#ifndef _S390_BITOPS_H
#define _S390_BITOPS_H
/*
* include/asm-s390/bitops.h
*
* S390 version
* Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
* Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com)
*
* Derived from "include/asm-i386/bitops.h"
* Copyright (C) 1992, Linus Torvalds
*
*/
#include <linux/config.h>
/*
* bit 0 is the LSB of *addr; bit 31 is the MSB of *addr;
* bit 32 is the LSB of *(addr+4). That combined with the
* big endian byte order on S390 give the following bit
* order in memory:
* 1f 1e 1d 1c 1b 1a 19 18 17 16 15 14 13 12 11 10 \
* 0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00
* after that follows the next long with bit numbers
* 3f 3e 3d 3c 3b 3a 39 38 37 36 35 34 33 32 31 30
* 2f 2e 2d 2c 2b 2a 29 28 27 26 25 24 23 22 21 20
* The reason for this bit ordering is the fact that
* in the architecture independent code bits operations
* of the form "flags |= (1 << bitnr)" are used INTERMIXED
* with operation of the form "set_bit(bitnr, flags)".
*/
/* set ALIGN_CS to 1 if the SMP safe bit operations should
* align the address to 4 byte boundary. It seems to work
* without the alignment.
*/
#ifdef __KERNEL__
#define ALIGN_CS 0
#else
#define ALIGN_CS 1
#ifndef CONFIG_SMP
#error "bitops won't work without CONFIG_SMP"
#endif
#endif
/* bitmap tables from arch/S390/kernel/bitmap.S */
extern const char _oi_bitmap[];
extern const char _ni_bitmap[];
extern const char _zb_findmap[];
#ifdef CONFIG_SMP
/*
* SMP save set_bit routine based on compare and swap (CS)
*/
static __inline__ void set_bit_cs(int nr, volatile void * addr)
{
unsigned long bits, mask;
__asm__ __volatile__(
#if ALIGN_CS == 1
" lhi %2,3\n" /* CS must be aligned on 4 byte b. */
" nr %2,%1\n" /* isolate last 2 bits of address */
" xr %1,%2\n" /* make addr % 4 == 0 */
" sll %2,3\n"
" ar %0,%2\n" /* add alignement to bitnr */
#endif
" lhi %2,31\n"
" nr %2,%0\n" /* make shift value */
" xr %0,%2\n"
" srl %0,3\n"
" lhi %3,1\n"
" la %1,0(%0,%1)\n" /* calc. address for CS */
" sll %3,0(%2)\n" /* make OR mask */
" l %0,0(%1)\n"
"0: lr %2,%0\n" /* CS loop starts here */
" or %2,%3\n" /* set bit */
" cs %0,%2,0(%1)\n"
" jl 0b"
: "+a" (nr), "+a" (addr), "=&a" (bits), "=&d" (mask) :
: "cc", "memory" );
}
/*
* SMP save clear_bit routine based on compare and swap (CS)
*/
static __inline__ void clear_bit_cs(int nr, volatile void * addr)
{
static const int minusone = -1;
unsigned long bits, mask;
__asm__ __volatile__(
#if ALIGN_CS == 1
" lhi %2,3\n" /* CS must be aligned on 4 byte b. */
" nr %2,%1\n" /* isolate last 2 bits of address */
" xr %1,%2\n" /* make addr % 4 == 0 */
" sll %2,3\n"
" ar %0,%2\n" /* add alignement to bitnr */
#endif
" lhi %2,31\n"
" nr %2,%0\n" /* make shift value */
" xr %0,%2\n"
" srl %0,3\n"
" lhi %3,1\n"
" la %1,0(%0,%1)\n" /* calc. address for CS */
