#ifndef _X86_64_PGTABLE_H
#define _X86_64_PGTABLE_H
/*
* This file contains the functions and defines necessary to modify and use
* the x86-64 page table tree.
*
* x86-64 has a 4 level table setup. Generic linux MM only supports
* three levels. The fourth level is currently a single static page that
* is shared by everybody and just contains a pointer to the current
* three level page setup on the beginning and some kernel mappings at
* the end. For more details see Documentation/x86_64/mm.txt
*/
#ifndef __ASSEMBLY__
#include <asm/processor.h>
#include <asm/fixmap.h>
#include <asm/bitops.h>
#include <asm/pda.h>
#include <linux/threads.h>
#include <linux/config.h>
extern pgd_t level3_kernel_pgt[512];
extern pgd_t level3_physmem_pgt[512];
extern pgd_t level3_ident_pgt[512];
extern pmd_t level2_kernel_pgt[512];
extern pml4_t init_level4_pgt[];
extern pgd_t boot_vmalloc_pgt[];
extern void paging_init(void);
#define swapper_pg_dir NULL
/* Caches aren't brain-dead on the intel. */
#define flush_cache_all() do { } while (0)
#define flush_cache_mm(mm) do { } while (0)
#define flush_cache_range(mm, start, end) do { } while (0)
#define flush_cache_page(vma, vmaddr) do { } while (0)
#define flush_page_to_ram(page) do { } while (0)
#define flush_dcache_page(page) do { } while (0)
#define flush_icache_range(start, end) do { } while (0)
#define flush_icache_page(vma,pg) do { } while (0)
#define flush_icache_user_range(vma,pg,adr,len) do { } while (0)
#define __flush_tlb() \
do { \
unsigned long tmpreg; \
\
__asm__ __volatile__( \
"movq %%cr3, %0; # flush TLB \n" \
"movq %0, %%cr3; \n" \
: "=r" (tmpreg) \
:: "memory"); \
} while (0)
/*
* Global pages have to be flushed a bit differently. Not a real
* performance problem because this does not happen often.
*/
#define __flush_tlb_global() \
do { \
unsigned long tmpreg; \
\
__asm__ __volatile__( \
"movq %1, %%cr4; # turn off PGE \n" \
"movq %%cr3, %0; # flush TLB \n" \
"movq %0, %%cr3; \n" \
"movq %2, %%cr4; # turn PGE back on \n" \
: "=&r" (tmpreg) \
: "r" (mmu_cr4_features & ~(u64)X86_CR4_PGE), \
"r" (mmu_cr4_features) \
: "memory"); \
} while (0)
#define __flush_tlb_all() __flush_tlb_global()
#define __flush_tlb_one(addr) __asm__ __volatile__("invlpg %0": :"m" (*(char *) addr))
/*
* ZERO_PAGE is a global shared page that is always zero: used
* for zero-mapped memory areas etc..
*/
extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
#endif /* !__ASSEMBLY__ */
#define PML4_SHIFT 39
#define PTRS_PER_PML4 512
/*
* PGDIR_SHIFT determines what a 3rd level page table entry can map
*/
#define PGDIR_SHIFT 30
#define PTRS_PER_PGD 512
/*
* PMD_SHIFT determines the size of the area a middle-level
* page table can map
*/
#define PMD_SHIFT 21
#define PTRS_PER_PMD 512
/*
* entries per page directory level
*/
#define PTRS_PER_PTE 512
#define pte_ERROR(e) \
printk("%s:%d: bad pte %p(%016lx).\n", __FILE__, __LINE__, &(e), pte_val(e))
#define pmd_ERROR(e) \
printk("%s:%d: bad pmd %p(%016lx).\n", __FILE__, __LINE__, &(e), pmd_val(e))
#define pgd_ERROR(e) \
printk("%s:%d: bad pgd %p(%016lx).\n", __FILE__, __LINE__, &(e), pgd_val(e))
#define pml4_none(x) (!pml4_val(x))
#define pgd_none(x) (!pgd_val(x))
