/*
* linux/arch/arm/mm/consistent.c
*
* Copyright (C) 2000-2002 Russell King
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* DMA uncached mapping support.
*/
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/interrupt.h>
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <asm/io.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/tlbflush.h>
#define CONSISTENT_BASE (0xffc00000)
#define CONSISTENT_END (0xffe00000)
#define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
/*
* This is the page table (2MB) covering uncached, DMA consistent allocations
*/
static pte_t *consistent_pte;
static spinlock_t consistent_lock = SPIN_LOCK_UNLOCKED;
/*
* VM region handling support.
*
* This should become something generic, handling VM region allocations for
* vmalloc and similar (ioremap, module space, etc).
*
* I envisage vmalloc()'s supporting vm_struct becoming:
*
* struct vm_struct {
* struct vm_region region;
* unsigned long flags;
* struct page **pages;
* unsigned int nr_pages;
* unsigned long phys_addr;
* };
*
* get_vm_area() would then call vm_region_alloc with an appropriate
* struct vm_region head (eg):
*
* struct vm_region vmalloc_head = {
* .vm_list = LIST_HEAD_INIT(vmalloc_head.vm_list),
* .vm_start = VMALLOC_START,
* .vm_end = VMALLOC_END,
* };
*
* However, vmalloc_head.vm_start is variable (typically, it is dependent on
* the amount of RAM found at boot time.) I would imagine that get_vm_area()
* would have to initialise this each time prior to calling vm_region_alloc().
*/
struct vm_region {
struct list_head vm_list;
unsigned long vm_start;
unsigned long vm_end;
};
static struct vm_region consistent_head = {
.vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
.vm_start = CONSISTENT_BASE,
.vm_end = CONSISTENT_END,
};
#if 0
static void vm_region_dump(struct vm_region *head, char *fn)
{
struct vm_region *c;
printk("Consistent Allocation Map (%s):\n", fn);
list_for_each_entry(c, &head->vm_list, vm_list) {
printk(" %p: %08lx - %08lx (0x%08x)\n", c,
c->vm_start, c->vm_end, c->vm_end - c->vm_start);
}
}
#else
#define vm_region_dump(head,fn) do { } while(0)
#endif
static int vm_region_alloc(struct vm_region *head, struct vm_region *new, size_t size)
{
unsigned long addr = head->vm_start, end = head->vm_end - size;
struct vm_region *c;
list_for_each_entry(c, &head->vm_list, vm_list) {
if ((addr + size) < addr)
goto out;
if ((addr + size) <= c->vm_start)
goto found;
addr = c->vm_end;
if (addr > end)
goto out;
}
found:
/*
* Insert this entry _before_ the one we found.
*/
list_add_tail(&new->vm_list, &c->vm_list);
new->vm_start = addr;
new->vm_end = addr + size;
return 0;
out:
return -ENOMEM;
}
static struct vm_region *vm_region_find(struct vm_region *head, unsigned long addr)
{
struct vm_region *c;
list_for_each_entry(c, &head->vm_list, vm_list) {
if (c->vm_start == addr)
goto out;
}
c = NULL;
out:
return c;
}
/*
* This allocates one page of cache-coherent memory space and returns
* both the virtual and a "dma" address to that space.
*/
void *consistent_alloc(int gfp, size_t size, dma_addr_t *handle,
unsigned long cache_flags)
{
struct page *page;
struct vm_region *c;
unsigned long order, flags;
void *ret = NULL;
int res;
if (!consistent_pte) {
printk(KERN_ERR "consistent_alloc: not initialised\n");
dump_stack();
return NULL;
}
size = PAGE_ALIGN(size);
order = get_order(size);
page = alloc_pages(gfp, order);
if (!page)
goto no_page;
/*
* Invalidate any data that might be lurking in the
* kernel direct-mapped region for device DMA.
*/
{
unsigned long kaddr = (unsigned long)page_address(page);
dmac_inv_range(kaddr, kaddr + size);
}
/*
* Our housekeeping doesn't need to come from DMA,
* but it must not come from highmem.
*/
c = kmalloc(sizeof(struct vm_region),
gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
if (!c)
goto no_remap;
/*
* Attempt to allocate a virtual address in the
* consistent mapping region.
