/*
* File: mca.c
* Purpose: Generic MCA handling layer
*
* Updated for latest kernel
* Copyright (C) 2003 Hewlett-Packard Co
* David Mosberger-Tang <davidm@hpl.hp.com>
*
* Copyright (C) 2002 Dell Inc.
* Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
*
* Copyright (C) 2002 Intel
* Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
*
* Copyright (C) 2001 Intel
* Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
*
* Copyright (C) 2000 Intel
* Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
*
* Copyright (C) 1999 Silicon Graphics, Inc.
* Copyright (C) Vijay Chander(vijay@engr.sgi.com)
*
* 03/04/15 D. Mosberger Added INIT backtrace support.
* 02/03/25 M. Domsch GUID cleanups
*
* 02/01/04 J. Hall Aligned MCA stack to 16 bytes, added platform vs. CPU
* error flag, set SAL default return values, changed
* error record structure to linked list, added init call
* to sal_get_state_info_size().
*
* 01/01/03 F. Lewis Added setup of CMCI and CPEI IRQs, logging of corrected
* platform errors, completed code for logging of
* corrected & uncorrected machine check errors, and
* updated for conformance with Nov. 2000 revision of the
* SAL 3.0 spec.
* 00/03/29 C. Fleckenstein Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
* added min save state dump, added INIT handler.
*
* 2003-12-08 Keith Owens <kaos@sgi.com>
* smp_call_function() must not be called from interrupt context (can
* deadlock on tasklist_lock). Use keventd to call smp_call_function().
*/
#include <linux/config.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/kallsyms.h>
#include <linux/smp_lock.h>
#include <linux/bootmem.h>
#include <linux/acpi.h>
#include <linux/timer.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/smp.h>
#include <linux/workqueue.h>
#include <asm/delay.h>
#include <asm/machvec.h>
#include <asm/page.h>
#include <asm/ptrace.h>
#include <asm/system.h>
#include <asm/sal.h>
#include <asm/mca.h>
#include <asm/irq.h>
#include <asm/hw_irq.h>
#undef MCA_PRT_XTRA_DATA
typedef struct ia64_fptr {
unsigned long fp;
unsigned long gp;
} ia64_fptr_t;
ia64_mc_info_t ia64_mc_info;
ia64_mca_sal_to_os_state_t ia64_sal_to_os_handoff_state;
ia64_mca_os_to_sal_state_t ia64_os_to_sal_handoff_state;
u64 ia64_mca_proc_state_dump[512];
u64 ia64_mca_stack[1024] __attribute__((aligned(16)));
u64 ia64_mca_stackframe[32];
u64 ia64_mca_bspstore[1024];
u64 ia64_init_stack[KERNEL_STACK_SIZE/8] __attribute__((aligned(16)));
u64 ia64_os_mca_recovery_successful;
u64 ia64_mca_serialize;
static void ia64_mca_wakeup_ipi_wait(void);
static void ia64_mca_wakeup(int cpu);
static void ia64_mca_wakeup_all(void);
static void ia64_log_init(int);
extern void ia64_monarch_init_handler (void);
extern void ia64_slave_init_handler (void);
static u64 ia64_log_get(int sal_info_type, u8 **buffer);
extern struct hw_interrupt_type irq_type_iosapic_level;
struct ia64_mca_tlb_info ia64_mca_tlb_list[NR_CPUS];
static struct irqaction cmci_irqaction = {
.handler = ia64_mca_cmc_int_handler,
.flags = SA_INTERRUPT,
.name = "cmc_hndlr"
};
static struct irqaction cmcp_irqaction = {
.handler = ia64_mca_cmc_int_caller,
.flags = SA_INTERRUPT,
.name = "cmc_poll"
};
static struct irqaction mca_rdzv_irqaction = {
.handler = ia64_mca_rendez_int_handler,
.flags = SA_INTERRUPT,
.name = "mca_rdzv"
};
static struct irqaction mca_wkup_irqaction = {
.handler = ia64_mca_wakeup_int_handler,
.flags = SA_INTERRUPT,
.name = "mca_wkup"
};
#ifdef CONFIG_ACPI
static struct irqaction mca_cpe_irqaction = {
.handler = ia64_mca_cpe_int_handler,
.flags = SA_INTERRUPT,
.name = "cpe_hndlr"
};
static struct irqaction mca_cpep_irqaction = {
.handler = ia64_mca_cpe_int_caller,
.flags = SA_INTERRUPT,
.name = "cpe_poll"
};
#endif /* CONFIG_ACPI */
#define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
#define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
#define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
#define CMC_HISTORY_LENGTH 5
static struct timer_list cpe_poll_timer;
static struct timer_list cmc_poll_timer;
/*
* This variable tells whether we are currently in polling mode.
* Start with this in the wrong state so we won't play w/ timers
* before the system is ready.
*/
static int cmc_polling_enabled = 1;
/*
* Clearing this variable prevents CPE polling from getting activated
* in mca_late_init. Use it if your system doesn't provide a CPEI,
* but encounters problems retrieving CPE logs. This should only be
* necessary for debugging.
*/
static int cpe_poll_enabled = 1;
extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size);
/*
* ia64_mca_log_sal_error_record
*
* This function retrieves a specified error record type from SAL,
* wakes up any processes waiting for error records, and sends it to
* the system log.
*
* Inputs : sal_info_type (Type of error record MCA/CMC/CPE/INIT)
* Outputs : platform error status
*/
int
ia64_mca_log_sal_error_record(int sal_info_type, int called_from_init)
{
u8 *buffer;
u64 size;
int platform_err;
size = ia64_log_get(sal_info_type, &buffer);
if (!size)
return 0;
/* TODO:
* 1. analyze error logs to determine recoverability
* 2. perform error recovery procedures, if applicable
* 3. set ia64_os_mca_recovery_successful flag, if applicable
*/
salinfo_log_wakeup(sal_info_type, buffer, size);
platform_err = ia64_log_print(sal_info_type, (prfunc_t)printk);
/* Clear logs from corrected errors in case there's no user-level logger */
if (sal_info_type == SAL_INFO_TYPE_CPE || sal_info_type == SAL_INFO_TYPE_CMC)
ia64_sal_clear_state_info(sal_info_type);
return platform_err;
}
/*
* platform dependent error handling
*/
#ifndef PLATFORM_MCA_HANDLERS
void
mca_handler_platform (void)
{
}
irqreturn_t
ia64_mca_cpe_int_handler (int cpe_irq, void *arg, struct pt_regs *ptregs)
{
IA64_MCA_DEBUG("ia64_mca_cpe_int_handler: received interrupt. CPU:%d vector = %#x\n",
smp_processor_id(), cpe_irq);
/* SAL spec states this should run w/ interrupts enabled */
local_irq_enable();
/* Get the CMC error record and log it */
ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE, 0);
return IRQ_HANDLED;
}
static void
show_min_state (pal_min_state_area_t *minstate)
{
u64 iip = minstate->pmsa_iip + ((struct ia64_psr *)(&minstate->pmsa_ipsr))->ri;
u64 xip = minstate->pmsa_xip + ((struct ia64_psr *)(&minstate->pmsa_xpsr))->ri;
printk("NaT bits\t%016lx\n", minstate->pmsa_nat_bits);
printk("pr\t\t%016lx\n", minstate->pmsa_pr);
printk("b0\t\t%016lx ", minstate->pmsa_br0); print_symbol("%s\n", minstate->pmsa_br0);
printk("ar.rsc\t\t%016lx\n", minstate->pmsa_rsc);
printk("cr.iip\t\t%016lx ", iip); print_symbol("%s\n", iip);
printk("cr.ipsr\t\t%016lx\n", minstate->pmsa_ipsr);
printk("cr.ifs\t\t%016lx\n", minstate->pmsa_ifs);
printk("xip\t\t%016lx ", xip); print_symbol("%s\n", xip);
printk("xpsr\t\t%016lx\n", minstate->pmsa_xpsr);
printk("xfs\t\t%016lx\n", minstate->pmsa_xfs);
printk("b1\t\t%016lx ", minstate->pmsa_br1);
print_symbol("%s\n", minstate->pmsa_br1);
printk("\nstatic registers r0-r15:\n");
printk(" r0- 3 %016lx %016lx %016lx %016lx\n",
0UL, minstate->pmsa_gr[0], minstate->pmsa_gr[1], minstate->pmsa_gr[2]);
printk(" r4- 7 %016lx %016lx %016lx %016lx\n",
minstate->pmsa_gr[3], minstate->pmsa_gr[4],
minstate->pmsa_gr[5], minstate->pmsa_gr[6]);
printk(" r8-11 %016lx %016lx %016lx %016lx\n",
minstate->pmsa_gr[7], minstate->pmsa_gr[8],
minstate->pmsa_gr[9], minstate->pmsa_gr[10]);
printk("r12-15 %016lx %016lx %016lx %016lx\n",
minstate->pmsa_gr[11], minstate->pmsa_gr[12],
minstate->pmsa_gr[13], minstate->pmsa_gr[14]);
printk("\nbank 0:\n");
printk("r16-19 %016lx %016lx %016lx %016lx\n",
minstate->pmsa_bank0_gr[0], minstate->pmsa_bank0_gr[1],
minstate->pmsa_bank0_gr[2], minstate->pmsa_bank0_gr[3]);
printk("r20-23 %016lx %016lx %016lx %016lx\n",
minstate->pmsa_bank0_gr[4], minstate->pmsa_bank0_gr[5],
minstate->pmsa_bank0_gr[6], minstate->pmsa_bank0_gr[7]);
