/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 1994 - 2001 by Ralf Baechle at alii
* Copyright (C) 1999, 2000, 2001 Silicon Graphics, Inc.
*/
#ifndef _ASM_PGTABLE_H
#define _ASM_PGTABLE_H
#include <linux/config.h>
#include <asm/addrspace.h>
#include <asm/page.h>
#ifndef __ASSEMBLY__
#include <linux/linkage.h>
#include <asm/cacheflush.h>
#include <linux/mmzone.h>
#include <asm/cachectl.h>
#include <asm/io.h>
/*
* This flag is used to indicate that the page pointed to by a pte
* is dirty and requires cleaning before returning it to the user.
*/
#define PG_dcache_dirty PG_arch_1
#define Page_dcache_dirty(page) \
test_bit(PG_dcache_dirty, &(page)->flags)
#define SetPageDcacheDirty(page) \
set_bit(PG_dcache_dirty, &(page)->flags)
#define ClearPageDcacheDirty(page) \
clear_bit(PG_dcache_dirty, &(page)->flags)
/*
* Each address space has 2 4K pages as its page directory, giving 1024
* (== PTRS_PER_PGD) 8 byte pointers to pmd tables. Each pmd table is a
* pair of 4K pages, giving 1024 (== PTRS_PER_PMD) 8 byte pointers to
* page tables. Each page table is a single 4K page, giving 512 (==
* PTRS_PER_PTE) 8 byte ptes. Each pgde is initialized to point to
* invalid_pmd_table, each pmde is initialized to point to
* invalid_pte_table, each pte is initialized to 0. When memory is low,
* and a pmd table or a page table allocation fails, empty_bad_pmd_table
* and empty_bad_page_table is returned back to higher layer code, so
* that the failure is recognized later on. Linux does not seem to
* handle these failures very well though. The empty_bad_page_table has
* invalid pte entries in it, to force page faults.
* Vmalloc handling: vmalloc uses swapper_pg_dir[0] (returned by
* pgd_offset_k), which is initalized to point to kpmdtbl. kpmdtbl is
* the only single page pmd in the system. kpmdtbl entries point into
* kptbl[] array. We reserve 1 << PGD_ORDER pages to hold the
* vmalloc range translations, which the fault handler looks at.
*/
#endif /* !__ASSEMBLY__ */
/* PMD_SHIFT determines the size of the area a second-level page table can map */
#define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT - 3))
#define PMD_SIZE (1UL << PMD_SHIFT)
#define PMD_MASK (~(PMD_SIZE-1))
/* PGDIR_SHIFT determines what a third-level page table entry can map */
#define PGDIR_SHIFT (PMD_SHIFT + (PAGE_SHIFT + 1 - 3))
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
#define PGD_T_LOG2 ffz(~sizeof(pgd_t))
#define PMD_T_LOG2 ffz(~sizeof(pmd_t))
#define PTE_T_LOG2 ffz(~sizeof(pte_t))
/*
* For 4kB page size we use a 3 level page tree and a 8kB pmd and pgds which
* permits us mapping 40 bits of virtual address space.
*
* We used to implement 41 bits by having an order 1 pmd level but that seemed
* rather pointless.
*
* For 16kB page size we use a 2 level page tree which permit a total of
* 36 bits of virtual address space. We could add a third leve. but it seems
* like at the moment there's no need for this.
*
* For 64kB page size we use a 2 level page table tree for a total of 42 bits
* of virtual address space.