" sll %3,0(%2)\n"
" x %3,%4\n" /* make AND mask */
" l %0,0(%1)\n"
"0: lr %2,%0\n" /* CS loop starts here */
" nr %2,%3\n" /* clear bit */
" cs %0,%2,0(%1)\n"
" jl 0b"
: "+a" (nr), "+a" (addr), "=&a" (bits), "=&d" (mask)
: "m" (minusone) : "cc", "memory" );
}
/*
* SMP save change_bit routine based on compare and swap (CS)
*/
static __inline__ void change_bit_cs(int nr, volatile void * addr)
{
unsigned long bits, mask;
__asm__ __volatile__(
#if ALIGN_CS == 1
" lhi %2,3\n" /* CS must be aligned on 4 byte b. */
" nr %2,%1\n" /* isolate last 2 bits of address */
" xr %1,%2\n" /* make addr % 4 == 0 */
" sll %2,3\n"
" ar %0,%2\n" /* add alignement to bitnr */
#endif
" lhi %2,31\n"
" nr %2,%0\n" /* make shift value */
" xr %0,%2\n"
" srl %0,3\n"
" lhi %3,1\n"
" la %1,0(%0,%1)\n" /* calc. address for CS */
" sll %3,0(%2)\n" /* make XR mask */
" l %0,0(%1)\n"
"0: lr %2,%0\n" /* CS loop starts here */
" xr %2,%3\n" /* change bit */
" cs %0,%2,0(%1)\n"
" jl 0b"
: "+a" (nr), "+a" (addr), "=&a" (bits), "=&d" (mask) :
: "cc", "memory" );
}
/*
* SMP save test_and_set_bit routine based on compare and swap (CS)
*/
static __inline__ int test_and_set_bit_cs(int nr, volatile void * addr)
{
unsigned long bits, mask;
__asm__ __volatile__(
#if ALIGN_CS == 1
" lhi %2,3\n" /* CS must be aligned on 4 byte b. */
" nr %2,%1\n" /* isolate last 2 bits of address */
" xr %1,%2\n" /* make addr % 4 == 0 */
" sll %2,3\n"
" ar %0,%2\n" /* add alignement to bitnr */
#endif
" lhi %2,31\n"
" nr %2,%0\n" /* make shift value */
" xr %0,%2\n"
" srl %0,3\n"
" lhi %3,1\n"
" la %1,0(%0,%1)\n" /* calc. address for CS */
" sll %3,0(%2)\n" /* make OR mask */
" l %0,0(%1)\n"
"0: lr %2,%0\n" /* CS loop starts here */
" or %2,%3\n" /* set bit */
" cs %0,%2,0(%1)\n"
" jl 0b\n"
" nr %0,%3\n" /* isolate old bit */
: "+a" (nr), "+a" (addr), "=&a" (bits), "=&d" (mask) :
: "cc", "memory" );
return nr != 0;
}
/*
* SMP save test_and_clear_bit routine based on compare and swap (CS)
*/
static __inline__ int test_and_clear_bit_cs(int nr, volatile void * addr)
{
static const int minusone = -1;
unsigned long bits, mask;
__asm__ __volatile__(
#if ALIGN_CS == 1
" lhi %2,3\n" /* CS must be aligned on 4 byte b. */
" nr %2,%1\n" /* isolate last 2 bits of address */
" xr %1,%2\n" /* make addr % 4 == 0 */
" sll %2,3\n"
" ar %0,%2\n" /* add alignement to bitnr */
#endif
" lhi %2,31\n"
" nr %2,%0\n" /* make shift value */
" xr %0,%2\n"
" srl %0,3\n"
" lhi %3,1\n"
" la %1,0(%0,%1)\n" /* calc. address for CS */
" sll %3,0(%2)\n"
" l %0,0(%1)\n"
" x %3,%4\n" /* make AND mask */
"0: lr %2,%0\n" /* CS loop starts here */
" nr %2,%3\n" /* clear bit */
" cs %0,%2,0(%1)\n"
" jl 0b\n"
" x %3,%4\n"
" nr %0,%3\n" /* isolate old bit */
: "+a" (nr), "+a" (addr), "=&a" (bits), "=&d" (mask)
