr = __pa(ptr);
if (IS_PCIA64(hwdev)) {
/* This device supports 64 bit DMA addresses. */
dma_addr = pcibr_dmatrans_addr(vhdl, NULL, phys_addr, size,
((IS_PIC_DEVICE(hwdev)) ? 0 : PCIIO_BYTE_STREAM) |
PCIIO_DMA_DATA |
PCIIO_DMA_A64);
return dma_addr;
}
/*
* Devices that support 32 bit to 63 bit DMA addresses get
* 32 bit DMA addresses.
*
* First try to get a 32 bit direct map register.
*/
if (IS_PCI32G(hwdev)) {
dma_addr = pcibr_dmatrans_addr(vhdl, NULL, phys_addr, size,
((IS_PIC_DEVICE(hwdev)) ? 0 : PCIIO_BYTE_STREAM) |
PCIIO_DMA_DATA);
if (dma_addr)
return dma_addr;
}
/*
* It's a 32 bit card and we cannot do direct mapping so
* let's use the PMU instead.
*/
dma_map = NULL;
dma_map = pcibr_dmamap_alloc(vhdl, NULL, size,
((IS_PIC_DEVICE(hwdev)) ? 0 : PCIIO_BYTE_STREAM) |
PCIIO_DMA_DATA);
if (!dma_map) {
printk(KERN_ERR "pci_map_single: Unable to allocate anymore "
"32 bit page map entries.\n");
return 0;
}
dma_addr = (dma_addr_t) pcibr_dmamap_addr(dma_map, phys_addr, size);
dma_map->bd_dma_addr = dma_addr;
return ((dma_addr_t)dma_addr);
}
/**
* sn_pci_unmap_single - unmap a region used for DMA
* @hwdev: device to unmap
* @dma_addr: DMA address to unmap
* @size: size of region
* @direction: DMA direction
*
* Unmaps the region pointed to by @dma_addr. Also known as
* platform_pci_unmap_single() by the IA64 machvec code.
*/
void
sn_pci_unmap_single(struct pci_dev *hwdev, dma_addr_t dma_addr, size_t size, int direction)
{
struct pcibr_dmamap_s *dma_map = NULL;
if (direction == PCI_DMA_NONE)
BUG();
/*
* Get the sn_dma_map entry.
*/
if (IS_PCI32_MAPPED(dma_addr))
dma_map = find_sn_dma_map(dma_addr, hwdev->bus->number);
/*
* and free it if necessary...
*/
if (dma_map) {
pcibr_dmamap_done(dma_map);
pcibr_dmamap_free(dma_map);
dma_map->bd_dma_addr = 0;
}
}
/**
* sn_pci_dma_sync_single - make sure all DMAs have completed
* @hwdev: device to sync
* @dma_handle: DMA address to sync
* @size: size of region
* @direction: DMA direction
*
* This routine is supposed to sync the DMA region specified
* by @dma_handle into the 'coherence domain'. We do not need to do
* anything on our platform.
*/
void
sn_pci_dma_sync_single(struct pci_dev *hwdev, dma_addr_t dma_handle, size_t size, int direction)
{
return;
}
/**
* sn_pci_dma_sync_sg - make sure all DMAs have completed
* @hwdev: device to sync
* @sg: scatterlist to sync
* @nents: number of entries in the scatterlist
* @direction: DMA direction
*
* This routine is supposed to sync the DMA regions specified
* by @sg into the 'coherence domain'. We do not need to do anything
* on our platform.
*/
void
sn_pci_dma_sync_sg(struct pci_dev *hwdev, struct scatterlist *sg, int nents, int direction)
{
return;
}
/**
* sn_dma_supported - test a DMA mask
* @hwdev: device to test
* @mask: DMA mask to test
*
* Return whether the given PCI device DMA address mask can be supported
* properly. For example, if your device can only drive the low 24-bits
* during PCI bus mastering, then you would pass 0x00ffffff as the mask to
* this function. Of course, SN only supports devices that have 32 or more
* address bits when using the PMU. We could theoretically support <32 bit
* cards using direct mapping, but we'll worry about that later--on the off
* chance that someone actually wants to use such a card.