*/
#ifdef CONFIG_PAGE_SIZE_4KB
#define PGD_ORDER 1
#define PMD_ORDER 1
#define PTE_ORDER 0
#endif
#ifdef CONFIG_PAGE_SIZE_16KB
#define PGD_ORDER 0
#define PMD_ORDER 0
#define PTE_ORDER 0
#endif
#ifdef CONFIG_PAGE_SIZE_64KB
#define PGD_ORDER 0
#define PMD_ORDER 0
#define PTE_ORDER 0
#endif
#define PTRS_PER_PGD ((PAGE_SIZE << PGD_ORDER) / sizeof(pgd_t))
#define PTRS_PER_PMD ((PAGE_SIZE << PMD_ORDER) / sizeof(pmd_t))
#define PTRS_PER_PTE ((PAGE_SIZE << PTE_ORDER) / sizeof(pte_t))
#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
#define FIRST_USER_PGD_NR 0
#define VMALLOC_START XKSEG
#define VMALLOC_VMADDR(x) ((unsigned long)(x))
#define VMALLOC_END \
(VMALLOC_START + ((1 << PGD_ORDER) * PTRS_PER_PTE * PAGE_SIZE))
#include <asm/pgtable-bits.h>
#define PAGE_NONE __pgprot(_PAGE_PRESENT | _CACHE_CACHABLE_NONCOHERENT)
#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
PAGE_CACHABLE_DEFAULT)
#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_READ | \
PAGE_CACHABLE_DEFAULT)
#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_READ | \
PAGE_CACHABLE_DEFAULT)
#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | __READABLE | __WRITEABLE | \
_PAGE_GLOBAL | PAGE_CACHABLE_DEFAULT)
#define PAGE_USERIO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
PAGE_CACHABLE_DEFAULT)
#define PAGE_KERNEL_UNCACHED __pgprot(_PAGE_PRESENT | __READABLE | \
__WRITEABLE | _PAGE_GLOBAL | _CACHE_UNCACHED)
/*
* MIPS can't do page protection for execute, and considers that the same like
* read. Also, write permissions imply read permissions. This is the closest
* we can get by reasonable means..
*/
#define __P000 PAGE_NONE
#define __P001 PAGE_READONLY
#define __P010 PAGE_COPY
#define __P011 PAGE_COPY
#define __P100 PAGE_READONLY
#define __P101 PAGE_READONLY
#define __P110 PAGE_COPY
#define __P111 PAGE_COPY
#define __S000 PAGE_NONE
#define __S001 PAGE_READONLY
#define __S010 PAGE_SHARED
#define __S011 PAGE_SHARED
#define __S100 PAGE_READONLY
#define __S101 PAGE_READONLY
#define __S110 PAGE_SHARED
#define __S111 PAGE_SHARED
#ifndef __ASSEMBLY__
#define pte_ERROR(e) \
printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
#define pmd_ERROR(e) \
printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
#define pgd_ERROR(e) \
printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
/*
* ZERO_PAGE is a global shared page that is always zero: used
* for zero-mapped memory areas etc..
*/
extern unsigned long empty_zero_page;
extern unsigned long zero_page_mask;
#define ZERO_PAGE(vaddr) \
(virt_to_page(empty_zero_page + (((unsigned long)(vaddr)) & zero_page_mask)))
extern pte_t invalid_pte_table[PAGE_SIZE/sizeof(pte_t)];
extern pte_t empty_bad_page_table[PAGE_SIZE/sizeof(pte_t)];
extern pmd_t invalid_pmd_table[2*PAGE_SIZE/sizeof(pmd_t)];
extern pmd_t empty_bad_pmd_table[2*PAGE_SIZE/sizeof(pmd_t)];
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
static inline unsigned long pmd_page(pmd_t pmd)
{
return pmd_val(pmd);
}
static inline unsigned long pgd_page(pgd_t pgd)
{
return pgd_val(pgd);
}
static inline void pmd_set(pmd_t * pmdp, pte_t * ptep)
{
pmd_val(*pmdp) = (((unsigned long) ptep) & PAGE_MASK);
}
static inline void pgd_set(pgd_t * pgdp, pmd_t * pmdp)
{
pgd_val(*pgdp) = (((unsigned long) pmdp) & PAGE_MASK);
}
static inline int pte_none(pte_t pte)
{
return !(pte_val(pte) & ~_PAGE_GLOBAL);
}
static inline int pte_present(pte_t pte)
{
return pte_val(pte) & _PAGE_PRESENT;
}
/*
* Certain architectures need to do special things when pte's
* within a page table are directly modified. Thus, the following
* hook is made available.