printk("r24-27 %016lx %016lx %016lx %016lx\n",
minstate->pmsa_bank0_gr[8], minstate->pmsa_bank0_gr[9],
minstate->pmsa_bank0_gr[10], minstate->pmsa_bank0_gr[11]);
printk("r28-31 %016lx %016lx %016lx %016lx\n",
minstate->pmsa_bank0_gr[12], minstate->pmsa_bank0_gr[13],
minstate->pmsa_bank0_gr[14], minstate->pmsa_bank0_gr[15]);
printk("\nbank 1:\n");
printk("r16-19 %016lx %016lx %016lx %016lx\n",
minstate->pmsa_bank1_gr[0], minstate->pmsa_bank1_gr[1],
minstate->pmsa_bank1_gr[2], minstate->pmsa_bank1_gr[3]);
printk("r20-23 %016lx %016lx %016lx %016lx\n",
minstate->pmsa_bank1_gr[4], minstate->pmsa_bank1_gr[5],
minstate->pmsa_bank1_gr[6], minstate->pmsa_bank1_gr[7]);
printk("r24-27 %016lx %016lx %016lx %016lx\n",
minstate->pmsa_bank1_gr[8], minstate->pmsa_bank1_gr[9],
minstate->pmsa_bank1_gr[10], minstate->pmsa_bank1_gr[11]);
printk("r28-31 %016lx %016lx %016lx %016lx\n",
minstate->pmsa_bank1_gr[12], minstate->pmsa_bank1_gr[13],
minstate->pmsa_bank1_gr[14], minstate->pmsa_bank1_gr[15]);
}
static void
fetch_min_state (pal_min_state_area_t *ms, struct pt_regs *pt, struct switch_stack *sw)
{
u64 *dst_banked, *src_banked, bit, shift, nat_bits;
int i;
/*
* First, update the pt-regs and switch-stack structures with the contents stored
* in the min-state area:
*/
if (((struct ia64_psr *) &ms->pmsa_ipsr)->ic == 0) {
pt->cr_ipsr = ms->pmsa_xpsr;
pt->cr_iip = ms->pmsa_xip;
pt->cr_ifs = ms->pmsa_xfs;
} else {
pt->cr_ipsr = ms->pmsa_ipsr;
pt->cr_iip = ms->pmsa_iip;
pt->cr_ifs = ms->pmsa_ifs;
}
pt->ar_rsc = ms->pmsa_rsc;
pt->pr = ms->pmsa_pr;
pt->r1 = ms->pmsa_gr[0];
pt->r2 = ms->pmsa_gr[1];
pt->r3 = ms->pmsa_gr[2];
sw->r4 = ms->pmsa_gr[3];
sw->r5 = ms->pmsa_gr[4];
sw->r6 = ms->pmsa_gr[5];
sw->r7 = ms->pmsa_gr[6];
pt->r8 = ms->pmsa_gr[7];
pt->r9 = ms->pmsa_gr[8];
pt->r10 = ms->pmsa_gr[9];
pt->r11 = ms->pmsa_gr[10];
pt->r12 = ms->pmsa_gr[11];
pt->r13 = ms->pmsa_gr[12];
pt->r14 = ms->pmsa_gr[13];
pt->r15 = ms->pmsa_gr[14];
dst_banked = &pt->r16; /* r16-r31 are contiguous in struct pt_regs */
src_banked = ms->pmsa_bank1_gr;
for (i = 0; i < 16; ++i)
dst_banked[i] = src_banked[i];
pt->b0 = ms->pmsa_br0;
sw->b1 = ms->pmsa_br1;
/* construct the NaT bits for the pt-regs structure: */
# define PUT_NAT_BIT(dst, addr) \
do { \
bit = nat_bits & 1; nat_bits >>= 1; \
shift = ((unsigned long) addr >> 3) & 0x3f; \
dst = ((dst) & ~(1UL << shift)) | (bit << shift); \
} while (0)
/* Rotate the saved NaT bits such that bit 0 corresponds to pmsa_gr[0]: */
shift = ((unsigned long) &ms->pmsa_gr[0] >> 3) & 0x3f;
nat_bits = (ms->pmsa_nat_bits >> shift) | (ms->pmsa_nat_bits << (64 - shift));
PUT_NAT_BIT(sw->caller_unat, &pt->r1);
PUT_NAT_BIT(sw->caller_unat, &pt->r2);
PUT_NAT_BIT(sw->caller_unat, &pt->r3);
PUT_NAT_BIT(sw->ar_unat, &sw->r4);
PUT_NAT_BIT(sw->ar_unat, &sw->r5);
PUT_NAT_BIT(sw->ar_unat, &sw->r6);
PUT_NAT_BIT(sw->ar_unat, &sw->r7);
PUT_NAT_BIT(sw->caller_unat, &pt->r8); PUT_NAT_BIT(sw->caller_unat, &pt->r9);
PUT_NAT_BIT(sw->caller_unat, &pt->r10); PUT_NAT_BIT(sw->caller_unat, &pt->r11);
PUT_NAT_BIT(sw->caller_unat, &pt->r12); PUT_NAT_BIT(sw->caller_unat, &pt->r13);
PUT_NAT_BIT(sw->caller_unat, &pt->r14); PUT_NAT_BIT(sw->caller_unat, &pt->r15);
nat_bits >>= 16; /* skip over bank0 NaT bits */
PUT_NAT_BIT(sw->caller_unat, &pt->r16); PUT_NAT_BIT(sw->caller_unat, &pt->r17);
PUT_NAT_BIT(sw->caller_unat, &pt->r18); PUT_NAT_BIT(sw->caller_unat, &pt->r19);
PUT_NAT_BIT(sw->caller_unat, &pt->r20); PUT_NAT_BIT(sw->caller_unat, &pt->r21);
PUT_NAT_BIT(sw->caller_unat, &pt->r22); PUT_NAT_BIT(sw->caller_unat, &pt->r23);
PUT_NAT_BIT(sw->caller_unat, &pt->r24); PUT_NAT_BIT(sw->caller_unat, &pt->r25);
PUT_NAT_BIT(sw->caller_unat, &pt->r26); PUT_NAT_BIT(sw->caller_unat, &pt->r27);
PUT_NAT_BIT(sw->caller_unat, &pt->r28); PUT_NAT_BIT(sw->caller_unat, &pt->r29);
PUT_NAT_BIT(sw->caller_unat, &pt->r30); PUT_NAT_BIT(sw->caller_unat, &pt->r31);
}
void
init_handler_platform (pal_min_state_area_t *ms,
struct pt_regs *pt, struct switch_stack *sw)
{
struct unw_frame_info info;
/* if a kernel debugger is available call it here else just dump the registers */
/*
* Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
* generated via the BMC's command-line interface, but since the console is on the
* same serial line, the user will need some time to switch out of the BMC before
* the dump begins.
*/
printk("Delaying for 5 seconds...\n");
udelay(5*1000000);
show_min_state(ms);
printk("Backtrace of current task (pid %d, %s)\n", current->pid, current->comm);
fetch_min_state(ms, pt, sw);
unw_init_from_interruption(&info, current, pt, sw);
ia64_do_show_stack(&info, NULL);
#ifdef CONFIG_SMP
/* read_trylock() would be handy... */
if (!tasklist_lock.write_lock)
read_lock(&tasklist_lock);
#endif
{
struct task_struct *g, *t;
do_each_thread (g, t) {
if (t == current)
continue;
printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
show_stack(t, NULL);
} while_each_thread (g, t);
}
#ifdef CONFIG_SMP
if (!tasklist_lock.write_lock)
read_unlock(&tasklist_lock);
#endif
printk("\nINIT dump complete. Please reboot now.\n");
while (1); /* hang city if no debugger */
}
/*
* ia64_mca_init_platform
*
* External entry for platform specific MCA initialization.
*
* Inputs
* None
*
* Outputs
* None
*/
void
ia64_mca_init_platform (void)
{
}
/*
* ia64_mca_check_errors
*
* External entry to check for error records which may have been posted by SAL
* for a prior failure which resulted in a machine shutdown before an the
* error could be logged. This function must be called after the filesystem
* is initialized.
*
* Inputs : None
*
* Outputs : None
*/
int
ia64_mca_check_errors (void)
{
/*
* If there is an MCA error record pending, get it and log it.
*/
ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA, 1);
return 0;
}
device_initcall(ia64_mca_check_errors);
#ifdef CONFIG_ACPI
/*
* ia64_mca_register_cpev
*
* Register the corrected platform error vector with SAL.
*
* Inputs
* cpev Corrected Platform Error Vector number
*
* Outputs
* None
*/
static void
ia64_mca_register_cpev (int cpev)
{
/* Register the CPE interrupt vector with SAL */
struct ia64_sal_retval isrv;
isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
if (isrv.status) {
printk(KERN_ERR "ia64_mca_platform_init: failed to register Corrected "
"Platform Error interrupt vector with SAL.\n");
return;
}
IA64_MCA_DEBUG("ia64_mca_platform_init: corrected platform error "
"vector %#x setup and enabled\n", cpev);
}
#endif /* CONFIG_ACPI */
#endif /* PLATFORM_MCA_HANDLERS */
/*
* ia64_mca_cmc_vector_setup
*
* Setup the corrected machine check vector register in the processor and
* unmask interrupt. This function is invoked on a per-processor basis.
*
* Inputs
* None
*
* Outputs
* None
*/
void
ia64_mca_cmc_vector_setup (void)
{
cmcv_reg_t cmcv;
cmcv.cmcv_regval = 0;
cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
cmcv.cmcv_vector = IA64_CMC_VECTOR;
ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
IA64_MCA_DEBUG("ia64_mca_platform_init: CPU %d corrected "
"machine check vector %#x setup and enabled.\n",
smp_processor_id(), IA64_CMC_VECTOR);
IA64_MCA_DEBUG("ia64_mca_platform_init: CPU %d CMCV = %#016lx\n",
smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
}
/*
* ia64_mca_cmc_vector_disable
*
* Mask the corrected machine check vector register in the processor.
* This function is invoked on a per-processor basis.
*
* Inputs
* dummy(unused)
*
* Outputs
* None
*/
void
ia64_mca_cmc_vector_disable (void *dummy)
{
cmcv_reg_t cmcv;
cmcv = (cmcv_reg_t)ia64_getreg(_IA64_REG_CR_CMCV);
cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval)
IA64_MCA_DEBUG("ia64_mca_cmc_vector_disable: CPU %d corrected "
"machine check vector %#x disabled.\n",
smp_processor_id(), cmcv.cmcv_vector);
}
/*
* ia64_mca_cmc_vector_enable
*
* Unmask the corrected machine check vector register in the processor.
