/*
* Linux Socket Filter - Kernel level socket filtering
*
* Author:
* Jay Schulist <jschlst@samba.org>
*
* Based on the design of:
* - The Berkeley Packet Filter
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Andi Kleen - Fix a few bad bugs and races.
*/
#include <linux/config.h>
#if defined(CONFIG_FILTER)
#include <linux/module.h>
#include <linux/types.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/fcntl.h>
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/if_packet.h>
#include <net/ip.h>
#include <net/protocol.h>
#include <linux/skbuff.h>
#include <net/sock.h>
#include <linux/errno.h>
#include <linux/timer.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <linux/filter.h>
/* No hurry in this branch */
static u8 *load_pointer(struct sk_buff *skb, int k)
{
u8 *ptr = NULL;
if (k>=SKF_NET_OFF)
ptr = skb->nh.raw + k - SKF_NET_OFF;
else if (k>=SKF_LL_OFF)
ptr = skb->mac.raw + k - SKF_LL_OFF;
if (ptr >= skb->head && ptr < skb->tail)
return ptr;
return NULL;
}
/**
* sk_run_filter - run a filter on a socket
* @skb: buffer to run the filter on
* @filter: filter to apply
* @flen: length of filter
*
* Decode and apply filter instructions to the skb->data.
* Return length to keep, 0 for none. skb is the data we are
* filtering, filter is the array of filter instructions, and
* len is the number of filter blocks in the array.
*/
int sk_run_filter(struct sk_buff *skb, struct sock_filter *filter, int flen)
{
unsigned char *data = skb->data;
/* len is UNSIGNED. Byte wide insns relies only on implicit
type casts to prevent reading arbitrary memory locations.
*/
unsigned int len = skb->len-skb->data_len;
struct sock_filter *fentry; /* We walk down these */
u32 A = 0; /* Accumulator */
u32 X = 0; /* Index Register */
u32 mem[BPF_MEMWORDS]; /* Scratch Memory Store */
int k;
int pc;
/*
* Process array of filter instructions.
*/
for(pc = 0; pc < flen; pc++)
{
fentry = &filter[pc];
switch(fentry->code)
{
case BPF_ALU|BPF_ADD|BPF_X:
A += X;
continue;
case BPF_ALU|BPF_ADD|BPF_K:
A += fentry->k;
continue;
case BPF_ALU|BPF_SUB|BPF_X:
A -= X;
continue;
case BPF_ALU|BPF_SUB|BPF_K:
A -= fentry->k;
continue;
case BPF_ALU|BPF_MUL|BPF_X:
A *= X;
continue;
case BPF_ALU|BPF_MUL|BPF_K:
A *= fentry->k;
continue;
case BPF_ALU|BPF_DIV|BPF_X:
if(X == 0)
return (0);
A /= X;
continue;
case BPF_ALU|BPF_DIV|BPF_K:
if(fentry->k == 0)
return (0);
A /= fentry->k;
continue;
case BPF_ALU|BPF_AND|BPF_X:
A &= X;
continue;
case BPF_ALU|BPF_AND|BPF_K:
A &= fentry->k;
continue;
case BPF_ALU|BPF_OR|BPF_X:
A |= X;
continue;
case BPF_ALU|BPF_OR|BPF_K:
A |= fentry->k;
continue;
case BPF_ALU|BPF_LSH|BPF_X:
A <<= X;
continue;
case BPF_ALU|BPF_LSH|BPF_K:
A <<= fentry->k;
continue;
case BPF_ALU|BPF_RSH|BPF_X:
A >>= X;
continue;
case BPF_ALU|BPF_RSH|BPF_K:
A >>= fentry->k;
continue;