*/
static inline void set_pte(pte_t *ptep, pte_t pteval)
{
*ptep = pteval;
#if !defined(CONFIG_CPU_R3000) && !defined(CONFIG_CPU_TX39XX)
if (pte_val(pteval) & _PAGE_GLOBAL) {
pte_t *buddy = ptep_buddy(ptep);
/*
* Make sure the buddy is global too (if it's !none,
* it better already be global)
*/
if (pte_none(*buddy))
pte_val(*buddy) = pte_val(*buddy) | _PAGE_GLOBAL;
}
#endif
}
static inline void pte_clear(pte_t *ptep)
{
#if !defined(CONFIG_CPU_R3000) && !defined(CONFIG_CPU_TX39XX)
/* Preserve global status for the pair */
if (pte_val(*ptep_buddy(ptep)) & _PAGE_GLOBAL)
set_pte(ptep, __pte(_PAGE_GLOBAL));
else
#endif
set_pte(ptep, __pte(0));
}
/*
* (pmds are folded into pgds so this doesn't get actually called,
* but the define is needed for a generic inline function.)
*/
#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
#define set_pgd(pgdptr, pgdval) (*(pgdptr) = pgdval)
/*
* Empty pmd entries point to the invalid_pte_table.
*/
static inline int pmd_none(pmd_t pmd)
{
return pmd_val(pmd) == (unsigned long) invalid_pte_table;
}
static inline int pmd_bad(pmd_t pmd)
{
return pmd_val(pmd) &~ PAGE_MASK;
}
static inline int pmd_present(pmd_t pmd)
{
return pmd_val(pmd) != (unsigned long) invalid_pte_table;
}
static inline void pmd_clear(pmd_t *pmdp)
{
pmd_val(*pmdp) = ((unsigned long) invalid_pte_table);
}
/*
* Empty pgd entries point to the invalid_pmd_table.
*/
static inline int pgd_none(pgd_t pgd)
{
return pgd_val(pgd) == (unsigned long) invalid_pmd_table;
}
static inline int pgd_bad(pgd_t pgd)
{
return pgd_val(pgd) &~ PAGE_MASK;
}
static inline int pgd_present(pgd_t pgd)
{
return pgd_val(pgd) != (unsigned long) invalid_pmd_table;
}
static inline void pgd_clear(pgd_t *pgdp)
{
pgd_val(*pgdp) = ((unsigned long) invalid_pmd_table);
}
#ifndef CONFIG_DISCONTIGMEM
#define pte_page(x) (mem_map+(unsigned long)((pte_val(x) >> PAGE_SHIFT)))
#else
#define mips64_pte_pagenr(x) \
(PLAT_NODE_DATA_STARTNR(PHYSADDR_TO_NID(pte_val(x))) + \
PLAT_NODE_DATA_LOCALNR(pte_val(x), PHYSADDR_TO_NID(pte_val(x))))
#define pte_page(x) (mem_map+mips64_pte_pagenr(x))
#endif
/*
* The following only work if pte_present() is true.
* Undefined behaviour if not..
*/
static inline int pte_read(pte_t pte)
{
return pte_val(pte) & _PAGE_READ;
}
static inline int pte_write(pte_t pte)
{
return pte_val(pte) & _PAGE_WRITE;
}
static inline int pte_dirty(pte_t pte)
{
return pte_val(pte) & _PAGE_MODIFIED;
}
static inline int pte_young(pte_t pte)
{
return pte_val(pte) & _PAGE_ACCESSED;
}
static inline pte_t pte_wrprotect(pte_t pte)
{
pte_val(pte) &= ~(_PAGE_WRITE | _PAGE_SILENT_WRITE);
return pte;
}
static inline pte_t pte_rdprotect(pte_t pte)
{
pte_val(pte) &= ~(_PAGE_READ | _PAGE_SILENT_READ);
return pte;
}
static inline pte_t pte_mkclean(pte_t pte)
{
pte_val(pte) &= ~(_PAGE_MODIFIED|_PAGE_SILENT_WRITE);
return pte;
}
static inline pte_t pte_mkold(pte_t pte)
{
pte_val(pte) &= ~(_PAGE_ACCESSED|_PAGE_SILENT_READ);
return pte;
}
static inline pte_t pte_mkwrite(pte_t pte)
{
pte_val(pte) |= _PAGE_WRITE;
if (pte_val(pte) & _PAGE_MODIFIED)
pte_val(pte) |= _PAGE_SILENT_WRITE;
return pte;
}
static inline pte_t pte_mkread(pte_t pte)
{
pte_val(pte) |= _PAGE_READ;
if (pte_val(pte) & _PAGE_ACCESSED)
pte_val(pte) |= _PAGE_SILENT_READ;
return pte;
}
static inline pte_t pte_mkdirty(pte_t pte)
{
pte_val(pte) |= _PAGE_MODIFIED;
if (pte_val(pte) & _PAGE_WRITE)
pte_val(pte) |= _PAGE_SILENT_WRITE;
return pte;
}
static inline pte_t pte_mkyoung(pte_t pte)
{
pte_val(pte) |= _PAGE_ACCESSED;
if (pte_val(pte) & _PAGE_READ)
pte_val(pte) |= _PAGE_SILENT_READ;
return pte;
}
/*
* Macro to make mark a page protection value as "uncacheable". Note
* that "protection" is really a misnomer here as the protection value
* contains the memory attribute bits, dirty bits, and various other
* bits as well.