* This function is invoked on a per-processor basis.
*
* Inputs
* dummy(unused)
*
* Outputs
* None
*/
void
ia64_mca_cmc_vector_enable (void *dummy)
{
cmcv_reg_t cmcv;
cmcv = (cmcv_reg_t)ia64_getreg(_IA64_REG_CR_CMCV);
cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval)
IA64_MCA_DEBUG("ia64_mca_cmc_vector_enable: CPU %d corrected "
"machine check vector %#x enabled.\n",
smp_processor_id(), cmcv.cmcv_vector);
}
#if defined(MCA_TEST)
sal_log_processor_info_t slpi_buf;
void
mca_test(void)
{
slpi_buf.valid.psi_static_struct = 1;
slpi_buf.valid.num_cache_check = 1;
slpi_buf.valid.num_tlb_check = 1;
slpi_buf.valid.num_bus_check = 1;
slpi_buf.valid.processor_static_info.minstate = 1;
slpi_buf.valid.processor_static_info.br = 1;
slpi_buf.valid.processor_static_info.cr = 1;
slpi_buf.valid.processor_static_info.ar = 1;
slpi_buf.valid.processor_static_info.rr = 1;
slpi_buf.valid.processor_static_info.fr = 1;
ia64_os_mca_dispatch();
}
#endif /* #if defined(MCA_TEST) */
/*
* verify_guid
*
* Compares a test guid to a target guid and returns result.
*
* Inputs
* test_guid * (ptr to guid to be verified)
* target_guid * (ptr to standard guid to be verified against)
*
* Outputs
* 0 (test verifies against target)
* non-zero (test guid does not verify)
*/
static int
verify_guid (efi_guid_t *test, efi_guid_t *target)
{
int rc;
#ifdef IA64_MCA_DEBUG_INFO
char out[40];
#endif
if ((rc = efi_guidcmp(*test, *target))) {
IA64_MCA_DEBUG(KERN_DEBUG
"verify_guid: invalid GUID = %s\n",
efi_guid_unparse(test, out));
}
return rc;
}
/*
* ia64_mca_cmc_vector_disable_keventd
*
* Called via keventd (smp_call_function() is not safe in interrupt context) to
* disable the cmc interrupt vector.
*/
static void
ia64_mca_cmc_vector_disable_keventd(void *unused)
{
on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
}
/*
* ia64_mca_cmc_vector_enable_keventd
*
* Called via keventd (smp_call_function() is not safe in interrupt context) to
* enable the cmc interrupt vector.
*/
static void
ia64_mca_cmc_vector_enable_keventd(void *unused)
{
on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
}
/*
* ia64_mca_init
*
* Do all the system level mca specific initialization.
*
* 1. Register spinloop and wakeup request interrupt vectors
*
* 2. Register OS_MCA handler entry point
*
* 3. Register OS_INIT handler entry point
*
* 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
*
* Note that this initialization is done very early before some kernel
* services are available.
*
* Inputs : None
*
* Outputs : None
*/
void __init
ia64_mca_init(void)
{
ia64_fptr_t *mon_init_ptr = (ia64_fptr_t *)ia64_monarch_init_handler;
ia64_fptr_t *slave_init_ptr = (ia64_fptr_t *)ia64_slave_init_handler;
ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
int i;
s64 rc;
struct ia64_sal_retval isrv;
u64 timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
IA64_MCA_DEBUG("ia64_mca_init: begin\n");
/* initialize recovery success indicator */
ia64_os_mca_recovery_successful = 0;
/* Clear the Rendez checkin flag for all cpus */
for(i = 0 ; i < NR_CPUS; i++)
ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
/*
* Register the rendezvous spinloop and wakeup mechanism with SAL
*/
/* Register the rendezvous interrupt vector with SAL */
while (1) {
isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
SAL_MC_PARAM_MECHANISM_INT,
IA64_MCA_RENDEZ_VECTOR,
timeout,
SAL_MC_PARAM_RZ_ALWAYS);
rc = isrv.status;
if (rc == 0)
break;
if (rc == -2) {
printk(KERN_INFO "ia64_mca_init: increasing MCA rendezvous timeout from "
"%ld to %ld\n", timeout, isrv.v0);
timeout = isrv.v0;
continue;
}
printk(KERN_ERR "ia64_mca_init: Failed to register rendezvous interrupt "
"with SAL. rc = %ld\n", rc);
return;
}
/* Register the wakeup interrupt vector with SAL */
isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
SAL_MC_PARAM_MECHANISM_INT,
IA64_MCA_WAKEUP_VECTOR,
0, 0);
rc = isrv.status;
if (rc) {
printk(KERN_ERR "ia64_mca_init: Failed to register wakeup interrupt with SAL. "
"rc = %ld\n", rc);
return;
}
IA64_MCA_DEBUG("ia64_mca_init: registered mca rendezvous spinloop and wakeup mech.\n");
ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
/*
* XXX - disable SAL checksum by setting size to 0; should be
* ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
*/
ia64_mc_info.imi_mca_handler_size = 0;
/* Register the os mca handler with SAL */
if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
ia64_mc_info.imi_mca_handler,
ia64_tpa(mca_hldlr_ptr->gp),
ia64_mc_info.imi_mca_handler_size,
0, 0, 0)))
{
printk(KERN_ERR "ia64_mca_init: Failed to register os mca handler with SAL. "
"rc = %ld\n", rc);
return;
}
IA64_MCA_DEBUG("ia64_mca_init: registered os mca handler with SAL at 0x%lx, gp = 0x%lx\n",
ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
/*
* XXX - disable SAL checksum by setting size to 0, should be
* IA64_INIT_HANDLER_SIZE
*/
ia64_mc_info.imi_monarch_init_handler = ia64_tpa(mon_init_ptr->fp);
ia64_mc_info.imi_monarch_init_handler_size = 0;
ia64_mc_info.imi_slave_init_handler = ia64_tpa(slave_init_ptr->fp);
ia64_mc_info.imi_slave_init_handler_size = 0;
IA64_MCA_DEBUG("ia64_mca_init: os init handler at %lx\n",
ia64_mc_info.imi_monarch_init_handler);
/* Register the os init handler with SAL */
if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
ia64_mc_info.imi_monarch_init_handler,
ia64_tpa(ia64_getreg(_IA64_REG_GP)),
ia64_mc_info.imi_monarch_init_handler_size,
ia64_mc_info.imi_slave_init_handler,
ia64_tpa(ia64_getreg(_IA64_REG_GP)),
ia64_mc_info.imi_slave_init_handler_size)))
{
printk(KERN_ERR "ia64_mca_init: Failed to register m/s init handlers with SAL. "
"rc = %ld\n", rc);
return;
}
IA64_MCA_DEBUG("ia64_mca_init: registered os init handler with SAL\n");
/*
* Configure the CMCI/P vector and handler. Interrupts for CMC are
* per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
*/
register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
ia64_mca_cmc_vector_setup(); /* Setup vector on BSP & enable */
/* Setup the MCA rendezvous interrupt vector */
register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
/* Setup the MCA wakeup interrupt vector */
register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
#ifdef CONFIG_ACPI
/* Setup the CPE interrupt vector */
{
irq_desc_t *desc;
unsigned int irq;
int cpev = acpi_request_vector(ACPI_INTERRUPT_CPEI);
if (cpev >= 0) {
for (irq = 0; irq < NR_IRQS; ++irq)
if (irq_to_vector(irq) == cpev) {
desc = irq_descp(irq);
desc->status |= IRQ_PER_CPU;
desc->handler = &irq_type_iosapic_level;
setup_irq(irq, &mca_cpe_irqaction);
}
ia64_mca_register_cpev(cpev);
}
}
#endif
/* Initialize the areas set aside by the OS to buffer the
* platform/processor error states for MCA/INIT/CMC
* handling.
*/
ia64_log_init(SAL_INFO_TYPE_MCA);
ia64_log_init(SAL_INFO_TYPE_INIT);
ia64_log_init(SAL_INFO_TYPE_CMC);
ia64_log_init(SAL_INFO_TYPE_CPE);
#if defined(MCA_TEST)
mca_test();
#endif /* #if defined(MCA_TEST) */
printk(KERN_INFO "Mca related initialization done\n");
/* commented out because this is done elsewhere */
#if 0
/* Do post-failure MCA error logging */
ia64_mca_check_errors();
#endif
}
/*
* ia64_mca_wakeup_ipi_wait
*
* Wait for the inter-cpu interrupt to be sent by the
* monarch processor once it is done with handling the
* MCA.
*
* Inputs : None
* Outputs : None
*/
void
ia64_mca_wakeup_ipi_wait(void)
{
int irr_num = (IA64_MCA_WAKEUP_VECTOR >> 6);
int irr_bit = (IA64_MCA_WAKEUP_VECTOR & 0x3f);
u64 irr = 0;
do {
switch(irr_num) {
case 0:
irr = ia64_getreg(_IA64_REG_CR_IRR0);
break;
case 1:
irr = ia64_getreg(_IA64_REG_CR_IRR1);
break;
case 2:
irr = ia64_getreg(_IA64_REG_CR_IRR2);
break;
case 3:
irr = ia64_getreg(_IA64_REG_CR_IRR3);
break;
}
} while (!(irr & (1UL << irr_bit))) ;
}
/*
* ia64_mca_wakeup
*
* Send an inter-cpu interrupt to wake-up a particular cpu
* and mark that cpu to be out of rendez.
*
* Inputs : cpuid
* Outputs : None
*/
void
ia64_mca_wakeup(int cpu)
{
platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
}
/*
* ia64_mca_wakeup_all
*
* Wakeup all the cpus which have rendez'ed previously.