extern inline int pgd_present(pgd_t pgd) { return !pgd_none(pgd); }
static inline void set_pte(pte_t *dst, pte_t val)
{
pte_val(*dst) = pte_val(val);
}
static inline void set_pmd(pmd_t *dst, pmd_t val)
{
pmd_val(*dst) = pmd_val(val);
}
static inline void set_pgd(pgd_t *dst, pgd_t val)
{
pgd_val(*dst) = pgd_val(val);
}
static inline void set_pml4(pml4_t *dst, pml4_t val)
{
pml4_val(*dst) = pml4_val(val);
}
extern inline void __pgd_clear (pgd_t * pgd)
{
set_pgd(pgd, __pgd(0));
}
extern inline void pgd_clear (pgd_t * pgd)
{
__pgd_clear(pgd);
__flush_tlb();
}
#define pgd_page(pgd) \
((unsigned long) __va(pgd_val(pgd) & PHYSICAL_PAGE_MASK))
#define __mk_pgd(address,prot) ((pgd_t) { (address) | pgprot_val(prot) })
/* Find an entry in the second-level page table.. */
#define pmd_offset(dir, address) ((pmd_t *) pgd_page(*(dir)) + \
__pmd_offset(address))
#define __mk_pmd(address,prot) ((pmd_t) { ((address) | pgprot_val(prot)) & __supported_pte_mask})
#define ptep_get_and_clear(xp) __pte(xchg(&(xp)->pte, 0))
#define pte_same(a, b) ((a).pte == (b).pte)
#define __mk_pte(page_nr,pgprot) \
__pte(((page_nr) << PAGE_SHIFT) | (pgprot_val(pgprot) & __supported_pte_mask))
#define PML4_SIZE (1UL << PML4_SHIFT)
#define PML4_MASK (~(PML4_SIZE-1))
#define PMD_SIZE (1UL << PMD_SHIFT)
#define PMD_MASK (~(PMD_SIZE-1))
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
#define FIRST_USER_PGD_NR 0
#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
#define BOOT_USER_L4_PTRS 1
#define BOOT_KERNEL_L4_PTRS 511 /* But we will do it in 4rd level */
#ifndef __ASSEMBLY__
/* IO mappings are the 509th slot in the PML4. We map them high up to make sure
they never appear in the node hash table in DISCONTIG configs. */
#define IOMAP_START 0xfffffe8000000000
/* vmalloc space occupies the 510th slot in the PML4. You can have upto 512GB of
vmalloc/ioremap space. */
#define VMALLOC_START 0xffffff0000000000
#define VMALLOC_END 0xffffff7fffffffff
#define VMALLOC_VMADDR(x) ((unsigned long)(x))
#define MODULES_VADDR 0xffffffffa0000000
#define MODULES_END 0xffffffffafffffff
#define MODULES_LEN (MODULES_END - MODULES_VADDR)
#define _PAGE_BIT_PRESENT 0
#define _PAGE_BIT_RW 1
#define _PAGE_BIT_USER 2
#define _PAGE_BIT_PWT 3 /* Write Through */
#define _PAGE_BIT_PCD 4 /* Cache disable */
#define _PAGE_BIT_ACCESSED 5
#define _PAGE_BIT_DIRTY 6
#define _PAGE_BIT_PSE 7 /* 2MB page */
#define _PAGE_BIT_GLOBAL 8 /* Global TLB entry PPro+ */
#define _PAGE_BIT_NX 63 /* No execute: only valid after cpuid check */
#define _PAGE_PRESENT 0x001
#define _PAGE_RW 0x002
#define _PAGE_USER 0x004
#define _PAGE_PWT 0x008
#define _PAGE_PCD 0x010
#define _PAGE_ACCESSED 0x020
#define _PAGE_DIRTY 0x040
#define _PAGE_PSE 0x080 /* 2MB page */
#define _PAGE_GLOBAL 0x100 /* Global TLB entry */
#define _PAGE_PGE _PAGE_GLOBAL
#define _PAGE_NX (1UL<<_PAGE_BIT_NX)
#define _PAGE_PROTNONE 0x080 /* If not present */
#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
#define KERNPG_TABLE __pgprot(_KERNPG_TABLE)
#define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
#define PAGE_SHARED_NOEXEC __pgprot(_PAGE_NX | _PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