: "m" (minusone) : "cc", "memory" );
return nr;
}
/*
* SMP save test_and_change_bit routine based on compare and swap (CS)
*/
static __inline__ int test_and_change_bit_cs(int nr, volatile void * addr)
{
unsigned long bits, mask;
__asm__ __volatile__(
#if ALIGN_CS == 1
" lhi %2,3\n" /* CS must be aligned on 4 byte b. */
" nr %2,%1\n" /* isolate last 2 bits of address */
" xr %1,%2\n" /* make addr % 4 == 0 */
" sll %2,3\n"
" ar %0,%2\n" /* add alignement to bitnr */
#endif
" lhi %2,31\n"
" nr %2,%0\n" /* make shift value */
" xr %0,%2\n"
" srl %0,3\n"
" lhi %3,1\n"
" la %1,0(%0,%1)\n" /* calc. address for CS */
" sll %3,0(%2)\n" /* make OR mask */
" l %0,0(%1)\n"
"0: lr %2,%0\n" /* CS loop starts here */
" xr %2,%3\n" /* change bit */
" cs %0,%2,0(%1)\n"
" jl 0b\n"
" nr %0,%3\n" /* isolate old bit */
: "+a" (nr), "+a" (addr), "=&a" (bits), "=&d" (mask) :
: "cc", "memory" );
return nr != 0;
}
#endif /* CONFIG_SMP */
/*
* fast, non-SMP set_bit routine
*/
static __inline__ void __set_bit(int nr, volatile void * addr)
{
unsigned long reg1, reg2;
__asm__ __volatile__(
" lhi %1,24\n"
" lhi %0,7\n"
" xr %1,%2\n"
" nr %0,%2\n"
" srl %1,3\n"
" la %1,0(%1,%3)\n"
" la %0,0(%0,%4)\n"
" oc 0(1,%1),0(%0)"
: "=&a" (reg1), "=&a" (reg2)
: "r" (nr), "a" (addr), "a" (&_oi_bitmap) : "cc", "memory" );
}
static __inline__ void
__constant_set_bit(const int nr, volatile void * addr)
{
switch (nr&7) {
case 0:
__asm__ __volatile__ ("la 1,%0\n\t"
"oi 0(1),0x01"
: "=m" (*((volatile char *) addr + ((nr>>3)^3)))
: : "1", "cc", "memory");
break;
case 1:
__asm__ __volatile__ ("la 1,%0\n\t"
"oi 0(1),0x02"
: "=m" (*((volatile char *) addr + ((nr>>3)^3)))
: : "1", "cc", "memory" );
break;
case 2:
__asm__ __volatile__ ("la 1,%0\n\t"
"oi 0(1),0x04"
: "=m" (*((volatile char *) addr + ((nr>>3)^3)))
: : "1", "cc", "memory" );
break;
case 3:
__asm__ __volatile__ ("la 1,%0\n\t"
"oi 0(1),0x08"
: "=m" (*((volatile char *) addr + ((nr>>3)^3)))
: : "1", "cc", "memory" );
break;
case 4:
__asm__ __volatile__ ("la 1,%0\n\t"
"oi 0(1),0x10"
: "=m" (*((volatile char *) addr + ((nr>>3)^3)))
: : "1", "cc", "memory" );
break;
case 5:
__asm__ __volatile__ ("la 1,%0\n\t"
"oi 0(1),0x20"
: "=m" (*((volatile char *) addr + ((nr>>3)^3)))
: : "1", "cc", "memory" );
break;
case 6:
__asm__ __volatile__ ("la 1,%0\n\t"
"oi 0(1),0x40"
: "=m" (*((volatile char *) addr + ((nr>>3)^3)))
: : "1", "cc", "memory" );
break;
case 7:
__asm__ __volatile__ ("la 1,%0\n\t"
"oi 0(1),0x80"
: "=m" (*((volatile char *) addr + ((nr>>3)^3)))
: : "1", "cc", "memory" );
break;
}
}
#define set_bit_simple(nr,addr) \
(__builtin_constant_p((nr)) ? \
__constant_set_bit((nr),(addr)) : \
__set_bit((nr),(addr)) )
/*
* fast, non-SMP clear_bit routine
*/
static __inline__ void
__clear_bit(int nr, volatile void * addr)
{
unsigned long reg1, reg2;