*
* Inputs : None
* Outputs : None
*/
void
ia64_mca_wakeup_all(void)
{
int cpu;
/* Clear the Rendez checkin flag for all cpus */
for(cpu = 0; cpu < NR_CPUS; cpu++) {
if (!cpu_online(cpu))
continue;
if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
ia64_mca_wakeup(cpu);
}
}
/*
* ia64_mca_rendez_interrupt_handler
*
* This is handler used to put slave processors into spinloop
* while the monarch processor does the mca handling and later
* wake each slave up once the monarch is done.
*
* Inputs : None
* Outputs : None
*/
irqreturn_t
ia64_mca_rendez_int_handler(int rendez_irq, void *arg, struct pt_regs *ptregs)
{
unsigned long flags;
int cpu = smp_processor_id();
/* Mask all interrupts */
local_irq_save(flags);
ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
/* Register with the SAL monarch that the slave has
* reached SAL
*/
ia64_sal_mc_rendez();
/* Wait for the wakeup IPI from the monarch
* This waiting is done by polling on the wakeup-interrupt
* vector bit in the processor's IRRs
*/
ia64_mca_wakeup_ipi_wait();
/* Enable all interrupts */
local_irq_restore(flags);
return IRQ_HANDLED;
}
/*
* ia64_mca_wakeup_int_handler
*
* The interrupt handler for processing the inter-cpu interrupt to the
* slave cpu which was spinning in the rendez loop.
* Since this spinning is done by turning off the interrupts and
* polling on the wakeup-interrupt bit in the IRR, there is
* nothing useful to be done in the handler.
*
* Inputs : wakeup_irq (Wakeup-interrupt bit)
* arg (Interrupt handler specific argument)
* ptregs (Exception frame at the time of the interrupt)
* Outputs : None
*
*/
irqreturn_t
ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg, struct pt_regs *ptregs)
{
return IRQ_HANDLED;
}
/*
* ia64_return_to_sal_check
*
* This is function called before going back from the OS_MCA handler
* to the OS_MCA dispatch code which finally takes the control back
* to the SAL.
* The main purpose of this routine is to setup the OS_MCA to SAL
* return state which can be used by the OS_MCA dispatch code
* just before going back to SAL.
*
* Inputs : None
* Outputs : None
*/
void
ia64_return_to_sal_check(void)
{
pal_processor_state_info_t *psp = (pal_processor_state_info_t *)
&ia64_sal_to_os_handoff_state.proc_state_param;
/* Copy over some relevant stuff from the sal_to_os_mca_handoff
* so that it can be used at the time of os_mca_to_sal_handoff
*/
ia64_os_to_sal_handoff_state.imots_sal_gp =
ia64_sal_to_os_handoff_state.imsto_sal_gp;
ia64_os_to_sal_handoff_state.imots_sal_check_ra =
ia64_sal_to_os_handoff_state.imsto_sal_check_ra;
/*
* Did we correct the error? At the moment the only error that
* we fix is a TLB error, if any other kind of error occurred
* we must reboot.
*/
if (psp->cc == 1 && psp->bc == 1 && psp->rc == 1 && psp->uc == 1)
ia64_os_to_sal_handoff_state.imots_os_status = IA64_MCA_COLD_BOOT;
else
ia64_os_to_sal_handoff_state.imots_os_status = IA64_MCA_CORRECTED;
/* Default = tell SAL to return to same context */
ia64_os_to_sal_handoff_state.imots_context = IA64_MCA_SAME_CONTEXT;
ia64_os_to_sal_handoff_state.imots_new_min_state =
(u64 *)ia64_sal_to_os_handoff_state.pal_min_state;
}
/*
* ia64_mca_ucmc_handler
*
* This is uncorrectable machine check handler called from OS_MCA
* dispatch code which is in turn called from SAL_CHECK().
* This is the place where the core of OS MCA handling is done.
* Right now the logs are extracted and displayed in a well-defined
* format. This handler code is supposed to be run only on the
* monarch processor. Once the monarch is done with MCA handling
* further MCA logging is enabled by clearing logs.
* Monarch also has the duty of sending wakeup-IPIs to pull the
* slave processors out of rendezvous spinloop.
*
* Inputs : None
* Outputs : None
*/
void
ia64_mca_ucmc_handler(void)
{
int platform_err = 0;
/* Get the MCA error record and log it */
platform_err = ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA, 0);
/*
* Do Platform-specific mca error handling if required.
*/
if (platform_err)
mca_handler_platform();
/*
* Wakeup all the processors which are spinning in the rendezvous
* loop.
*/
ia64_mca_wakeup_all();
/* Return to SAL */
ia64_return_to_sal_check();
}
static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd, NULL);
static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd, NULL);
/*
* ia64_mca_cmc_int_handler
*
* This is corrected machine check interrupt handler.
* Right now the logs are extracted and displayed in a well-defined
* format.
*
* Inputs
* interrupt number
* client data arg ptr
* saved registers ptr
*
* Outputs
* None
*/
irqreturn_t
ia64_mca_cmc_int_handler(int cmc_irq, void *arg, struct pt_regs *ptregs)
{
static unsigned long cmc_history[CMC_HISTORY_LENGTH];
static int index;
static spinlock_t cmc_history_lock = SPIN_LOCK_UNLOCKED;
IA64_MCA_DEBUG("ia64_mca_cmc_int_handler: received interrupt vector = %#x on CPU %d\n",
cmc_irq, smp_processor_id());
/* SAL spec states this should run w/ interrupts enabled */
local_irq_enable();
/* Get the CMC error record and log it */
ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC, 0);
spin_lock(&cmc_history_lock);
if (!cmc_polling_enabled) {
int i, count = 1; /* we know 1 happened now */
unsigned long now = jiffies;
for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
if (now - cmc_history[i] <= HZ)
count++;
}
IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
if (count >= CMC_HISTORY_LENGTH) {
cmc_polling_enabled = 1;
spin_unlock(&cmc_history_lock);
schedule_work(&cmc_disable_work);
/*
* Corrected errors will still be corrected, but
* make sure there's a log somewhere that indicates
* something is generating more than we can handle.
*/
printk(KERN_WARNING "%s: WARNING: Switching to polling CMC handler, error records may be lost\n", __FUNCTION__);
mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
/* lock already released, get out now */
return IRQ_HANDLED;
} else {
cmc_history[index++] = now;
if (index == CMC_HISTORY_LENGTH)
index = 0;
}
}
spin_unlock(&cmc_history_lock);
return IRQ_HANDLED;
}
/*
* IA64_MCA log support
*/
#define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
#define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
typedef struct ia64_state_log_s
{
spinlock_t isl_lock;
int isl_index;
unsigned long isl_count;
ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
} ia64_state_log_t;
static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
#define IA64_LOG_ALLOCATE(it, size) \
{ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
(ia64_err_rec_t *)alloc_bootmem(size); \
ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
(ia64_err_rec_t *)alloc_bootmem(size);}
#define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
#define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
#define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
#define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
#define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
#define IA64_LOG_INDEX_INC(it) \
{ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
ia64_state_log[it].isl_count++;}
#define IA64_LOG_INDEX_DEC(it) \
ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
#define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
#define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
#define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
/*
* ia64_mca_cmc_int_caller
*
* Triggered by sw interrupt from CMC polling routine. Calls
* real interrupt handler and either triggers a sw interrupt
* on the next cpu or does cleanup at the end.
*
* Inputs
* interrupt number
* client data arg ptr
* saved registers ptr
* Outputs
* handled
*/
irqreturn_t
ia64_mca_cmc_int_caller(int cpe_irq, void *arg, struct pt_regs *ptregs)
{
static int start_count = -1;
unsigned int cpuid;
cpuid = smp_processor_id();
/* If first cpu, update count */
if (start_count == -1)
start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
ia64_mca_cmc_int_handler(cpe_irq, arg, ptregs);
for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
if (cpuid < NR_CPUS) {
platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
} else {
/* If no log recored, switch out of polling mode */
if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
printk(KERN_WARNING "%s: Returning to interrupt driven CMC handler\n", __FUNCTION__);
schedule_work(&cmc_enable_work);
cmc_polling_enabled = 0;
} else {
mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
}
start_count = -1;
}
return IRQ_HANDLED;
}
/*
* ia64_mca_cmc_poll
*
* Poll for Corrected Machine Checks (CMCs)
*
* Inputs : dummy(unused)
* Outputs : None
*
*/
static void
ia64_mca_cmc_poll (unsigned long dummy)
{
/* Trigger a CMC interrupt cascade */
platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
}
/*
* ia64_mca_cpe_int_caller
*
* Triggered by sw interrupt from CPE polling routine. Calls
* real interrupt handler and either triggers a sw interrupt
* on the next cpu or does cleanup at the end.
*
* Inputs
* interrupt number
* client data arg ptr
* saved registers ptr
* Outputs
* handled
*/
irqreturn_t
ia64_mca_cpe_int_caller(int cpe_irq, void *arg, struct pt_regs *ptregs)
{
static int start_count = -1;
static int poll_time = MAX_CPE_POLL_INTERVAL;
unsigned int cpuid;
cpuid = smp_processor_id();
/* If first cpu, update count */
if (start_count == -1)
start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
ia64_mca_cpe_int_handler(cpe_irq, arg, ptregs);
for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
if (cpuid < NR_CPUS) {
platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
} else {
/*
* If a log was recorded, increase our polling frequency,
* otherwise, backoff.
*/
if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
} else {
poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
}
start_count = -1;
mod_timer(&cpe_poll_timer, jiffies + poll_time);
}
return IRQ_HANDLED;
}
/*
* ia64_mca_cpe_poll
*
* Poll for Corrected Platform Errors (CPEs), trigger interrupt
* on first cpu, from there it will trickle through all the cpus.
*
* Inputs : dummy(unused)
* Outputs : None
*
*/
static void
ia64_mca_cpe_poll (unsigned long dummy)
{
/* Trigger a CPE interrupt cascade */
platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
}
/*
* ia64_mca_late_init
*
* Opportunity to setup things that require initialization later
* than ia64_mca_init. Setup a timer to poll for CPEs if the
* platform doesn't support an interrupt driven mechanism.