case BPF_ALU|BPF_NEG:
A = -A;
continue;
case BPF_JMP|BPF_JA:
pc += fentry->k;
continue;
case BPF_JMP|BPF_JGT|BPF_K:
pc += (A > fentry->k) ? fentry->jt : fentry->jf;
continue;
case BPF_JMP|BPF_JGE|BPF_K:
pc += (A >= fentry->k) ? fentry->jt : fentry->jf;
continue;
case BPF_JMP|BPF_JEQ|BPF_K:
pc += (A == fentry->k) ? fentry->jt : fentry->jf;
continue;
case BPF_JMP|BPF_JSET|BPF_K:
pc += (A & fentry->k) ? fentry->jt : fentry->jf;
continue;
case BPF_JMP|BPF_JGT|BPF_X:
pc += (A > X) ? fentry->jt : fentry->jf;
continue;
case BPF_JMP|BPF_JGE|BPF_X:
pc += (A >= X) ? fentry->jt : fentry->jf;
continue;
case BPF_JMP|BPF_JEQ|BPF_X:
pc += (A == X) ? fentry->jt : fentry->jf;
continue;
case BPF_JMP|BPF_JSET|BPF_X:
pc += (A & X) ? fentry->jt : fentry->jf;
continue;
case BPF_LD|BPF_W|BPF_ABS:
k = fentry->k;
load_w:
if(k >= 0 && (unsigned int)(k+sizeof(u32)) <= len) {
A = ntohl(*(u32*)&data[k]);
continue;
}
if (k<0) {
u8 *ptr;
if (k>=SKF_AD_OFF)
break;
if ((ptr = load_pointer(skb, k)) != NULL) {
A = ntohl(*(u32*)ptr);
continue;
}
} else {
u32 tmp;
if (!skb_copy_bits(skb, k, &tmp, 4)) {
A = ntohl(tmp);
continue;
}
}
return 0;
case BPF_LD|BPF_H|BPF_ABS:
k = fentry->k;
load_h:
if(k >= 0 && (unsigned int) (k + sizeof(u16)) <= len) {
A = ntohs(*(u16*)&data[k]);
continue;
}
if (k<0) {
u8 *ptr;
if (k>=SKF_AD_OFF)
break;
if ((ptr = load_pointer(skb, k)) != NULL) {
A = ntohs(*(u16*)ptr);
continue;
}
} else {
u16 tmp;
if (!skb_copy_bits(skb, k, &tmp, 2)) {
A = ntohs(tmp);
continue;
}
}
return 0;
case BPF_LD|BPF_B|BPF_ABS:
k = fentry->k;
load_b:
if(k >= 0 && (unsigned int)k < len) {
A = data[k];
continue;
}
if (k<0) {
u8 *ptr;
if (k>=SKF_AD_OFF)
break;
if ((ptr = load_pointer(skb, k)) != NULL) {
A = *ptr;
continue;
}
} else {
u8 tmp;
if (!skb_copy_bits(skb, k, &tmp, 1)) {
A = tmp;
continue;
}
}
return 0;
case BPF_LD|BPF_W|BPF_LEN:
A = len;
continue;
case BPF_LDX|BPF_W|BPF_LEN:
X = len;
continue;
case BPF_LD|BPF_W|BPF_IND:
k = X + fentry->k;
goto load_w;
case BPF_LD|BPF_H|BPF_IND:
k = X + fentry->k;
goto load_h;
case BPF_LD|BPF_B|BPF_IND:
k = X + fentry->k;
goto load_b;
case BPF_LDX|BPF_B|BPF_MSH:
if(fentry->k >= len)
return (0);
X = (data[fentry->k] & 0xf) << 2;
continue;
case BPF_LD|BPF_IMM:
A = fentry->k;
continue;
case BPF_LDX|BPF_IMM:
X = fentry->k;
continue;
case BPF_LD|BPF_MEM:
A = mem[fentry->k];
continue;
case BPF_LDX|BPF_MEM:
X = mem[fentry->k];
continue;
case BPF_MISC|BPF_TAX:
X = A;
continue;
case BPF_MISC|BPF_TXA:
A = X;
continue;
case BPF_RET|BPF_K:
return ((unsigned int)fentry->k);
case BPF_RET|BPF_A:
return ((unsigned int)A);
case BPF_ST:
mem[fentry->k] = A;
continue;
case BPF_STX:
mem[fentry->k] = X;
continue;
default:
/* Invalid instruction counts as RET */
return (0);
}
/* Handle ancillary data, which are impossible
(or very difficult) to get parsing packet contents.