__asm__ __volatile__(
" lhi %1,24\n"
" lhi %0,7\n"
" xr %1,%2\n"
" nr %0,%2\n"
" srl %1,3\n"
" la %1,0(%1,%3)\n"
" la %0,0(%0,%4)\n"
" nc 0(1,%1),0(%0)"
: "=&a" (reg1), "=&a" (reg2)
: "r" (nr), "a" (addr), "a" (&_ni_bitmap) : "cc", "memory" );
}
static __inline__ void
__constant_clear_bit(const int nr, volatile void * addr)
{
switch (nr&7) {
case 0:
__asm__ __volatile__ ("la 1,%0\n\t"
"ni 0(1),0xFE"
: "=m" (*((volatile char *) addr + ((nr>>3)^3)))
: : "1", "cc", "memory" );
break;
case 1:
__asm__ __volatile__ ("la 1,%0\n\t"
"ni 0(1),0xFD"
: "=m" (*((volatile char *) addr + ((nr>>3)^3)))
: : "1", "cc", "memory" );
break;
case 2:
__asm__ __volatile__ ("la 1,%0\n\t"
"ni 0(1),0xFB"
: "=m" (*((volatile char *) addr + ((nr>>3)^3)))
: : "1", "cc", "memory" );
break;
case 3:
__asm__ __volatile__ ("la 1,%0\n\t"
"ni 0(1),0xF7"
: "=m" (*((volatile char *) addr + ((nr>>3)^3)))
: : "1", "cc", "memory" );
break;
case 4:
__asm__ __volatile__ ("la 1,%0\n\t"
"ni 0(1),0xEF"
: "=m" (*((volatile char *) addr + ((nr>>3)^3)))
: : "cc", "memory" );
break;
case 5:
__asm__ __volatile__ ("la 1,%0\n\t"
"ni 0(1),0xDF"
: "=m" (*((volatile char *) addr + ((nr>>3)^3)))
: : "1", "cc", "memory" );
break;
case 6:
__asm__ __volatile__ ("la 1,%0\n\t"
"ni 0(1),0xBF"
: "=m" (*((volatile char *) addr + ((nr>>3)^3)))
: : "1", "cc", "memory" );
break;
case 7:
__asm__ __volatile__ ("la 1,%0\n\t"
"ni 0(1),0x7F"
: "=m" (*((volatile char *) addr + ((nr>>3)^3)))
: : "1", "cc", "memory" );
break;
}
}
#define clear_bit_simple(nr,addr) \
(__builtin_constant_p((nr)) ? \
__constant_clear_bit((nr),(addr)) : \
__clear_bit((nr),(addr)) )
/*
* fast, non-SMP change_bit routine
*/
static __inline__ void __change_bit(int nr, volatile void * addr)
{
unsigned long reg1, reg2;
__asm__ __volatile__(
" lhi %1,24\n"
" lhi %0,7\n"
" xr %1,%2\n"
" nr %0,%2\n"
" srl %1,3\n"
" la %1,0(%1,%3)\n"
" la %0,0(%0,%4)\n"
" xc 0(1,%1),0(%0)"
: "=&a" (reg1), "=&a" (reg2)
: "r" (nr), "a" (addr), "a" (&_oi_bitmap) : "cc", "memory" );
}
static __inline__ void
__constant_change_bit(const int nr, volatile void * addr)
{
switch (nr&7) {
case 0:
__asm__ __volatile__ ("la 1,%0\n\t"
"xi 0(1),0x01"
: "=m" (*((volatile char *) addr + ((nr>>3)^3)))
: : "cc", "memory" );
break;
case 1:
__asm__ __volatile__ ("la 1,%0\n\t"
"xi 0(1),0x02"
: "=m" (*((volatile char *) addr + ((nr>>3)^3)))
: : "cc", "memory" );
break;
case 2:
__asm__ __volatile__ ("la 1,%0\n\t"
"xi 0(1),0x04"
: "=m" (*((volatile char *) addr + ((nr>>3)^3)))
: : "cc", "memory" );
break;
case 3:
__asm__ __volatile__ ("la 1,%0\n\t"
"xi 0(1),0x08"
: "=m" (*((volatile char *) addr + ((nr>>3)^3)))
: : "cc", "memory" );
break;
case 4:
__asm__ __volatile__ ("la 1,%0\n\t"
"xi 0(1),0x10"
: "=m" (*((volatile char *) addr + ((nr>>3)^3)))
: : "cc", "memory" );