*/
spin_lock_irqsave(&consistent_lock, flags);
vm_region_dump(&consistent_head, "before alloc");
res = vm_region_alloc(&consistent_head, c, size);
vm_region_dump(&consistent_head, "after alloc");
spin_unlock_irqrestore(&consistent_lock, flags);
if (!res) {
pte_t *pte = consistent_pte + CONSISTENT_OFFSET(c->vm_start);
struct page *end = page + (1 << order);
pgprot_t prot = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
L_PTE_DIRTY | L_PTE_WRITE |
cache_flags);
/*
* Set the "dma handle"
*/
*handle = page_to_bus(page);
do {
BUG_ON(!pte_none(*pte));
set_page_count(page, 1);
SetPageReserved(page);
set_pte(pte, mk_pte(page, prot));
page++;
pte++;
} while (size -= PAGE_SIZE);
/*
* Free the otherwise unused pages.
*/
while (page < end) {
set_page_count(page, 1);
__free_page(page);
page++;
}
ret = (void *)c->vm_start;
}
no_remap:
if (ret == NULL) {
kfree(c);
__free_pages(page, order);
}
no_page:
return ret;
}
/*
* Since we have the DMA mask available to us here, we could try to do
* a normal allocation, and only fall back to a "DMA" allocation if the
* resulting bus address does not satisfy the dma_mask requirements.
*/
void *
dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, int gfp)
{
if (dev == NULL || *dev->dma_mask != 0xffffffff)
gfp |= GFP_DMA;
return consistent_alloc(gfp, size, handle, 0);
}
EXPORT_SYMBOL(dma_alloc_coherent);
/*
* free a page as defined by the above mapping.
*/
void consistent_free(void *vaddr, size_t size, dma_addr_t handle)
{
struct vm_region *c;
unsigned long flags;
pte_t *ptep;
size = PAGE_ALIGN(size);
spin_lock_irqsave(&consistent_lock, flags);
vm_region_dump(&consistent_head, "before free");
c = vm_region_find(&consistent_head, (unsigned long)vaddr);
if (!c)
goto no_area;
if ((c->vm_end - c->vm_start) != size) {
printk(KERN_ERR "consistent_free: wrong size (%ld != %d)\n",
c->vm_end - c->vm_start, size);
dump_stack();
size = c->vm_end - c->vm_start;
}
ptep = consistent_pte + CONSISTENT_OFFSET(c->vm_start);
do {
pte_t pte = ptep_get_and_clear(ptep);
unsigned long pfn;
ptep++;
if (!pte_none(pte) && pte_present(pte)) {
pfn = pte_pfn(pte);
if (pfn_valid(pfn)) {
struct page *page = pfn_to_page(pfn);
ClearPageReserved(page);
__free_page(page);
continue;
}
}
printk(KERN_CRIT "consistent_free: bad page in kernel page "
"table\n");
} while (size -= PAGE_SIZE);
flush_tlb_kernel_range(c->vm_start, c->vm_end);
list_del(&c->vm_list);
vm_region_dump(&consistent_head, "after free");
spin_unlock_irqrestore(&consistent_lock, flags);
kfree(c);
return;
no_area:
spin_unlock_irqrestore(&consistent_lock, flags);
printk(KERN_ERR "consistent_free: trying to free "
"invalid area: %p\n", vaddr);
dump_stack();
}
/*
* Initialise the consistent memory allocation.
*/
static int __init consistent_init(void)
{
pgd_t *pgd;
pmd_t *pmd;
pte_t *pte;
int ret = 0;
spin_lock(&init_mm.page_table_lock);
do {
pgd = pgd_offset(&init_mm, CONSISTENT_BASE);
pmd = pmd_alloc(&init_mm, pgd, CONSISTENT_BASE);
if (!pmd) {
printk(KERN_ERR "consistent_init: no pmd tables\n");
ret = -ENOMEM;
break;
}
WARN_ON(!pmd_none(*pmd));
pte = pte_alloc_kernel(&init_mm, pmd, CONSISTENT_BASE);
if (!pte) {
printk(KERN_ERR "consistent_init: no pte tables\n");
ret = -ENOMEM;
break;
}
consistent_pte = pte;
} while (0);
spin_unlock(&init_mm.page_table_lock);
return ret;
}
core_initcall(consistent_init);
/*
* Make an area consistent for devices.
*/
void consistent_sync(void *vaddr, size_t size, int direction)
{
unsigned long start = (unsigned long)vaddr;
unsigned long end = start + size;
switch (direction) {
case DMA_FROM_DEVICE: /* invalidate only */
dmac_inv_range(start, end);
break;
case DMA_TO_DEVICE: /* writeback only */
dmac_clean_range(start, end);
break;
case DMA_BIDIRECTIONAL: /* writeback and invalidate */
dmac_flush_range(start, end);
break;
default:
BUG();
}
}