*
* Inputs : None
* Outputs : Status
*/
static int __init
ia64_mca_late_init(void)
{
init_timer(&cmc_poll_timer);
cmc_poll_timer.function = ia64_mca_cmc_poll;
/* Reset to the correct state */
cmc_polling_enabled = 0;
init_timer(&cpe_poll_timer);
cpe_poll_timer.function = ia64_mca_cpe_poll;
#ifdef CONFIG_ACPI
/* If platform doesn't support CPEI, get the timer going. */
if (acpi_request_vector(ACPI_INTERRUPT_CPEI) < 0 && cpe_poll_enabled) {
register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
ia64_mca_cpe_poll(0UL);
}
#endif
return 0;
}
device_initcall(ia64_mca_late_init);
/*
* C portion of the OS INIT handler
*
* Called from ia64_monarch_init_handler
*
* Inputs: pointer to pt_regs where processor info was saved.
*
* Returns:
* 0 if SAL must warm boot the System
* 1 if SAL must return to interrupted context using PAL_MC_RESUME
*
*/
void
ia64_init_handler (struct pt_regs *pt, struct switch_stack *sw)
{
pal_min_state_area_t *ms;
printk(KERN_INFO "Entered OS INIT handler. PSP=%lx\n",
ia64_sal_to_os_handoff_state.proc_state_param);
/*
* Address of minstate area provided by PAL is physical,
* uncacheable (bit 63 set). Convert to Linux virtual
* address in region 6.
*/
ms = (pal_min_state_area_t *)(ia64_sal_to_os_handoff_state.pal_min_state | (6ul<<61));
init_handler_platform(ms, pt, sw); /* call platform specific routines */
}
/*
* ia64_log_prt_guid
*
* Print a formatted GUID.
*
* Inputs : p_guid (ptr to the GUID)
* prfunc (print function)
* Outputs : None
*
*/
void
ia64_log_prt_guid (efi_guid_t *p_guid, prfunc_t prfunc)
{
char out[40];
printk(KERN_DEBUG "GUID = %s\n", efi_guid_unparse(p_guid, out));
}
static void
ia64_log_hexdump(unsigned char *p, unsigned long n_ch, prfunc_t prfunc)
{
unsigned long i;
int j;
if (!p)
return;
for (i = 0; i < n_ch;) {
prfunc("%p ", (void *)p);
for (j = 0; (j < 16) && (i < n_ch); i++, j++, p++) {
prfunc("%02x ", *p);
}
prfunc("\n");
}
}
#ifdef MCA_PRT_XTRA_DATA // for test only @FVL
static void
ia64_log_prt_record_header (sal_log_record_header_t *rh, prfunc_t prfunc)
{
prfunc("SAL RECORD HEADER: Record buffer = %p, header size = %ld\n",
(void *)rh, sizeof(sal_log_record_header_t));
ia64_log_hexdump((unsigned char *)rh, sizeof(sal_log_record_header_t),
(prfunc_t)prfunc);
prfunc("Total record length = %d\n", rh->len);
ia64_log_prt_guid(&rh->platform_guid, prfunc);
prfunc("End of SAL RECORD HEADER\n");
}
static void
ia64_log_prt_section_header (sal_log_section_hdr_t *sh, prfunc_t prfunc)
{
prfunc("SAL SECTION HEADER: Record buffer = %p, header size = %ld\n",
(void *)sh, sizeof(sal_log_section_hdr_t));
ia64_log_hexdump((unsigned char *)sh, sizeof(sal_log_section_hdr_t),
(prfunc_t)prfunc);
prfunc("Length of section & header = %d\n", sh->len);
ia64_log_prt_guid(&sh->guid, prfunc);
prfunc("End of SAL SECTION HEADER\n");
}
#endif // MCA_PRT_XTRA_DATA for test only @FVL
/*
* ia64_log_init
* Reset the OS ia64 log buffer
* Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
* Outputs : None
*/
void
ia64_log_init(int sal_info_type)
{
u64 max_size = 0;
IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
IA64_LOG_LOCK_INIT(sal_info_type);
// SAL will tell us the maximum size of any error record of this type
max_size = ia64_sal_get_state_info_size(sal_info_type);
if (!max_size)
/* alloc_bootmem() doesn't like zero-sized allocations! */
return;
// set up OS data structures to hold error info
IA64_LOG_ALLOCATE(sal_info_type, max_size);
memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
}
/*
* ia64_log_get
*
* Get the current MCA log from SAL and copy it into the OS log buffer.
*
* Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
* Outputs : size (total record length)
* *buffer (ptr to error record)
*
*/
static u64
ia64_log_get(int sal_info_type, u8 **buffer)
{
sal_log_record_header_t *log_buffer;
u64 total_len = 0;
int s;
IA64_LOG_LOCK(sal_info_type);
/* Get the process state information */
log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
if (total_len) {
IA64_LOG_INDEX_INC(sal_info_type);
IA64_LOG_UNLOCK(sal_info_type);
IA64_MCA_DEBUG("ia64_log_get: SAL error record type %d retrieved. "
"Record length = %ld\n", sal_info_type, total_len);
*buffer = (u8 *) log_buffer;
return total_len;
} else {
IA64_LOG_UNLOCK(sal_info_type);
return 0;
}
}
/*
* ia64_log_prt_oem_data
*
* Print OEM specific data if included.
*
* Inputs : header_len (length passed in section header)
* sect_len (default length of section type)
* p_data (ptr to data)
* prfunc (print function)
* Outputs : None
*
*/
void
ia64_log_prt_oem_data (int header_len, int sect_len, u8 *p_data, prfunc_t prfunc)
{
int oem_data_len, i;
if ((oem_data_len = header_len - sect_len) > 0) {
prfunc(" OEM Specific Data:");
for (i = 0; i < oem_data_len; i++, p_data++)
prfunc(" %02x", *p_data);
}
prfunc("\n");
}
/*
* ia64_log_rec_header_print
*
* Log info from the SAL error record header.
*
* Inputs : lh * (ptr to SAL log error record header)
* prfunc (fn ptr of log output function to use)
* Outputs : None
*/
void
ia64_log_rec_header_print (sal_log_record_header_t *lh, prfunc_t prfunc)
{
prfunc("+Err Record ID: %ld SAL Rev: %2x.%02x\n", lh->id,
lh->revision.major, lh->revision.minor);
prfunc("+Time: %02x/%02x/%02x%02x %02x:%02x:%02x Severity %d\n",
lh->timestamp.slh_month, lh->timestamp.slh_day,
lh->timestamp.slh_century, lh->timestamp.slh_year,
lh->timestamp.slh_hour, lh->timestamp.slh_minute,
lh->timestamp.slh_second, lh->severity);
}
/*
* ia64_log_processor_regs_print
* Print the contents of the saved processor register(s) in the format
* <reg_prefix>[<index>] <value>
*
* Inputs : regs (Register save buffer)
* reg_num (# of registers)
* reg_class (application/banked/control/bank1_general)
* reg_prefix (ar/br/cr/b1_gr)
* Outputs : None
*
*/
void
ia64_log_processor_regs_print(u64 *regs,
int reg_num,
char *reg_class,
char *reg_prefix,
prfunc_t prfunc)
{
int i;
prfunc("+%s Registers\n", reg_class);
for (i = 0; i < reg_num; i++)
prfunc("+ %s[%d] 0x%lx\n", reg_prefix, i, regs[i]);
}
/*
* ia64_log_processor_fp_regs_print
* Print the contents of the saved floating page register(s) in the format
* <reg_prefix>[<index>] <value>
*
* Inputs: ia64_fpreg (Register save buffer)
* reg_num (# of registers)
* reg_class (application/banked/control/bank1_general)
* reg_prefix (ar/br/cr/b1_gr)
* Outputs: None
*
*/
void
ia64_log_processor_fp_regs_print (struct ia64_fpreg *regs,
int reg_num,
char *reg_class,
char *reg_prefix,
prfunc_t prfunc)
{
int i;
prfunc("+%s Registers\n", reg_class);
for (i = 0; i < reg_num; i++)
prfunc("+ %s[%d] 0x%lx%016lx\n", reg_prefix, i, regs[i].u.bits[1],
regs[i].u.bits[0]);
}
static char *pal_mesi_state[] = {
"Invalid",
"Shared",
"Exclusive",
"Modified",
"Reserved1",
"Reserved2",
"Reserved3",
"Reserved4"
};
static char *pal_cache_op[] = {
"Unknown",
"Move in",
"Cast out",
"Coherency check",
"Internal",
"Instruction fetch",
"Implicit Writeback",
"Reserved"
};
/*
* ia64_log_cache_check_info_print
* Display the machine check information related to cache error(s).
* Inputs: i (Multiple errors are logged, i - index of logged error)
* cc_info * (Ptr to cache check info logged by the PAL and later
* captured by the SAL)
* prfunc (fn ptr of print function to be used for output)
* Outputs: None
*/
void
ia64_log_cache_check_info_print (int i,
sal_log_mod_error_info_t *cache_check_info,
prfunc_t prfunc)
{
pal_cache_check_info_t *info;
u64 target_addr;
if (!cache_check_info->valid.check_info) {
IA64_MCA_DEBUG("ia64_mca_log_print: invalid cache_check_info[%d]\n",i);
return; /* If check info data not valid, skip it */
}
info = (pal_cache_check_info_t *)&cache_check_info->check_info;
target_addr = cache_check_info->target_identifier;
prfunc("+ Cache check info[%d]\n+", i);
prfunc(" Level: L%d,",info->level);
if (info->mv)
prfunc(" Mesi: %s,",pal_mesi_state[info->mesi]);
prfunc(" Index: %d,", info->index);
if (info->ic)
prfunc(" Cache: Instruction,");
if (info->dc)
prfunc(" Cache: Data,");
if (info->tl)
prfunc(" Line: Tag,");
if (info->dl)
prfunc(" Line: Data,");
prfunc(" Operation: %s,", pal_cache_op[info->op]);
if (info->wiv)
prfunc(" Way: %d,", info->way);
if (cache_check_info->valid.target_identifier)
/* Hope target address is saved in target_identifier */
if (info->tv)
prfunc(" Target Addr: 0x%lx,", target_addr);
if (info->mcc)
prfunc(" MC: Corrected");
prfunc("\n");
}
/*
* ia64_log_tlb_check_info_print
* Display the machine check information related to tlb error(s).