break;
case 5:
__asm__ __volatile__ ("la 1,%0\n\t"
"xi 0(1),0x20"
: "=m" (*((volatile char *) addr + ((nr>>3)^3)))
: : "1", "cc", "memory" );
break;
case 6:
__asm__ __volatile__ ("la 1,%0\n\t"
"xi 0(1),0x40"
: "=m" (*((volatile char *) addr + ((nr>>3)^3)))
: : "1", "cc", "memory" );
break;
case 7:
__asm__ __volatile__ ("la 1,%0\n\t"
"xi 0(1),0x80"
: "=m" (*((volatile char *) addr + ((nr>>3)^3)))
: : "1", "cc", "memory" );
break;
}
}
#define change_bit_simple(nr,addr) \
(__builtin_constant_p((nr)) ? \
__constant_change_bit((nr),(addr)) : \
__change_bit((nr),(addr)) )
/*
* fast, non-SMP test_and_set_bit routine
*/
static __inline__ int test_and_set_bit_simple(int nr, volatile void * addr)
{
unsigned long reg1, reg2;
int oldbit;
__asm__ __volatile__(
" lhi %1,24\n"
" lhi %2,7\n"
" xr %1,%3\n"
" nr %2,%3\n"
" srl %1,3\n"
" la %1,0(%1,%4)\n"
" ic %0,0(%1)\n"
" srl %0,0(%2)\n"
" la %2,0(%2,%5)\n"
" oc 0(1,%1),0(%2)"
: "=d&" (oldbit), "=&a" (reg1), "=&a" (reg2)
: "r" (nr), "a" (addr), "a" (&_oi_bitmap) : "cc", "memory" );
return oldbit & 1;
}
#define __test_and_set_bit(X,Y) test_and_set_bit_simple(X,Y)
/*
* fast, non-SMP test_and_clear_bit routine
*/
static __inline__ int test_and_clear_bit_simple(int nr, volatile void * addr)
{
unsigned long reg1, reg2;
int oldbit;
__asm__ __volatile__(
" lhi %1,24\n"
" lhi %2,7\n"
" xr %1,%3\n"
" nr %2,%3\n"
" srl %1,3\n"
" la %1,0(%1,%4)\n"
" ic %0,0(%1)\n"
" srl %0,0(%2)\n"
" la %2,0(%2,%5)\n"
" nc 0(1,%1),0(%2)"
: "=d&" (oldbit), "=&a" (reg1), "=&a" (reg2)
: "r" (nr), "a" (addr), "a" (&_ni_bitmap) : "cc", "memory" );
return oldbit & 1;
}
#define __test_and_clear_bit(X,Y) test_and_clear_bit_simple(X,Y)
/*
* fast, non-SMP test_and_change_bit routine
*/
static __inline__ int test_and_change_bit_simple(int nr, volatile void * addr)
{
unsigned long reg1, reg2;
int oldbit;
__asm__ __volatile__(
" lhi %1,24\n"
" lhi %2,7\n"
" xr %1,%3\n"
" nr %2,%1\n"
" srl %1,3\n"
" la %1,0(%1,%4)\n"
" ic %0,0(%1)\n"
" srl %0,0(%2)\n"
" la %2,0(%2,%5)\n"
" xc 0(1,%1),0(%2)"
: "=d&" (oldbit), "=&a" (reg1), "=&a" (reg2)
: "r" (nr), "a" (addr), "a" (&_oi_bitmap) : "cc", "memory" );
return oldbit & 1;
}
#define __test_and_change_bit(X,Y) test_and_change_bit_simple(X,Y)
#ifdef CONFIG_SMP
#define set_bit set_bit_cs
#define clear_bit clear_bit_cs
#define change_bit change_bit_cs
#define test_and_set_bit test_and_set_bit_cs
#define test_and_clear_bit test_and_clear_bit_cs
#define test_and_change_bit test_and_change_bit_cs
#else
#define set_bit set_bit_simple
#define clear_bit clear_bit_simple
#define change_bit change_bit_simple
#define test_and_set_bit test_and_set_bit_simple
#define test_and_clear_bit test_and_clear_bit_simple
#define test_and_change_bit test_and_change_bit_simple
#endif
/*
* This routine doesn't need to be atomic.