#define PAGE_COPY_NOEXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)
#define PAGE_COPY PAGE_COPY_NOEXEC
#define PAGE_COPY_EXEC \
__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)
#define PAGE_READONLY_EXEC \
__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
#define PAGE_EXECONLY PAGE_READONLY_EXEC
#define PAGE_LARGE (_PAGE_PSE|_PAGE_PRESENT)
#define __PAGE_KERNEL \
(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_NX)
#define __PAGE_KERNEL_NOCACHE (__PAGE_KERNEL | _PAGE_PCD)
#define __PAGE_KERNEL_RO (__PAGE_KERNEL & ~_PAGE_RW)
#define __PAGE_KERNEL_VSYSCALL (_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
#define __PAGE_KERNEL_LARGE (__PAGE_KERNEL | _PAGE_PSE)
#define __PAGE_KERNEL_LARGE_NOCACHE (__PAGE_KERNEL_LARGE | _PAGE_PCD)
#define __PAGE_KERNEL_EXECUTABLE (__PAGE_KERNEL & ~_PAGE_NX)
#define __PAGE_USER_NOCACHE_RO \
(_PAGE_PRESENT | _PAGE_USER | _PAGE_DIRTY | _PAGE_ACCESSED)
extern unsigned long __supported_pte_mask;
#define __PTE_SUPP(x) __pgprot((x) & __supported_pte_mask)
/* _NX is masked away in mk_pmd/pte */
#define PAGE_KERNEL __PTE_SUPP(__PAGE_KERNEL|_PAGE_GLOBAL)
#define PAGE_KERNEL_RO __pgprot(__PAGE_KERNEL_RO|_PAGE_GLOBAL)
#define PAGE_KERNEL_NOCACHE __pgprot(__PAGE_KERNEL_NOCACHE|_PAGE_GLOBAL)
#define PAGE_KERNEL_VSYSCALL __pgprot(__PAGE_KERNEL_VSYSCALL|_PAGE_GLOBAL)
#define PAGE_KERNEL_LARGE __pgprot(__PAGE_KERNEL_LARGE|_PAGE_GLOBAL)
#define PAGE_KERNEL_LARGE_NOCACHE __pgprot(__PAGE_KERNEL_LARGE_NOCACHE|_PAGE_GLOBAL)
#define PAGE_USER_NOCACHE_RO __pgprot(__PAGE_USER_NOCACHE_RO|_PAGE_GLOBAL)
#define PAGE_KERNEL_EXECUTABLE __pgprot(__PAGE_KERNEL_EXECUTABLE|_PAGE_GLOBAL)
/* xwr */
#define __P000 PAGE_NONE
#define __P001 PAGE_READONLY
#define __P010 PAGE_COPY
#define __P011 PAGE_COPY
#define __P100 PAGE_EXECONLY
#define __P101 PAGE_READONLY_EXEC
#define __P110 PAGE_COPY_EXEC
#define __P111 PAGE_COPY_EXEC
/* xwr */
#define __S000 PAGE_NONE
#define __S001 PAGE_READONLY
#define __S010 PAGE_SHARED_NOEXEC
#define __S011 PAGE_SHARED_NOEXEC
#define __S100 PAGE_EXECONLY
#define __S101 PAGE_READONLY_EXEC
#define __S110 PAGE_SHARED
#define __S111 PAGE_SHARED
static inline unsigned long pgd_bad(pgd_t pgd)
{
unsigned long val = pgd_val(pgd);
val &= ~PAGE_MASK;
val &= ~(_PAGE_USER | _PAGE_DIRTY);
return val & ~(_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED);
}
/*
* Handling allocation failures during page table setup.
*/
extern void __handle_bad_pmd(pmd_t * pmd);
extern void __handle_bad_pmd_kernel(pmd_t * pmd);
#define pte_none(x) (!pte_val(x))
#define pte_present(x) (pte_val(x) & (_PAGE_PRESENT | _PAGE_PROTNONE))
#define pte_clear(xp) do { set_pte(xp, __pte(0)); } while (0)
#define pmd_none(x) (!pmd_val(x))
#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
#define pmd_clear(xp) do { set_pmd(xp, __pmd(0)); } while (0)
#define pmd_bad(x) \
((pmd_val(x) & (~PAGE_MASK & (~_PAGE_USER))) != _KERNPG_TABLE )
#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
#ifndef CONFIG_DISCONTIGMEM
#define pte_page(x) (pfn_to_page((pte_val(x) & PHYSICAL_PAGE_MASK) >> PAGE_SHIFT))
#endif
/*
* The following only work if pte_present() is true.
* Undefined behaviour if not..
