/*
* linux/arch/ia64/kernel/time.c
*
* Copyright (C) 1998-2003 Hewlett-Packard Co
* Stephane Eranian <eranian@hpl.hp.com>
* David Mosberger <davidm@hpl.hp.com>
* Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
* Copyright (C) 1999-2000 VA Linux Systems
* Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
*/
#include <linux/config.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/profile.h>
#include <linux/sched.h>
#include <linux/time.h>
#include <linux/interrupt.h>
#include <linux/efi.h>
#include <linux/profile.h>
#include <linux/timex.h>
#include <asm/machvec.h>
#include <asm/delay.h>
#include <asm/hw_irq.h>
#include <asm/ptrace.h>
#include <asm/sal.h>
#include <asm/sections.h>
#include <asm/system.h>
extern unsigned long wall_jiffies;
u64 jiffies_64 = INITIAL_JIFFIES;
EXPORT_SYMBOL(jiffies_64);
#define TIME_KEEPER_ID 0 /* smp_processor_id() of time-keeper */
#ifdef CONFIG_IA64_DEBUG_IRQ
unsigned long last_cli_ip;
EXPORT_SYMBOL(last_cli_ip);
#endif
unsigned long long
sched_clock (void)
{
unsigned long offset = ia64_get_itc();
return (offset * local_cpu_data->nsec_per_cyc) >> IA64_NSEC_PER_CYC_SHIFT;
}
static void
itc_reset (void)
{
}
/*
* Adjust for the fact that xtime has been advanced by delta_nsec (may be negative and/or
* larger than NSEC_PER_SEC.
*/
static void
itc_update (long delta_nsec)
{
}
/*
* Return the number of nano-seconds that elapsed since the last
* update to jiffy. It is quite possible that the timer interrupt
* will interrupt this and result in a race for any of jiffies,
* wall_jiffies or itm_next. Thus, the xtime_lock must be at least
* read synchronised when calling this routine (see do_gettimeofday()
* below for an example).
*/
unsigned long
itc_get_offset (void)
{
unsigned long elapsed_cycles, lost = jiffies - wall_jiffies;
unsigned long now = ia64_get_itc(), last_tick;
last_tick = (cpu_data(TIME_KEEPER_ID)->itm_next
- (lost + 1)*cpu_data(TIME_KEEPER_ID)->itm_delta);
elapsed_cycles = now - last_tick;
return (elapsed_cycles*local_cpu_data->nsec_per_cyc) >> IA64_NSEC_PER_CYC_SHIFT;
}
static struct time_interpolator itc_interpolator = {
.get_offset = itc_get_offset,
.update = itc_update,
.reset = itc_reset
};
int
do_settimeofday (struct timespec *tv)
{
time_t wtm_sec, sec = tv->tv_sec;
long wtm_nsec, nsec = tv->tv_nsec;
if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
return -EINVAL;
write_seqlock_irq(&xtime_lock);
{
/*
* This is revolting. We need to set "xtime" correctly. However, the value
* in this location is the value at the most recent update of wall time.
* Discover what correction gettimeofday would have done, and then undo
* it!
*/
nsec -= time_interpolator_get_offset();
wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
set_normalized_timespec(&xtime, sec, nsec);
set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
time_adjust = 0; /* stop active adjtime() */
time_status |= STA_UNSYNC;
time_maxerror = NTP_PHASE_LIMIT;
time_esterror = NTP_PHASE_LIMIT;
time_interpolator_reset();
}
write_sequnlock_irq(&xtime_lock);
clock_was_set();
return 0;
}
EXPORT_SYMBOL(do_settimeofday);
void
do_gettimeofday (struct timeval *tv)
{
unsigned long seq, nsec, usec, sec, old, offset;
while (1) {
seq = read_seqbegin(&xtime_lock);
{
old = last_nsec_offset;
offset = time_interpolator_get_offset();
sec = xtime.tv_sec;
nsec = xtime.tv_nsec;
}
if (unlikely(read_seqretry(&xtime_lock, seq)))
continue;
/*
* Ensure that for any pair of causally ordered gettimeofday() calls, time
* never goes backwards (even when ITC on different CPUs are not perfectly
* synchronized). (A pair of concurrent calls to gettimeofday() is by
* definition non-causal and hence it makes no sense to talk about
* time-continuity for such calls.)
*
* Doing this in a lock-free and race-free manner is tricky. Here is why
* it works (most of the time): read_seqretry() just succeeded, which
* implies we calculated a consistent (valid) value for "offset". If the
* cmpxchg() below succeeds, we further know that last_nsec_offset still
* has the same value as at the beginning of the loop, so there was
* presumably no timer-tick or other updates to last_nsec_offset in the
* meantime. This isn't 100% true though: there _is_ a possibility of a
* timer-tick occurring right right after read_seqretry() and then getting
* zero or more other readers which will set last_nsec_offset to the same
* value as the one we read at the beginning of the loop. If this
* happens, we'll end up returning a slightly newer time than we ought to
* (the jump forward is at most "offset" nano-seconds). There is no
* danger of causing time to go backwards, though, so we are safe in that
* sense. We could make the probability of this unlucky case occurring
* arbitrarily small by encoding a version number in last_nsec_offset, but
* even without versioning, the probability of this unlucky case should be
* so small that we won't worry about it.