*/
int
sn_pci_dma_supported(struct pci_dev *hwdev, u64 mask)
{
if (mask < 0xffffffff)
return 0;
return 1;
}
/*
* New generic DMA routines just wrap sn2 PCI routines until we
* support other bus types (if ever).
*/
int
sn_dma_supported(struct device *dev, u64 mask)
{
BUG_ON(dev->bus != &pci_bus_type);
return sn_pci_dma_supported(to_pci_dev(dev), mask);
}
EXPORT_SYMBOL(sn_dma_supported);
int
sn_dma_set_mask(struct device *dev, u64 dma_mask)
{
BUG_ON(dev->bus != &pci_bus_type);
if (!sn_dma_supported(dev, dma_mask))
return 0;
*dev->dma_mask = dma_mask;
return 1;
}
EXPORT_SYMBOL(sn_dma_set_mask);
void *
sn_dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
int flag)
{
BUG_ON(dev->bus != &pci_bus_type);
return sn_pci_alloc_consistent(to_pci_dev(dev), size, dma_handle);
}
EXPORT_SYMBOL(sn_dma_alloc_coherent);
void
sn_dma_free_coherent(struct device *dev, size_t size, void *cpu_addr,
dma_addr_t dma_handle)
{
BUG_ON(dev->bus != &pci_bus_type);
sn_pci_free_consistent(to_pci_dev(dev), size, cpu_addr, dma_handle);
}
EXPORT_SYMBOL(sn_dma_free_coherent);
dma_addr_t
sn_dma_map_single(struct device *dev, void *cpu_addr, size_t size,
int direction)
{
BUG_ON(dev->bus != &pci_bus_type);
return sn_pci_map_single(to_pci_dev(dev), cpu_addr, size, (int)direction);
}
EXPORT_SYMBOL(sn_dma_map_single);
void
sn_dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
int direction)
{
BUG_ON(dev->bus != &pci_bus_type);
sn_pci_unmap_single(to_pci_dev(dev), dma_addr, size, (int)direction);
}
EXPORT_SYMBOL(sn_dma_unmap_single);
dma_addr_t
sn_dma_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
int direction)
{
BUG_ON(dev->bus != &pci_bus_type);
return pci_map_page(to_pci_dev(dev), page, offset, size, (int)direction);
}
EXPORT_SYMBOL(sn_dma_map_page);
void
sn_dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size,
int direction)
{
BUG_ON(dev->bus != &pci_bus_type);
pci_unmap_page(to_pci_dev(dev), dma_address, size, (int)direction);
}
EXPORT_SYMBOL(sn_dma_unmap_page);
int
sn_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
int direction)
{
BUG_ON(dev->bus != &pci_bus_type);
return sn_pci_map_sg(to_pci_dev(dev), sg, nents, (int)direction);
}
EXPORT_SYMBOL(sn_dma_map_sg);
void
sn_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries,
int direction)
{
BUG_ON(dev->bus != &pci_bus_type);
sn_pci_unmap_sg(to_pci_dev(dev), sg, nhwentries, (int)direction);
}
EXPORT_SYMBOL(sn_dma_unmap_sg);
void
sn_dma_sync_single(struct device *dev, dma_addr_t dma_handle, size_t size,
int direction)
{
BUG_ON(dev->bus != &pci_bus_type);
sn_pci_dma_sync_single(to_pci_dev(dev), dma_handle, size, (int)direction);
}
EXPORT_SYMBOL(sn_dma_sync_single);
void
sn_dma_sync_sg(struct device *dev, struct scatterlist *sg, int nelems,
int direction)
{
BUG_ON(dev->bus != &pci_bus_type);
sn_pci_dma_sync_sg(to_pci_dev(dev), sg, nelems, (int)direction);
}
EXPORT_SYMBOL(sn_dma_sync_sg);
EXPORT_SYMBOL(sn_pci_unmap_single);
EXPORT_SYMBOL(sn_pci_map_single);
EXPORT_SYMBOL(sn_pci_dma_sync_single);
EXPORT_SYMBOL(sn_pci_map_sg);
EXPORT_SYMBOL(sn_pci_unmap_sg);
EXPORT_SYMBOL(sn_pci_alloc_consistent);
EXPORT_SYMBOL(sn_pci_free_consistent);
EXPORT_SYMBOL(sn_pci_dma_supported);