/*
* linux/arch/arm/mach-sa1100/stork.c
*
* Copyright (C) 2001 Ken Gordon
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/tty.h>
#include <linux/delay.h>
#include <asm/hardware.h>
#include <asm/setup.h>
#include <asm/keyboard.h>
#include <asm/mach/arch.h>
#include <asm/mach/map.h>
#include <asm/mach/serial_sa1100.h>
#include <linux/serial_core.h>
#include "generic.h"
#define STORK_VM_BASE_CS1 0xf0000000 /* where we get mapped (virtual) */
#define STORK_VM_OFF_CS1 0x08000000 /* where we started mapping (physical) */
#define STORK_VM_ADJUST_CS1 (STORK_VM_BASE_CS1-STORK_VM_OFF_CS1) /* add to the phys to get virt */
#define STORK_VM_BASE_CS2 0xf1000000 /* where we get mapped (virtual) */
#define STORK_VM_OFF_CS2 0x10000000 /* where we started mapping (physical) */
#define STORK_VM_ADJUST_CS2 (STORK_VM_BASE_CS2-STORK_VM_OFF_CS2) /* add to the phys to get virt */
static int debug = 0;
static int storkLatchA = 0;
static int storkLatchB = 0;
static int storkLCDCPLD[4] = { 0, 0, 0, 0};
int
storkSetLatchA(int bits)
{
int ret = storkLatchA;
volatile unsigned int *latch = (unsigned int *)(STORK_LATCH_A_ADDR+STORK_VM_ADJUST_CS1);
storkLatchA |= bits;
*latch = storkLatchA;
return ret;
}
int
storkClearLatchA(int bits)
{
int ret = storkLatchA;
volatile unsigned int *latch = (unsigned int *)(STORK_LATCH_A_ADDR+STORK_VM_ADJUST_CS1);
storkLatchA &= ~bits;
*latch = storkLatchA;
return ret;
}
int
storkSetLCDCPLD(int which, int bits)
{
int ret = storkLCDCPLD[which];
volatile unsigned int *latch = (unsigned int *)(STORK_LCDCPLD_BASE_ADDR+STORK_VM_ADJUST_CS2 + 0x20*which);
storkLCDCPLD[which] |= bits;
*latch = storkLCDCPLD[which];
return ret;
}
/* NB we don't shadow these 'cos there is no relation between the data written and the data read */
/* ie the read registers are read only and the write registers write only */
int
storkGetLCDCPLD(int which)
{
volatile unsigned int *latch = (unsigned int *)(STORK_LCDCPLD_BASE_ADDR+STORK_VM_ADJUST_CS2 + 0x20*which);
return *latch;
}
int
storkClearLCDCPLD(int which, int bits)
{
int ret = storkLCDCPLD[which];
volatile unsigned int *latch = (unsigned int *)(STORK_LCDCPLD_BASE_ADDR+STORK_VM_ADJUST_CS2 + 0x20*which);
storkLCDCPLD[which] &= ~bits;
*latch = storkLCDCPLD[which];
return ret;
}
int
storkSetLatchB(int bits)
{
int ret = storkLatchB;
char buf[100];
volatile unsigned int *latch = (unsigned int *)(STORK_LATCH_B_ADDR+STORK_VM_ADJUST_CS1);
sprintf(buf, "%s: bits %04x\n", __FUNCTION__, bits);
if (debug) printk(buf);
storkLatchB |= bits;
*latch = storkLatchB;
return ret;
}
int
storkClearLatchB(int bits)
{
int ret = storkLatchB;
char buf[100];
volatile unsigned int *latch = (unsigned int *)(STORK_LATCH_B_ADDR+STORK_VM_ADJUST_CS1);
sprintf(buf, "%s: bits %04x\n", __FUNCTION__, bits);
if (debug) printk(buf);
storkLatchB &= ~bits;
*latch = storkLatchB;
return ret;
}
void
storkSetGPIO(int bits)
{
char buf[100];
sprintf(buf, "%s: bits %04x\n", __FUNCTION__, bits);
if (debug) printk(buf);
GPSR = bits;
}
void
storkClearGPIO(int bits)
{
char buf[100];
sprintf(buf, "%s: bits %04x\n", __FUNCTION__, bits);
if (debug) printk(buf);
GPCR = bits;
}
int
storkGetGPIO()
{
char buf[100];
int bits = GPLR;
sprintf(buf, "%s: bits %04x\n", __FUNCTION__, bits);
if (debug) printk(buf);
return bits;
}
/* this will return the current state of the hardware ANDED with the given bits
so NE => at least one bit was set, but maybe not all of them! */
int
storkTestGPIO(int bits)
{
int val = storkGetGPIO();
char buf[100];
sprintf(buf, "%s: bits %04x val %04x\n", __FUNCTION__, bits, val);
if (debug) printk(buf);
return (val & bits);
}
/* NB the touch screen and the d to a use the same data and clock out pins */
static void storkClockTS(void)
{
storkSetLatchB(STORK_TOUCH_SCREEN_DCLK);
udelay(10); /* hmm wait 200ns (min) - ok this ought to be udelay(1) but that doesn't get */