*/
if (offset <= old) {
offset = old;
break;
} else if (likely(cmpxchg(&last_nsec_offset, old, offset) == old))
break;
/* someone else beat us to updating last_nsec_offset; try again */
}
usec = (nsec + offset) / 1000;
while (unlikely(usec >= USEC_PER_SEC)) {
usec -= USEC_PER_SEC;
++sec;
}
tv->tv_sec = sec;
tv->tv_usec = usec;
}
EXPORT_SYMBOL(do_gettimeofday);
/*
* The profiling function is SMP safe. (nothing can mess
* around with "current", and the profiling counters are
* updated with atomic operations). This is especially
* useful with a profiling multiplier != 1
*/
static inline void
ia64_do_profile (struct pt_regs * regs)
{
unsigned long ip, slot;
extern cpumask_t prof_cpu_mask;
profile_hook(regs);
if (user_mode(regs))
return;
if (!prof_buffer)
return;
ip = instruction_pointer(regs);
/* Conserve space in histogram by encoding slot bits in address
* bits 2 and 3 rather than bits 0 and 1.
*/
slot = ip & 3;
ip = (ip & ~3UL) + 4*slot;
/*
* Only measure the CPUs specified by /proc/irq/prof_cpu_mask.
* (default is all CPUs.)
*/
if (!cpu_isset(smp_processor_id(), prof_cpu_mask))
return;
ip -= (unsigned long) &_stext;
ip >>= prof_shift;
/*
* Don't ignore out-of-bounds IP values silently,
* put them into the last histogram slot, so if
* present, they will show up as a sharp peak.
*/
if (ip > prof_len-1)
ip = prof_len-1;
atomic_inc((atomic_t *)&prof_buffer[ip]);
}
static irqreturn_t
timer_interrupt (int irq, void *dev_id, struct pt_regs *regs)
{
unsigned long new_itm;
platform_timer_interrupt(irq, dev_id, regs);
new_itm = local_cpu_data->itm_next;
if (!time_after(ia64_get_itc(), new_itm))
printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
ia64_get_itc(), new_itm);
ia64_do_profile(regs);
while (1) {
#ifdef CONFIG_SMP
/*
* For UP, this is done in do_timer(). Weird, but
* fixing that would require updates to all
* platforms.
*/
update_process_times(user_mode(regs));
#endif
new_itm += local_cpu_data->itm_delta;
if (smp_processor_id() == TIME_KEEPER_ID) {
/*
* Here we are in the timer irq handler. We have irqs locally
* disabled, but we don't know if the timer_bh is running on
* another CPU. We need to avoid to SMP race by acquiring the
* xtime_lock.
*/
write_seqlock(&xtime_lock);
do_timer(regs);
local_cpu_data->itm_next = new_itm;
write_sequnlock(&xtime_lock);
} else
local_cpu_data->itm_next = new_itm;
if (time_after(new_itm, ia64_get_itc()))
break;
}
do {
/*
* If we're too close to the next clock tick for
* comfort, we increase the safety margin by
* intentionally dropping the next tick(s). We do NOT
* update itm.next because that would force us to call
* do_timer() which in turn would let our clock run
* too fast (with the potentially devastating effect
* of losing monotony of time).
*/
while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
new_itm += local_cpu_data->itm_delta;
ia64_set_itm(new_itm);
/* double check, in case we got hit by a (slow) PMI: */
} while (time_after_eq(ia64_get_itc(), new_itm));
return IRQ_HANDLED;
}
/*
* Encapsulate access to the itm structure for SMP.
*/
void
ia64_cpu_local_tick (void)
{
int cpu = smp_processor_id();
unsigned long shift = 0, delta;
/* arrange for the cycle counter to generate a timer interrupt: */
ia64_set_itv(IA64_TIMER_VECTOR);
delta = local_cpu_data->itm_delta;
/*
* Stagger the timer tick for each CPU so they don't occur all at (almost) the
* same time:
*/
if (cpu) {
unsigned long hi = 1UL << ia64_fls(cpu);
shift = (2*(cpu - hi) + 1) * delta/hi/2;
}
local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
ia64_set_itm(local_cpu_data->itm_next);
}
void __init
ia64_init_itm (void)
{
unsigned long platform_base_freq, itc_freq;
struct pal_freq_ratio itc_ratio, proc_ratio;
long status, platform_base_drift, itc_drift;
/*
* According to SAL v2.6, we need to use a SAL call to determine the platform base
* frequency and then a PAL call to determine the frequency ratio between the ITC
* and the base frequency.
*/
status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
&platform_base_freq, &platform_base_drift);
if (status != 0) {
printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
} else {
status = ia64_pal_freq_ratios(&proc_ratio, 0, &itc_ratio);
if (status != 0)
printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
}
if (status != 0) {
/* invent "random" values */
printk(KERN_ERR
"SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
platform_base_freq = 100000000;
platform_base_drift = -1; /* no drift info */
itc_ratio.num = 3;
itc_ratio.den = 1;
}
if (platform_base_freq < 40000000) {
printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
platform_base_freq);
platform_base_freq = 75000000;
platform_base_drift = -1;
}
if (!proc_ratio.den)
proc_ratio.den = 1; /* avoid division by zero */
if (!itc_ratio.den)
itc_ratio.den = 1; /* avoid division by zero */
itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
if (platform_base_drift != -1)
itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
else
itc_drift = -1;
local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
printk(KERN_INFO "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%lu/%lu, "
"ITC freq=%lu.%03luMHz+/-%ldppm\n", smp_processor_id(),
platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000,
itc_drift);
local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
local_cpu_data->itc_freq = itc_freq;
local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
+ itc_freq/2)/itc_freq;
if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
itc_interpolator.frequency = local_cpu_data->itc_freq;
itc_interpolator.drift = itc_drift;
register_time_interpolator(&itc_interpolator);
}
/* Setup the CPU local timer tick */
ia64_cpu_local_tick();
}
static struct irqaction timer_irqaction = {
.handler = timer_interrupt,
.flags = SA_INTERRUPT,
.name = "timer"
};
void __init
time_init (void)
{
register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
efi_gettimeofday(&xtime);
ia64_init_itm();
/*
* Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
* tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
*/
set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
}