*/
#define pgprot_noncached pgprot_noncached
static inline pgprot_t pgprot_noncached(pgprot_t _prot)
{
unsigned long prot = pgprot_val(_prot);
prot = (prot & ~_CACHE_MASK) | _CACHE_UNCACHED;
return __pgprot(prot);
}
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
#ifndef CONFIG_DISCONTIGMEM
#define PAGE_TO_PA(page) ((page - mem_map) << PAGE_SHIFT)
#else
#define PAGE_TO_PA(page) \
((((page) - page_zone(page)->zone_mem_map) << PAGE_SHIFT) \
+ (page_zone(page)->zone_start_paddr))
#endif
#define mk_pte(page, pgprot) \
({ \
pte_t __pte; \
\
pte_val(__pte) = ((unsigned long)(PAGE_TO_PA(page))) | \
pgprot_val(pgprot); \
\
__pte; \
})
static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
{
return __pte(physpage | pgprot_val(pgprot));
}
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
}
#define page_pte(page) page_pte_prot(page, __pgprot(0))
/* to find an entry in a kernel page-table-directory */
#define pgd_offset_k(address) pgd_offset(&init_mm, 0)
#define pgd_index(address) ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
/* to find an entry in a page-table-directory */
static inline pgd_t *pgd_offset(struct mm_struct *mm, unsigned long address)
{
return mm->pgd + pgd_index(address);
}
/* Find an entry in the second-level page table.. */
static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
{
return (pmd_t *) pgd_page(*dir) +
((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
}
/* Find an entry in the third-level page table.. */
static inline pte_t *pte_offset(pmd_t * dir, unsigned long address)
{
return (pte_t *) (pmd_page(*dir)) +
((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
}
/*
* Initialize a new pgd / pmd table with invalid pointers.
*/
extern void pgd_init(unsigned long page);
extern void pmd_init(unsigned long page, unsigned long pagetable);
extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
extern void paging_init(void);
extern void __update_tlb(struct vm_area_struct *vma, unsigned long address,
pte_t pte);
extern void __update_cache(struct vm_area_struct *vma, unsigned long address,
pte_t pte);
static inline void update_mmu_cache(struct vm_area_struct *vma,
unsigned long address, pte_t pte)
{
__update_tlb(vma, address, pte);
__update_cache(vma, address, pte);
}
/*
* Non-present pages: high 24 bits are offset, next 8 bits type,
* low 32 bits zero.
*/
static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
{ pte_t pte; pte_val(pte) = (type << 32) | (offset << 40); return pte; }
#define SWP_TYPE(x) (((x).val >> 32) & 0xff)
#define SWP_OFFSET(x) ((x).val >> 40)
#define SWP_ENTRY(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
#define pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
#define swp_entry_to_pte(x) ((pte_t) { (x).val })
/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
#define PageSkip(page) (0)
#ifndef CONFIG_DISCONTIGMEM
#define kern_addr_valid(addr) (1)
#endif
/*
* No page table caches to initialise
*/
#define pgtable_cache_init() do { } while (0)
#include <asm-generic/pgtable.h>
/*
* We provide our own get_unmapped area to cope with the virtual aliasing
* constraints placed on us by the cache architecture.
*/
#define HAVE_ARCH_UNMAPPED_AREA
#define io_remap_page_range remap_page_range
#endif /* !__ASSEMBLY__ */
#endif /* _ASM_PGTABLE_H */