* Inputs: i (Multiple errors are logged, i - index of logged error)
* tlb_info * (Ptr to machine check info logged by the PAL and later
* captured by the SAL)
* prfunc (fn ptr of print function to be used for output)
* Outputs: None
*/
void
ia64_log_tlb_check_info_print (int i,
sal_log_mod_error_info_t *tlb_check_info,
prfunc_t prfunc)
{
pal_tlb_check_info_t *info;
if (!tlb_check_info->valid.check_info) {
IA64_MCA_DEBUG("ia64_mca_log_print: invalid tlb_check_info[%d]\n", i);
return; /* If check info data not valid, skip it */
}
info = (pal_tlb_check_info_t *)&tlb_check_info->check_info;
prfunc("+ TLB Check Info [%d]\n+", i);
if (info->itc)
prfunc(" Failure: Instruction Translation Cache");
if (info->dtc)
prfunc(" Failure: Data Translation Cache");
if (info->itr) {
prfunc(" Failure: Instruction Translation Register");
prfunc(" ,Slot: %ld", info->tr_slot);
}
if (info->dtr) {
prfunc(" Failure: Data Translation Register");
prfunc(" ,Slot: %ld", info->tr_slot);
}
if (info->mcc)
prfunc(" ,MC: Corrected");
prfunc("\n");
}
/*
* ia64_log_bus_check_info_print
* Display the machine check information related to bus error(s).
* Inputs: i (Multiple errors are logged, i - index of logged error)
* bus_info * (Ptr to machine check info logged by the PAL and later
* captured by the SAL)
* prfunc (fn ptr of print function to be used for output)
* Outputs: None
*/
void
ia64_log_bus_check_info_print (int i,
sal_log_mod_error_info_t *bus_check_info,
prfunc_t prfunc)
{
pal_bus_check_info_t *info;
u64 req_addr; /* Address of the requestor of the transaction */
u64 resp_addr; /* Address of the responder of the transaction */
u64 targ_addr; /* Address where the data was to be delivered to */
/* or obtained from */
if (!bus_check_info->valid.check_info) {
IA64_MCA_DEBUG("ia64_mca_log_print: invalid bus_check_info[%d]\n", i);
return; /* If check info data not valid, skip it */
}
info = (pal_bus_check_info_t *)&bus_check_info->check_info;
req_addr = bus_check_info->requestor_identifier;
resp_addr = bus_check_info->responder_identifier;
targ_addr = bus_check_info->target_identifier;
prfunc("+ BUS Check Info [%d]\n+", i);
prfunc(" Status Info: %d", info->bsi);
prfunc(" ,Severity: %d", info->sev);
prfunc(" ,Transaction Type: %d", info->type);
prfunc(" ,Transaction Size: %d", info->size);
if (info->cc)
prfunc(" ,Cache-cache-transfer");
if (info->ib)
prfunc(" ,Error: Internal");
if (info->eb)
prfunc(" ,Error: External");
if (info->mcc)
prfunc(" ,MC: Corrected");
if (info->tv)
prfunc(" ,Target Address: 0x%lx", targ_addr);
if (info->rq)
prfunc(" ,Requestor Address: 0x%lx", req_addr);
if (info->tv)
prfunc(" ,Responder Address: 0x%lx", resp_addr);
prfunc("\n");
}
/*
* ia64_log_mem_dev_err_info_print
*
* Format and log the platform memory device error record section data.
*
* Inputs: mem_dev_err_info * (Ptr to memory device error record section
* returned by SAL)
* prfunc (fn ptr of print function to be used for output)
* Outputs: None
*/
void
ia64_log_mem_dev_err_info_print (sal_log_mem_dev_err_info_t *mdei,
prfunc_t prfunc)
{
prfunc("+ Mem Error Detail: ");
if (mdei->valid.error_status)
prfunc(" Error Status: %#lx,", mdei->error_status);
if (mdei->valid.physical_addr)
prfunc(" Physical Address: %#lx,", mdei->physical_addr);
if (mdei->valid.addr_mask)
prfunc(" Address Mask: %#lx,", mdei->addr_mask);
if (mdei->valid.node)
prfunc(" Node: %d,", mdei->node);
if (mdei->valid.card)
prfunc(" Card: %d,", mdei->card);
if (mdei->valid.module)
prfunc(" Module: %d,", mdei->module);
if (mdei->valid.bank)
prfunc(" Bank: %d,", mdei->bank);
if (mdei->valid.device)
prfunc(" Device: %d,", mdei->device);
if (mdei->valid.row)
prfunc(" Row: %d,", mdei->row);
if (mdei->valid.column)
prfunc(" Column: %d,", mdei->column);
if (mdei->valid.bit_position)
prfunc(" Bit Position: %d,", mdei->bit_position);
if (mdei->valid.target_id)
prfunc(" ,Target Address: %#lx,", mdei->target_id);
if (mdei->valid.requestor_id)
prfunc(" ,Requestor Address: %#lx,", mdei->requestor_id);
if (mdei->valid.responder_id)
prfunc(" ,Responder Address: %#lx,", mdei->responder_id);
if (mdei->valid.bus_spec_data)
prfunc(" Bus Specific Data: %#lx,", mdei->bus_spec_data);
prfunc("\n");
if (mdei->valid.oem_id) {
u8 *p_data = &(mdei->oem_id[0]);
int i;
prfunc(" OEM Memory Controller ID:");
for (i = 0; i < 16; i++, p_data++)
prfunc(" %02x", *p_data);
prfunc("\n");
}
if (mdei->valid.oem_data) {
platform_mem_dev_err_print((int)mdei->header.len,
(int)sizeof(sal_log_mem_dev_err_info_t) - 1,
&(mdei->oem_data[0]), prfunc);
}
}
/*
* ia64_log_sel_dev_err_info_print
*
* Format and log the platform SEL device error record section data.
*
* Inputs: sel_dev_err_info * (Ptr to the SEL device error record section
* returned by SAL)
* prfunc (fn ptr of print function to be used for output)
* Outputs: None
*/
void
ia64_log_sel_dev_err_info_print (sal_log_sel_dev_err_info_t *sdei,
prfunc_t prfunc)
{
int i;
prfunc("+ SEL Device Error Detail: ");
if (sdei->valid.record_id)
prfunc(" Record ID: %#x", sdei->record_id);
if (sdei->valid.record_type)
prfunc(" Record Type: %#x", sdei->record_type);
prfunc(" Time Stamp: ");
for (i = 0; i < 4; i++)
prfunc("%1d", sdei->timestamp[i]);
if (sdei->valid.generator_id)
prfunc(" Generator ID: %#x", sdei->generator_id);
if (sdei->valid.evm_rev)
prfunc(" Message Format Version: %#x", sdei->evm_rev);
if (sdei->valid.sensor_type)
prfunc(" Sensor Type: %#x", sdei->sensor_type);
if (sdei->valid.sensor_num)
prfunc(" Sensor Number: %#x", sdei->sensor_num);
if (sdei->valid.event_dir)
prfunc(" Event Direction Type: %#x", sdei->event_dir);
if (sdei->valid.event_data1)
prfunc(" Data1: %#x", sdei->event_data1);
if (sdei->valid.event_data2)
prfunc(" Data2: %#x", sdei->event_data2);
if (sdei->valid.event_data3)
prfunc(" Data3: %#x", sdei->event_data3);
prfunc("\n");
}
/*
* ia64_log_pci_bus_err_info_print
*
* Format and log the platform PCI bus error record section data.
*
* Inputs: pci_bus_err_info * (Ptr to the PCI bus error record section
* returned by SAL)
* prfunc (fn ptr of print function to be used for output)
* Outputs: None
*/
void
ia64_log_pci_bus_err_info_print (sal_log_pci_bus_err_info_t *pbei,
prfunc_t prfunc)
{
prfunc("+ PCI Bus Error Detail: ");
if (pbei->valid.err_status)
prfunc(" Error Status: %#lx", pbei->err_status);
if (pbei->valid.err_type)
prfunc(" Error Type: %#x", pbei->err_type);
if (pbei->valid.bus_id)
prfunc(" Bus ID: %#x", pbei->bus_id);
if (pbei->valid.bus_address)
prfunc(" Bus Address: %#lx", pbei->bus_address);
if (pbei->valid.bus_data)
prfunc(" Bus Data: %#lx", pbei->bus_data);
if (pbei->valid.bus_cmd)
prfunc(" Bus Command: %#lx", pbei->bus_cmd);
if (pbei->valid.requestor_id)
prfunc(" Requestor ID: %#lx", pbei->requestor_id);
if (pbei->valid.responder_id)
prfunc(" Responder ID: %#lx", pbei->responder_id);
if (pbei->valid.target_id)
prfunc(" Target ID: %#lx", pbei->target_id);
if (pbei->valid.oem_data)
prfunc("\n");
if (pbei->valid.oem_data) {
platform_pci_bus_err_print((int)pbei->header.len,
(int)sizeof(sal_log_pci_bus_err_info_t) - 1,
&(pbei->oem_data[0]), prfunc);
}
}
/*
* ia64_log_smbios_dev_err_info_print
*
* Format and log the platform SMBIOS device error record section data.