*/
static __inline__ int __test_bit(int nr, volatile void * addr)
{
unsigned long reg1, reg2;
int oldbit;
__asm__ __volatile__(
" lhi %2,24\n"
" lhi %1,7\n"
" xr %2,%3\n"
" nr %1,%3\n"
" srl %2,3\n"
" ic %0,0(%2,%4)\n"
" srl %0,0(%1)"
: "=d&" (oldbit), "=&a" (reg1), "=&a" (reg2)
: "r" (nr), "a" (addr) : "cc" );
return oldbit & 1;
}
static __inline__ int __constant_test_bit(int nr, volatile void * addr) {
return (((volatile char *) addr)[(nr>>3)^3] & (1<<(nr&7))) != 0;
}
#define test_bit(nr,addr) \
(__builtin_constant_p((nr)) ? \
__constant_test_bit((nr),(addr)) : \
__test_bit((nr),(addr)) )
/*
* Find-bit routines..
*/
static __inline__ int find_first_zero_bit(void * addr, unsigned size)
{
unsigned long cmp, count;
int res;
if (!size)
return 0;
__asm__(" lhi %1,-1\n"
" lr %2,%3\n"
" slr %0,%0\n"
" ahi %2,31\n"
" srl %2,5\n"
"0: c %1,0(%0,%4)\n"
" jne 1f\n"
" ahi %0,4\n"
" brct %2,0b\n"
" lr %0,%3\n"
" j 4f\n"
"1: l %2,0(%0,%4)\n"
" sll %0,3\n"
" lhi %1,0xff\n"
" tml %2,0xffff\n"
" jno 2f\n"
" ahi %0,16\n"
" srl %2,16\n"
"2: tml %2,0x00ff\n"
" jno 3f\n"
" ahi %0,8\n"
" srl %2,8\n"
"3: nr %2,%1\n"
" ic %2,0(%2,%5)\n"
" alr %0,%2\n"
"4:"
: "=&a" (res), "=&d" (cmp), "=&a" (count)
: "a" (size), "a" (addr), "a" (&_zb_findmap) : "cc" );
return (res < size) ? res : size;
}
static __inline__ int find_next_zero_bit (void * addr, int size, int offset)
{
unsigned long * p = ((unsigned long *) addr) + (offset >> 5);
unsigned long bitvec, reg;
int set, bit = offset & 31, res;
if (bit) {
/*
* Look for zero in first word
*/
bitvec = (*p) >> bit;
__asm__(" slr %0,%0\n"
" lhi %2,0xff\n"
" tml %1,0xffff\n"
" jno 0f\n"
" ahi %0,16\n"
" srl %1,16\n"
"0: tml %1,0x00ff\n"
" jno 1f\n"
" ahi %0,8\n"
" srl %1,8\n"
"1: nr %1,%2\n"
" ic %1,0(%1,%3)\n"
" alr %0,%1"
: "=&d" (set), "+a" (bitvec), "=&d" (reg)
: "a" (&_zb_findmap) : "cc" );
if (set < (32 - bit))
return set + offset;
offset += 32 - bit;
p++;
}
/*
* No zero yet, search remaining full words for a zero
*/
res = find_first_zero_bit (p, size - 32 * (p - (unsigned long *) addr));
return (offset + res);
}
/*
* ffz = Find First Zero in word. Undefined if no zero exists,
* so code should check against ~0UL first..
*/
static __inline__ unsigned long ffz(unsigned long word)
{
unsigned long reg;
int result;
__asm__(" slr %0,%0\n"
" lhi %2,0xff\n"
" tml %1,0xffff\n"
" jno 0f\n"
" ahi %0,16\n"
" srl %1,16\n"
"0: tml %1,0x00ff\n"
" jno 1f\n"
" ahi %0,8\n"
" srl %1,8\n"
"1: nr %1,%2\n"
" ic %1,0(%1,%3)\n"
" alr %0,%1"
: "=&d" (result), "+a" (word), "=&d" (reg)
: "a" (&_zb_findmap) : "cc" );
return result;
}
/*
* ffs: find first bit set. This is defined the same way as
* the libc and compiler builtin ffs routines, therefore
* differs in spirit from the above ffz (man ffs).