*/
switch (k-SKF_AD_OFF) {
case SKF_AD_PROTOCOL:
A = htons(skb->protocol);
continue;
case SKF_AD_PKTTYPE:
A = skb->pkt_type;
continue;
case SKF_AD_IFINDEX:
A = skb->dev->ifindex;
continue;
default:
return 0;
}
}
return (0);
}
/**
* sk_chk_filter - verify socket filter code
* @filter: filter to verify
* @flen: length of filter
*
* Check the user's filter code. If we let some ugly
* filter code slip through kaboom! The filter must contain
* no references or jumps that are out of range, no illegal instructions
* and no backward jumps. It must end with a RET instruction
*
* Returns 0 if the rule set is legal or a negative errno code if not.
*/
int sk_chk_filter(struct sock_filter *filter, int flen)
{
struct sock_filter *ftest;
int pc;
if ((unsigned int) flen >= (~0U / sizeof(struct sock_filter)))
return -EINVAL;
/*
* Check the filter code now.
*/
for(pc = 0; pc < flen; pc++)
{
/*
* All jumps are forward as they are not signed
*/
ftest = &filter[pc];
if(BPF_CLASS(ftest->code) == BPF_JMP)
{
/*
* But they mustn't jump off the end.
*/
if(BPF_OP(ftest->code) == BPF_JA)
{
/* Note, the large ftest->k might cause
loops. Compare this with conditional
jumps below, where offsets are limited. --ANK (981016)
*/
if (ftest->k >= (unsigned)(flen-pc-1))
return -EINVAL;
}
else
{
/*
* For conditionals both must be safe
*/
if(pc + ftest->jt +1 >= flen || pc + ftest->jf +1 >= flen)
return -EINVAL;
}
}
/*
* Check that memory operations use valid addresses.
*/
if (ftest->k >= BPF_MEMWORDS)
{
/*
* But it might not be a memory operation...
*/
switch (ftest->code) {
case BPF_ST:
case BPF_STX:
case BPF_LD|BPF_MEM:
case BPF_LDX|BPF_MEM:
return -EINVAL;
}
}
}
/*
* The program must end with a return. We don't care where they
* jumped within the script (its always forwards) but in the
* end they _will_ hit this.
*/
return (BPF_CLASS(filter[flen - 1].code) == BPF_RET)?0:-EINVAL;
}
/**
* sk_attach_filter - attach a socket filter
* @fprog: the filter program
* @sk: the socket to use
*
* Attach the user's filter code. We first run some sanity checks on
* it to make sure it does not explode on us later. If an error
* occurs or there is insufficient memory for the filter a negative
* errno code is returned. On success the return is zero.
*/
int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
{
struct sk_filter *fp;
unsigned int fsize = sizeof(struct sock_filter) * fprog->len;
int err;
/* Make sure new filter is there and in the right amounts. */
if (fprog->filter == NULL || fprog->len > BPF_MAXINSNS)
return (-EINVAL);
fp = (struct sk_filter *)sock_kmalloc(sk, fsize+sizeof(*fp), GFP_KERNEL);
if(fp == NULL)
return (-ENOMEM);
if (copy_from_user(fp->insns, fprog->filter, fsize)) {
sock_kfree_s(sk, fp, fsize+sizeof(*fp));
return -EFAULT;
}
atomic_set(&fp->refcnt, 1);
fp->len = fprog->len;
if ((err = sk_chk_filter(fp->insns, fp->len))==0) {
struct sk_filter *old_fp;
spin_lock_bh(&sk->lock.slock);
old_fp = sk->filter;
sk->filter = fp;
spin_unlock_bh(&sk->lock.slock);
fp = old_fp;
}
if (fp)
sk_filter_release(sk, fp);
return (err);
}
#endif /* CONFIG_FILTER */