/* consistent values so I'm using 10 (urgh) */
storkClearLatchB(STORK_TOUCH_SCREEN_DCLK);
udelay(10);
}
int /* there is always a 12 bit read after the write! */
storkClockByteToTS(int byte)
{
int timeout = 10000; /* stuff is meant to happen in 60ns */
int bit;
int result = 0;
if (debug) printk("storkClockByteToTS: %02x\n", byte);
storkClearLatchB(STORK_TOUCH_SCREEN_CS); /* slect touch screen */
while (timeout-- > 0)
if (storkTestGPIO(GPIO_STORK_TOUCH_SCREEN_BUSY) == 0)
break;
if (timeout < 0) {
printk("storkClockBitToTS: GPIO_STORK_TOUCH_SCREEN_BUSY didn't go low!\n\r");
/* ignore error for now return; */
}
/* clock out the given byte */
for (bit = 0x80; bit > 0; bit = bit >> 1) {
if ((bit & byte) == 0)
storkClearLatchB(STORK_TOUCH_SCREEN_DIN);
else
storkSetLatchB(STORK_TOUCH_SCREEN_DIN);
storkClockTS();
}
storkClockTS(); /* will be busy for at a clock (at least) */
for (timeout = 10000; timeout >= 0; timeout--)
if (storkTestGPIO(GPIO_STORK_TOUCH_SCREEN_BUSY) == 0)
break;
if (timeout < 0) {
printk("storkClockBitToTS: 2nd GPIO_STORK_TOUCH_SCREEN_BUSY didn't go low!\n\r");
/* ignore error for now return; */
}
/* clock in the result */
for (bit = 0x0800; bit > 0; bit = bit >> 1) {
if (storkTestGPIO(GPIO_STORK_TOUCH_SCREEN_DATA))
result |= bit;
storkClockTS();
}
storkSetLatchB(STORK_TOUCH_SCREEN_CS); /* unselect touch screen */
return result;
}
void
storkClockShortToDtoA(int word)
{
int bit;
storkClearLatchB(STORK_DA_CS); /* select D to A */
/* clock out the given byte */
for (bit = 0x8000; bit > 0; bit = bit >> 1) {
if ((bit & word) == 0)
storkClearLatchB(STORK_TOUCH_SCREEN_DIN);
else
storkSetLatchB(STORK_TOUCH_SCREEN_DIN);
storkClockTS();
}
storkSetLatchB(STORK_DA_CS); /* unselect D to A */
/* set DTOA#_LOAD low then high (min 20ns) to transfer value to D to A */
storkClearLatchB(STORK_DA_LD);
storkSetLatchB(STORK_DA_LD);
}
void
storkInitTSandDtoA(void)
{
storkClearLatchB(STORK_TOUCH_SCREEN_DCLK | STORK_TOUCH_SCREEN_DIN);
storkSetLatchB(STORK_TOUCH_SCREEN_CS | STORK_DA_CS | STORK_DA_LD);
storkClockByteToTS(0xE2); /* turn on the reference */
storkClockShortToDtoA(0x8D00); /* turn on the contrast */
storkClockShortToDtoA(0x0A00); /* turn on the brightness */
}
static void stork_lcd_power(int on)
{
if (on) {
storkSetLCDCPLD(0, 1);
storkSetLatchA(STORK_LCD_BACKLIGHT_INVERTER_ON);
} else {
storkSetLCDCPLD(0, 0);
storkClearLatchA(STORK_LCD_BACKLIGHT_INVERTER_ON);
}
}
struct map_desc stork_io_desc[] __initdata = {
/* virtual physical length type */
{ STORK_VM_BASE_CS1, STORK_VM_OFF_CS1, 0x01000000, MT_DEVICE }, /* EGPIO 0 */
{ 0xf1000000, 0x10000000, 0x02800000, MT_DEVICE }, /* static memory bank 2 */
{ 0xf3800000, 0x40000000, 0x00800000, MT_DEVICE } /* static memory bank 4 */
};
int __init
stork_map_io(void)
{
sa1100_map_io();
iotable_init(stork_io_desc, ARRAY_SIZE(stork_io_desc));
sa1100_register_uart(0, 1); /* com port */
sa1100_register_uart(1, 2);
sa1100_register_uart(2, 3);
printk("Stork driver initing latches\r\n");
storkClearLatchB(STORK_RED_LED); /* let's have the red LED on please */
storkSetLatchB(STORK_YELLOW_LED);
storkSetLatchB(STORK_GREEN_LED);
storkSetLatchA(STORK_BATTERY_CHARGER_ON);
storkSetLatchA(STORK_LCD_5V_POWER_ON);
storkSetLatchA(STORK_LCD_3V3_POWER_ON);
storkInitTSandDtoA();
sa1100fb_lcd_power = stork_lcd_power;
return 0;
}
MACHINE_START(STORK, "Stork Technologies prototype")
BOOT_MEM(0xc0000000, 0x80000000, 0xf8000000)
BOOT_PARAMS(0xc0000100)
MAPIO(stork_map_io)
INITIRQ(sa1100_init_irq)
MACHINE_END
EXPORT_SYMBOL(storkTestGPIO);
EXPORT_SYMBOL(storkSetGPIO);
EXPORT_SYMBOL(storkClearGPIO);
EXPORT_SYMBOL(storkSetLatchA);
EXPORT_SYMBOL(storkClearLatchA);
EXPORT_SYMBOL(storkSetLatchB);
EXPORT_SYMBOL(storkClearLatchB);
EXPORT_SYMBOL(storkClockByteToTS);
EXPORT_SYMBOL(storkClockShortToDtoA);
EXPORT_SYMBOL(storkGetLCDCPLD);
EXPORT_SYMBOL(storkSetLCDCPLD);