*/
extern int __inline__ ffs (int x)
{
int r;
if (x == 0)
return 0;
__asm__(" slr %0,%0\n"
" tml %1,0xffff\n"
" jnz 0f\n"
" ahi %0,16\n"
" srl %1,16\n"
"0: tml %1,0x00ff\n"
" jnz 1f\n"
" ahi %0,8\n"
" srl %1,8\n"
"1: tml %1,0x000f\n"
" jnz 2f\n"
" ahi %0,4\n"
" srl %1,4\n"
"2: tml %1,0x0003\n"
" jnz 3f\n"
" ahi %0,2\n"
" srl %1,2\n"
"3: tml %1,0x0001\n"
" jnz 4f\n"
" ahi %0,1\n"
"4:"
: "=&d" (r), "+d" (x) : : "cc" );
return r+1;
}
/*
* hweightN: returns the hamming weight (i.e. the number
* of bits set) of a N-bit word
*/
#define hweight32(x) generic_hweight32(x)
#define hweight16(x) generic_hweight16(x)
#define hweight8(x) generic_hweight8(x)
#ifdef __KERNEL__
/*
* ATTENTION: intel byte ordering convention for ext2 and minix !!
* bit 0 is the LSB of addr; bit 31 is the MSB of addr;
* bit 32 is the LSB of (addr+4).
* That combined with the little endian byte order of Intel gives the
* following bit order in memory:
* 07 06 05 04 03 02 01 00 15 14 13 12 11 10 09 08 \
* 23 22 21 20 19 18 17 16 31 30 29 28 27 26 25 24
*/
#define ext2_set_bit(nr, addr) test_and_set_bit((nr)^24, addr)
#define ext2_clear_bit(nr, addr) test_and_clear_bit((nr)^24, addr)
#define ext2_test_bit(nr, addr) test_bit((nr)^24, addr)
static __inline__ int ext2_find_first_zero_bit(void *vaddr, unsigned size)
{
unsigned long cmp, count;
int res;
if (!size)
return 0;
__asm__(" lhi %1,-1\n"
" lr %2,%3\n"
" ahi %2,31\n"
" srl %2,5\n"
" slr %0,%0\n"
"0: cl %1,0(%0,%4)\n"
" jne 1f\n"
" ahi %0,4\n"
" brct %2,0b\n"
" lr %0,%3\n"
" j 4f\n"
"1: l %2,0(%0,%4)\n"
" sll %0,3\n"
" ahi %0,24\n"
" lhi %1,0xff\n"
" tmh %2,0xffff\n"
" jo 2f\n"
" ahi %0,-16\n"
" srl %2,16\n"
"2: tml %2,0xff00\n"
" jo 3f\n"
" ahi %0,-8\n"
" srl %2,8\n"
"3: nr %2,%1\n"
" ic %2,0(%2,%5)\n"
" alr %0,%2\n"
"4:"
: "=&a" (res), "=&d" (cmp), "=&a" (count)
: "a" (size), "a" (vaddr), "a" (&_zb_findmap) : "cc" );
return (res < size) ? res : size;
}
static __inline__ int
ext2_find_next_zero_bit(void *vaddr, unsigned size, unsigned offset)
{
unsigned long *addr = vaddr;
unsigned long *p = addr + (offset >> 5);
unsigned long word, reg;
int bit = offset & 31UL, res;
if (offset >= size)
return size;
if (bit) {
__asm__(" ic %0,0(%1)\n"
" icm %0,2,1(%1)\n"
" icm %0,4,2(%1)\n"
" icm %0,8,3(%1)"
: "=&a" (word) : "a" (p) : "cc" );
word >>= bit;
res = bit;
/* Look for zero in first longword */
__asm__(" lhi %2,0xff\n"
" tml %1,0xffff\n"
" jno 0f\n"
" ahi %0,16\n"
" srl %1,16\n"
"0: tml %1,0x00ff\n"
" jno 1f\n"
" ahi %0,8\n"
" srl %1,8\n"
"1: nr %1,%2\n"
" ic %1,0(%1,%3)\n"
" alr %0,%1"
: "+&d" (res), "+&a" (word), "=&d" (reg)
: "a" (&_zb_findmap) : "cc" );
if (res < 32)
return (p - addr)*32 + res;
p++;
}
/* No zero yet, search remaining full bytes for a zero */
res = ext2_find_first_zero_bit (p, size - 32 * (p - addr));
return (p - addr) * 32 + res;
}
/* Bitmap functions for the minix filesystem. */
/* FIXME !!! */
#define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)
#define minix_set_bit(nr,addr) set_bit(nr,addr)
#define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)
#define minix_test_bit(nr,addr) test_bit(nr,addr)
#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
#endif /* __KERNEL__ */
#endif /* _S390_BITOPS_H */