*
* Inputs: smbios_dev_err_info * (Ptr to the SMBIOS device error record
* section returned by SAL)
* prfunc (fn ptr of print function to be used for output)
* Outputs: None
*/
void
ia64_log_smbios_dev_err_info_print (sal_log_smbios_dev_err_info_t *sdei,
prfunc_t prfunc)
{
u8 i;
prfunc("+ SMBIOS Device Error Detail: ");
if (sdei->valid.event_type)
prfunc(" Event Type: %#x", sdei->event_type);
if (sdei->valid.time_stamp) {
prfunc(" Time Stamp: ");
for (i = 0; i < 6; i++)
prfunc("%d", sdei->time_stamp[i]);
}
if ((sdei->valid.data) && (sdei->valid.length)) {
prfunc(" Data: ");
for (i = 0; i < sdei->length; i++)
prfunc(" %02x", sdei->data[i]);
}
prfunc("\n");
}
/*
* ia64_log_pci_comp_err_info_print
*
* Format and log the platform PCI component error record section data.
*
* Inputs: pci_comp_err_info * (Ptr to the PCI component error record section
* returned by SAL)
* prfunc (fn ptr of print function to be used for output)
* Outputs: None
*/
void
ia64_log_pci_comp_err_info_print(sal_log_pci_comp_err_info_t *pcei,
prfunc_t prfunc)
{
u32 n_mem_regs, n_io_regs;
u64 i, n_pci_data;
u64 *p_reg_data;
u8 *p_oem_data;
prfunc("+ PCI Component Error Detail: ");
if (pcei->valid.err_status)
prfunc(" Error Status: %#lx\n", pcei->err_status);
if (pcei->valid.comp_info)
prfunc(" Component Info: Vendor Id = %#x, Device Id = %#x,"
" Class Code = %#x, Seg/Bus/Dev/Func = %d/%d/%d/%d\n",
pcei->comp_info.vendor_id, pcei->comp_info.device_id,
pcei->comp_info.class_code, pcei->comp_info.seg_num,
pcei->comp_info.bus_num, pcei->comp_info.dev_num,
pcei->comp_info.func_num);
n_mem_regs = (pcei->valid.num_mem_regs) ? pcei->num_mem_regs : 0;
n_io_regs = (pcei->valid.num_io_regs) ? pcei->num_io_regs : 0;
p_reg_data = &(pcei->reg_data_pairs[0]);
p_oem_data = (u8 *)p_reg_data +
(n_mem_regs + n_io_regs) * 2 * sizeof(u64);
n_pci_data = p_oem_data - (u8 *)pcei;
if (n_pci_data > pcei->header.len) {
prfunc(" Invalid PCI Component Error Record format: length = %ld, "
" Size PCI Data = %d, Num Mem-Map/IO-Map Regs = %ld/%ld\n",
pcei->header.len, n_pci_data, n_mem_regs, n_io_regs);
return;
}
if (n_mem_regs) {
prfunc(" Memory Mapped Registers\n Address \tValue\n");
for (i = 0; i < pcei->num_mem_regs; i++) {
prfunc(" %#lx %#lx\n", p_reg_data[0], p_reg_data[1]);
p_reg_data += 2;
}
}
if (n_io_regs) {
prfunc(" I/O Mapped Registers\n Address \tValue\n");
for (i = 0; i < pcei->num_io_regs; i++) {
prfunc(" %#lx %#lx\n", p_reg_data[0], p_reg_data[1]);
p_reg_data += 2;
}
}
if (pcei->valid.oem_data) {
platform_pci_comp_err_print((int)pcei->header.len, n_pci_data,
p_oem_data, prfunc);
prfunc("\n");
}
}
/*
* ia64_log_plat_specific_err_info_print
*
* Format and log the platform specifie error record section data.
*
* Inputs: sel_dev_err_info * (Ptr to the platform specific error record
* section returned by SAL)
* prfunc (fn ptr of print function to be used for output)
* Outputs: None
*/
void
ia64_log_plat_specific_err_info_print (sal_log_plat_specific_err_info_t *psei,
prfunc_t prfunc)
{
prfunc("+ Platform Specific Error Detail: ");
if (psei->valid.err_status)
prfunc(" Error Status: %#lx", psei->err_status);
if (psei->valid.guid) {
prfunc(" GUID: ");
ia64_log_prt_guid(&psei->guid, prfunc);
}
if (psei->valid.oem_data) {
platform_plat_specific_err_print((int) psei->header.len,
(char *) psei->oem_data - (char *) psei,
&psei->oem_data[0], prfunc);
}
prfunc("\n");
}
/*
* ia64_log_host_ctlr_err_info_print
*
* Format and log the platform host controller error record section data.
*
* Inputs: host_ctlr_err_info * (Ptr to the host controller error record
* section returned by SAL)
* prfunc (fn ptr of print function to be used for output)
* Outputs: None
*/
void
ia64_log_host_ctlr_err_info_print (sal_log_host_ctlr_err_info_t *hcei,
prfunc_t prfunc)
{
prfunc("+ Host Controller Error Detail: ");
if (hcei->valid.err_status)
prfunc(" Error Status: %#lx", hcei->err_status);
if (hcei->valid.requestor_id)
prfunc(" Requestor ID: %#lx", hcei->requestor_id);
if (hcei->valid.responder_id)
prfunc(" Responder ID: %#lx", hcei->responder_id);
if (hcei->valid.target_id)
prfunc(" Target ID: %#lx", hcei->target_id);
if (hcei->valid.bus_spec_data)
prfunc(" Bus Specific Data: %#lx", hcei->bus_spec_data);
if (hcei->valid.oem_data) {
platform_host_ctlr_err_print((int)hcei->header.len,
(int)sizeof(sal_log_host_ctlr_err_info_t) - 1,
&(hcei->oem_data[0]), prfunc);
}
prfunc("\n");
}
/*
* ia64_log_plat_bus_err_info_print
*
* Format and log the platform bus error record section data.
*
* Inputs: plat_bus_err_info * (Ptr to the platform bus error record section
* returned by SAL)
* prfunc (fn ptr of print function to be used for output)
* Outputs: None
*/
void
ia64_log_plat_bus_err_info_print (sal_log_plat_bus_err_info_t *pbei,
prfunc_t prfunc)
{
prfunc("+ Platform Bus Error Detail: ");
if (pbei->valid.err_status)
prfunc(" Error Status: %#lx", pbei->err_status);
if (pbei->valid.requestor_id)
prfunc(" Requestor ID: %#lx", pbei->requestor_id);
if (pbei->valid.responder_id)
prfunc(" Responder ID: %#lx", pbei->responder_id);
if (pbei->valid.target_id)
prfunc(" Target ID: %#lx", pbei->target_id);
if (pbei->valid.bus_spec_data)
prfunc(" Bus Specific Data: %#lx", pbei->bus_spec_data);
if (pbei->valid.oem_data) {
platform_plat_bus_err_print((int)pbei->header.len,
(int)sizeof(sal_log_plat_bus_err_info_t) - 1,
&(pbei->oem_data[0]), prfunc);
}
prfunc("\n");
}
/*
* ia64_log_proc_dev_err_info_print
*
* Display the processor device error record.
*
* Inputs: sal_log_processor_info_t * (Ptr to processor device error record
* section body).
* prfunc (fn ptr of print function to be used
* for output).
* Outputs: None
*/
void
ia64_log_proc_dev_err_info_print (sal_log_processor_info_t *slpi,
prfunc_t prfunc)
{
#ifdef MCA_PRT_XTRA_DATA
size_t d_len = slpi->header.len - sizeof(sal_log_section_hdr_t);
#endif
sal_processor_static_info_t *spsi;
int i;
sal_log_mod_error_info_t *p_data;
prfunc("+Processor Device Error Info Section\n");
#ifdef MCA_PRT_XTRA_DATA // for test only @FVL
{
char *p_data = (char *)&slpi->valid;
prfunc("SAL_PROC_DEV_ERR SECTION DATA: Data buffer = %p, "
"Data size = %ld\n", (void *)p_data, d_len);
ia64_log_hexdump(p_data, d_len, prfunc);
prfunc("End of SAL_PROC_DEV_ERR SECTION DATA\n");
}
#endif // MCA_PRT_XTRA_DATA for test only @FVL
if (slpi->valid.proc_error_map)
prfunc(" Processor Error Map: %#lx\n", slpi->proc_error_map);
if (slpi->valid.proc_state_param)
prfunc(" Processor State Param: %#lx\n", slpi->proc_state_parameter);
if (slpi->valid.proc_cr_lid)
prfunc(" Processor LID: %#lx\n", slpi->proc_cr_lid);
/*
* Note: March 2001 SAL spec states that if the number of elements in any
* of the MOD_ERROR_INFO_STRUCT arrays is zero, the entire array is
* absent. Also, current implementations only allocate space for number of
* elements used. So we walk the data pointer from here on.
*/
p_data = &slpi->info[0];
/* Print the cache check information if any*/
for (i = 0 ; i < slpi->valid.num_cache_check; i++, p_data++)
ia64_log_cache_check_info_print(i, p_data, prfunc);
/* Print the tlb check information if any*/
for (i = 0 ; i < slpi->valid.num_tlb_check; i++, p_data++)
ia64_log_tlb_check_info_print(i, p_data, prfunc);
/* Print the bus check information if any*/
for (i = 0 ; i < slpi->valid.num_bus_check; i++, p_data++)
ia64_log_bus_check_info_print(i, p_data, prfunc);
/* Print the reg file check information if any*/
for (i = 0 ; i < slpi->valid.num_reg_file_check; i++, p_data++)
ia64_log_hexdump((u8 *)p_data, sizeof(sal_log_mod_error_info_t),
prfunc); /* Just hex dump for now */
/* Print the ms check information if any*/
for (i = 0 ; i < slpi->valid.num_ms_check; i++, p_data++)
ia64_log_hexdump((u8 *)p_data, sizeof(sal_log_mod_error_info_t),
prfunc); /* Just hex dump for now */
/* Print CPUID registers if any*/
if (slpi->valid.cpuid_info) {
u64 *p = (u64 *)p_data;
prfunc(" CPUID Regs: %#lx %#lx %#lx %#lx\n", p[0], p[1], p[2], p[3]);
p_data++;
}
/* Print processor static info if any */
if (slpi->valid.psi_static_struct) {
spsi = (sal_processor_static_info_t *)p_data;
/* Print branch register contents if valid */
if (spsi->valid.br)
ia64_log_processor_regs_print(spsi->br, 8, "Branch", "br",
prfunc);
/* Print control register contents if valid */
if (spsi->valid.cr)
ia64_log_processor_regs_print(spsi->cr, 128, "Control", "cr",
prfunc);
/* Print application register contents if valid */
if (spsi->valid.ar)
ia64_log_processor_regs_print(spsi->ar, 128, "Application",
"ar", prfunc);
/* Print region register contents if valid */
if (spsi->valid.rr)
ia64_log_processor_regs_print(spsi->rr, 8, "Region", "rr",
prfunc);
/* Print floating-point register contents if valid */
if (spsi->valid.fr)
ia64_log_processor_fp_regs_print(spsi->fr, 128, "Floating-point", "fr",
prfunc);
}
}
/*
* ia64_log_processor_info_print
*
* Display the processor-specific information logged by PAL as a part
* of MCA or INIT or CMC.