*/
extern inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
extern inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
extern inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
extern inline pte_t pte_rdprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_USER)); return pte; }
extern inline pte_t pte_exprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_USER)); return pte; }
extern inline pte_t pte_mkclean(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_DIRTY)); return pte; }
extern inline pte_t pte_mkold(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_ACCESSED)); return pte; }
extern inline pte_t pte_wrprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_RW)); return pte; }
extern inline pte_t pte_mkread(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_USER)); return pte; }
extern inline pte_t pte_mkexec(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_USER)); return pte; }
extern inline pte_t pte_mkdirty(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_DIRTY)); return pte; }
extern inline pte_t pte_mkyoung(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_ACCESSED)); return pte; }
extern inline pte_t pte_mkwrite(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_RW)); return pte; }
static inline int ptep_test_and_clear_dirty(pte_t *ptep) { return test_and_clear_bit(_PAGE_BIT_DIRTY, ptep); }
static inline int ptep_test_and_clear_young(pte_t *ptep) { return test_and_clear_bit(_PAGE_BIT_ACCESSED, ptep); }
static inline void ptep_set_wrprotect(pte_t *ptep) { clear_bit(_PAGE_BIT_RW, ptep); }
static inline void ptep_mkdirty(pte_t *ptep) { set_bit(_PAGE_BIT_DIRTY, ptep); }
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
#define mk_pte(page,pgprot) \
({ \
pte_t __pte; \
unsigned long __val = page_to_phys(page); \
__val |= pgprot_val(pgprot); \
__val &= __supported_pte_mask; \
set_pte(&__pte, __pte(__val)); \
__pte; \
})
/* This takes a physical page address that is used by the remapping functions */
static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
{
pte_t __pte;
set_pte(&__pte, __pte(physpage + (pgprot_val(pgprot) & __supported_pte_mask)));
return __pte;
}
extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
set_pte(&pte,
__pte(((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)) &
__supported_pte_mask));
return pte;
}
#define page_pte(page) page_pte_prot(page, __pgprot(0))
#define __pmd_page(pmd) (__va(pmd_val(pmd) & PHYSICAL_PAGE_MASK))
/* to find an entry in a page-table-directory. */
#define pgd_index(address) ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
#define __pgd_offset_k(pgd, address) ((pgd) + pgd_index(address))
#define current_pgd_offset_k(address) \
__pgd_offset_k((pgd_t *)read_pda(level4_pgt), address)
/* This accesses the reference page table of the boot cpu.
Other CPUs get synced lazily via the page fault handler. */
#define pgd_offset_k(address) \
__pgd_offset_k( \
(pgd_t *)__va(pml4_val(init_level4_pgt[pml4_index(address)]) & PHYSICAL_PAGE_MASK), address)
#define __pmd_offset(address) \
(((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
/* Find an entry in the third-level page table.. */
#define __pte_offset(address) \
((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
#define pte_offset(dir, address) ((pte_t *) __pmd_page(*(dir)) + \
__pte_offset(address))
/* never use these in the common code */
#define pml4_page(level4) ((unsigned long) __va(pml4_val(level4) & PHYSICAL_PAGE_MASK))
#define pml4_index(address) (((address) >> PML4_SHIFT) & (PTRS_PER_PML4-1))
#define pml4_offset_k(address) ((pml4_t *)read_pda(level4_pgt) + pml4_index(address))
#define level3_offset_k(dir, address) ((pgd_t *) pml4_page(*(dir)) + pgd_index(address))
#define mk_kernel_pml4(address,prot) ((pml4_t){(address) | pgprot_val(prot)})
#define pml4_present(pml4) (pml4_val(pml4) & _PAGE_PRESENT)
/*
* x86 doesn't have any external MMU info: the kernel page
* tables contain all the necessary information.
*/
#define update_mmu_cache(vma,address,pte) do { } while (0)
/* Encode and de-code a swap entry */
#define SWP_TYPE(x) (((x).val >> 1) & 0x3f)
#define SWP_OFFSET(x) ((x).val >> 8)
#define SWP_ENTRY(type, offset) ((swp_entry_t) { ((type) << 1) | ((offset) << 8) })
#define pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
#define swp_entry_to_pte(x) ((pte_t) { (x).val })
struct page;
/*
* Change attributes of an kernel page.
*/
struct page;
extern int change_page_attr(struct page *page, int numpages, pgprot_t prot);
extern void clear_kernel_mapping(unsigned long addr, unsigned long size);
#endif /* !__ASSEMBLY__ */
/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
#define PageSkip(page) (0)
#define kern_addr_valid(kaddr) ((kaddr)>>PAGE_SHIFT < max_mapnr)
#define io_remap_page_range remap_page_range
#define HAVE_ARCH_UNMAPPED_AREA
#define pgtable_cache_init() do { } while (0)
#endif /* _X86_64_PGTABLE_H */