*
* Inputs : lh (Pointer of the sal log header which specifies the
* format of SAL state info as specified by the SAL spec).
* prfunc (fn ptr of print function to be used for output).
* Outputs : None
*/
void
ia64_log_processor_info_print(sal_log_record_header_t *lh, prfunc_t prfunc)
{
sal_log_section_hdr_t *slsh;
int n_sects;
u32 ercd_pos;
if (!lh)
return;
#ifdef MCA_PRT_XTRA_DATA // for test only @FVL
ia64_log_prt_record_header(lh, prfunc);
#endif // MCA_PRT_XTRA_DATA for test only @FVL
if ((ercd_pos = sizeof(sal_log_record_header_t)) >= lh->len) {
IA64_MCA_DEBUG("ia64_mca_log_print: "
"truncated SAL CMC error record. len = %d\n",
lh->len);
return;
}
/* Print record header info */
ia64_log_rec_header_print(lh, prfunc);
for (n_sects = 0; (ercd_pos < lh->len); n_sects++, ercd_pos += slsh->len) {
/* point to next section header */
slsh = (sal_log_section_hdr_t *)((char *)lh + ercd_pos);
#ifdef MCA_PRT_XTRA_DATA // for test only @FVL
ia64_log_prt_section_header(slsh, prfunc);
#endif // MCA_PRT_XTRA_DATA for test only @FVL
if (verify_guid(&slsh->guid, &(SAL_PROC_DEV_ERR_SECT_GUID))) {
IA64_MCA_DEBUG("ia64_mca_log_print: unsupported record section\n");
continue;
}
/*
* Now process processor device error record section
*/
ia64_log_proc_dev_err_info_print((sal_log_processor_info_t *)slsh, printk);
}
IA64_MCA_DEBUG("ia64_mca_log_print: "
"found %d sections in SAL CMC error record. len = %d\n",
n_sects, lh->len);
if (!n_sects) {
prfunc("No Processor Device Error Info Section found\n");
return;
}
}
/*
* ia64_log_platform_info_print
*
* Format and Log the SAL Platform Error Record.
*
* Inputs : lh (Pointer to the sal error record header with format
* specified by the SAL spec).
* prfunc (fn ptr of log output function to use)
* Outputs : platform error status
*/
int
ia64_log_platform_info_print (sal_log_record_header_t *lh, prfunc_t prfunc)
{
sal_log_section_hdr_t *slsh;
int n_sects;
u32 ercd_pos;
int platform_err = 0;
if (!lh)
return platform_err;
#ifdef MCA_PRT_XTRA_DATA // for test only @FVL
ia64_log_prt_record_header(lh, prfunc);
#endif // MCA_PRT_XTRA_DATA for test only @FVL
if ((ercd_pos = sizeof(sal_log_record_header_t)) >= lh->len) {
IA64_MCA_DEBUG("ia64_mca_log_print: "
"truncated SAL error record. len = %d\n",
lh->len);
return platform_err;
}
/* Print record header info */
ia64_log_rec_header_print(lh, prfunc);
for (n_sects = 0; (ercd_pos < lh->len); n_sects++, ercd_pos += slsh->len) {
/* point to next section header */
slsh = (sal_log_section_hdr_t *)((char *)lh + ercd_pos);
#ifdef MCA_PRT_XTRA_DATA // for test only @FVL
ia64_log_prt_section_header(slsh, prfunc);
if (efi_guidcmp(slsh->guid, SAL_PROC_DEV_ERR_SECT_GUID) != 0) {
size_t d_len = slsh->len - sizeof(sal_log_section_hdr_t);
char *p_data = (char *)&((sal_log_mem_dev_err_info_t *)slsh)->valid;
prfunc("Start of Platform Err Data Section: Data buffer = %p, "
"Data size = %ld\n", (void *)p_data, d_len);
ia64_log_hexdump(p_data, d_len, prfunc);
prfunc("End of Platform Err Data Section\n");
}
#endif // MCA_PRT_XTRA_DATA for test only @FVL
/*
* Now process CPE error record section
*/
if (efi_guidcmp(slsh->guid, SAL_PROC_DEV_ERR_SECT_GUID) == 0) {
ia64_log_proc_dev_err_info_print((sal_log_processor_info_t *)slsh,
prfunc);
} else if (efi_guidcmp(slsh->guid, SAL_PLAT_MEM_DEV_ERR_SECT_GUID) == 0) {
platform_err = 1;
prfunc("+Platform Memory Device Error Info Section\n");
ia64_log_mem_dev_err_info_print((sal_log_mem_dev_err_info_t *)slsh,
prfunc);
} else if (efi_guidcmp(slsh->guid, SAL_PLAT_SEL_DEV_ERR_SECT_GUID) == 0) {
platform_err = 1;
prfunc("+Platform SEL Device Error Info Section\n");
ia64_log_sel_dev_err_info_print((sal_log_sel_dev_err_info_t *)slsh,
prfunc);
} else if (efi_guidcmp(slsh->guid, SAL_PLAT_PCI_BUS_ERR_SECT_GUID) == 0) {
platform_err = 1;
prfunc("+Platform PCI Bus Error Info Section\n");
ia64_log_pci_bus_err_info_print((sal_log_pci_bus_err_info_t *)slsh,
prfunc);
} else if (efi_guidcmp(slsh->guid, SAL_PLAT_SMBIOS_DEV_ERR_SECT_GUID) == 0) {
platform_err = 1;
prfunc("+Platform SMBIOS Device Error Info Section\n");
ia64_log_smbios_dev_err_info_print((sal_log_smbios_dev_err_info_t *)slsh,
prfunc);
} else if (efi_guidcmp(slsh->guid, SAL_PLAT_PCI_COMP_ERR_SECT_GUID) == 0) {
platform_err = 1;
prfunc("+Platform PCI Component Error Info Section\n");
ia64_log_pci_comp_err_info_print((sal_log_pci_comp_err_info_t *)slsh,
prfunc);
} else if (efi_guidcmp(slsh->guid, SAL_PLAT_SPECIFIC_ERR_SECT_GUID) == 0) {
platform_err = 1;
prfunc("+Platform Specific Error Info Section\n");
ia64_log_plat_specific_err_info_print((sal_log_plat_specific_err_info_t *)
slsh,
prfunc);
} else if (efi_guidcmp(slsh->guid, SAL_PLAT_HOST_CTLR_ERR_SECT_GUID) == 0) {
platform_err = 1;
prfunc("+Platform Host Controller Error Info Section\n");
ia64_log_host_ctlr_err_info_print((sal_log_host_ctlr_err_info_t *)slsh,
prfunc);
} else if (efi_guidcmp(slsh->guid, SAL_PLAT_BUS_ERR_SECT_GUID) == 0) {
platform_err = 1;
prfunc("+Platform Bus Error Info Section\n");
ia64_log_plat_bus_err_info_print((sal_log_plat_bus_err_info_t *)slsh,
prfunc);
} else {
IA64_MCA_DEBUG("ia64_mca_log_print: unsupported record section\n");
continue;
}
}
IA64_MCA_DEBUG("ia64_mca_log_print: found %d sections in SAL error record. len = %d\n",
n_sects, lh->len);
if (!n_sects) {
prfunc("No Platform Error Info Sections found\n");
return platform_err;
}
return platform_err;
}
/*
* ia64_log_print
*
* Displays the contents of the OS error log information
*
* Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
* prfunc (fn ptr of log output function to use)
* Outputs : platform error status
*/
int
ia64_log_print(int sal_info_type, prfunc_t prfunc)
{
int platform_err = 0;
switch(sal_info_type) {
case SAL_INFO_TYPE_MCA:
prfunc("+CPU %d: SAL log contains MCA error record\n", smp_processor_id());
ia64_log_rec_header_print(IA64_LOG_CURR_BUFFER(sal_info_type), prfunc);
break;
case SAL_INFO_TYPE_INIT:
prfunc("+CPU %d: SAL log contains INIT error record\n", smp_processor_id());
ia64_log_rec_header_print(IA64_LOG_CURR_BUFFER(sal_info_type), prfunc);
break;
case SAL_INFO_TYPE_CMC:
prfunc("+BEGIN HARDWARE ERROR STATE AT CMC\n");
ia64_log_processor_info_print(IA64_LOG_CURR_BUFFER(sal_info_type), prfunc);
prfunc("+END HARDWARE ERROR STATE AT CMC\n");
break;
case SAL_INFO_TYPE_CPE:
prfunc("+BEGIN HARDWARE ERROR STATE AT CPE\n");
ia64_log_platform_info_print(IA64_LOG_CURR_BUFFER(sal_info_type), prfunc);
prfunc("+END HARDWARE ERROR STATE AT CPE\n");
break;
default:
prfunc("+MCA UNKNOWN ERROR LOG (UNIMPLEMENTED)\n");
break;
}
return platform_err;
}
static int __init
ia64_mca_disable_cpe_polling(char *str)
{
cpe_poll_enabled = 0;
return 1;
}
__setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);