/* Driver for Datafab USB Compact Flash reader
*
* $Id: datafab.c,v 1.7 2002/02/25 00:40:13 mdharm Exp $
*
* datafab driver v0.1:
*
* First release
*
* Current development and maintenance by:
* (c) 2000 Jimmie Mayfield (mayfield+datafab@sackheads.org)
*
* Many thanks to Robert Baruch for the SanDisk SmartMedia reader driver
* which I used as a template for this driver.
*
* Some bugfixes and scatter-gather code by Gregory P. Smith
* (greg-usb@electricrain.com)
*
* Fix for media change by Joerg Schneider (js@joergschneider.com)
*
* Other contributors:
* (c) 2002 Alan Stern <stern@rowland.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2, or (at your option) any
* later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* This driver attempts to support USB CompactFlash reader/writer devices
* based on Datafab USB-to-ATA chips. It was specifically developed for the
* Datafab MDCFE-B USB CompactFlash reader but has since been found to work
* with a variety of Datafab-based devices from a number of manufacturers.
* I've received a report of this driver working with a Datafab-based
* SmartMedia device though please be aware that I'm personally unable to
* test SmartMedia support.
*
* This driver supports reading and writing. If you're truly paranoid,
* however, you can force the driver into a write-protected state by setting
* the WP enable bits in datafab_handle_mode_sense(). Basically this means
* setting mode_param_header[3] = 0x80.
*/
#include "transport.h"
#include "protocol.h"
#include "usb.h"
#include "debug.h"
#include "datafab.h"
#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/slab.h>
extern int usb_stor_bulk_msg(struct us_data *us, void *data, int pipe,
unsigned int len, unsigned int *act_len);
static int datafab_determine_lun(struct us_data *us, struct datafab_info *info);
static void datafab_dump_data(unsigned char *data, int len)
{
unsigned char buf[80];
int sofar = 0;
if (!data)
return;
memset(buf, 0, sizeof(buf));
for (sofar = 0; sofar < len; sofar++) {
sprintf(buf + strlen(buf), "%02x ",
((unsigned int) data[sofar]) & 0xFF);
if (sofar % 16 == 15) {
US_DEBUGP("datafab: %s\n", buf);
memset(buf, 0, sizeof(buf));
}
}
if (strlen(buf) != 0)
US_DEBUGP("datafab: %s\n", buf);
}
static int datafab_raw_bulk(int direction,
struct us_data *us,
unsigned char *data,
unsigned int len)
{
int result;
int act_len;
int pipe;
if (direction == SCSI_DATA_READ)
pipe = usb_rcvbulkpipe(us->pusb_dev, us->ep_in);
else
pipe = usb_sndbulkpipe(us->pusb_dev, us->ep_out);
result = usb_stor_bulk_msg(us, data, pipe, len, &act_len);
// if we stall, we need to clear it before we go on
if (result == -EPIPE) {
US_DEBUGP("datafab_raw_bulk: EPIPE. clearing endpoint halt for"
" pipe 0x%x, stalled at %d bytes\n", pipe, act_len);
usb_stor_clear_halt(us, pipe);
}
if (result) {
// NAK - that means we've retried a few times already
if (result == -ETIMEDOUT) {
US_DEBUGP("datafab_raw_bulk: device NAKed\n");
return US_BULK_TRANSFER_FAILED;
}
// -ECONNRESET -- we canceled this transfer
if (result == -ECONNRESET) {
US_DEBUGP("datafab_raw_bulk: transfer aborted\n");
return US_BULK_TRANSFER_ABORTED;
}
if (result == -EPIPE) {
US_DEBUGP("datafab_raw_bulk: output pipe stalled\n");
return USB_STOR_TRANSPORT_FAILED;
}
// the catch-all case
US_DEBUGP("datafab_raw_bulk: unknown error\n");
return US_BULK_TRANSFER_FAILED;
}
if (act_len != len) {
US_DEBUGP("datafab_raw_bulk: Warning. Transferred only %d bytes\n", act_len);
return US_BULK_TRANSFER_SHORT;
}
US_DEBUGP("datafab_raw_bulk: Transfered %d of %d bytes\n", act_len, len);
return US_BULK_TRANSFER_GOOD;
}
static inline int datafab_bulk_read(struct us_data *us,
unsigned char *data,
unsigned int len)
{
if (len == 0)
return USB_STOR_TRANSPORT_GOOD;
US_DEBUGP("datafab_bulk_read: len = %d\n", len);
return datafab_raw_bulk(SCSI_DATA_READ, us, data, len);
}
static inline int datafab_bulk_write(struct us_data *us,
unsigned char *data,
unsigned int len)
{
if (len == 0)
return USB_STOR_TRANSPORT_GOOD;
US_DEBUGP("datafab_bulk_write: len = %d\n", len);
return datafab_raw_bulk(SCSI_DATA_WRITE, us, data, len);
}
static int datafab_read_data(struct us_data *us,
struct datafab_info *info,
u32 sector,
u32 sectors,
unsigned char *dest,
int use_sg)
{
unsigned char command[8] = { 0, 0, 0, 0, 0, 0xE0, 0x20, 0x01 };
unsigned char *buffer = NULL;
unsigned char *ptr;
unsigned char thistime;
struct scatterlist *sg = NULL;
int totallen, len, result;
int sg_idx = 0, current_sg_offset = 0;
int transferred, rc;
// we're working in LBA mode. according to the ATA spec,
// we can support up to 28-bit addressing. I don't know if Datafab
// supports beyond 24-bit addressing. It's kind of hard to test
// since it requires > 8GB CF card.
//
if (sectors > 0x0FFFFFFF)
return USB_STOR_TRANSPORT_ERROR;
if (info->lun == -1) {
rc = datafab_determine_lun(us, info);
if (rc != USB_STOR_TRANSPORT_GOOD)
return rc;
}
command[5] += (info->lun << 4);
// If we're using scatter-gather, we have to create a new
// buffer to read all of the data in first, since a
// scatter-gather buffer could in theory start in the middle
// of a page, which would be bad. A developer who wants a
// challenge might want to write a limited-buffer
// version of this code.
totallen = sectors * info->ssize;
do {
// loop, never allocate or transfer more than 64k at once (min(128k, 255*info->ssize) is the real limit)
len = min_t(int, totallen, 65536);
if (use_sg) {
sg = (struct scatterlist *) dest;
buffer = kmalloc(len, GFP_NOIO);
if (buffer == NULL)
return USB_STOR_TRANSPORT_ERROR;
ptr = buffer;
} else {
ptr = dest;
}
thistime = (len / info->ssize) & 0xff;
command[0] = 0;
command[1] = thistime;
command[2] = sector & 0xFF;
command[3] = (sector >> 8) & 0xFF;
command[4] = (sector >> 16) & 0xFF;
command[5] |= (sector >> 24) & 0x0F;
// send the command
US_DEBUGP("datafab_read_data: sending following command\n");
datafab_dump_data(command, sizeof(command));
result = datafab_bulk_write(us, command, sizeof(command));
if (result != USB_STOR_TRANSPORT_GOOD) {
if (use_sg)
kfree(buffer);
return result;
}
// read the result
result = datafab_bulk_read(us, ptr, len);
if (result != USB_STOR_TRANSPORT_GOOD) {
if (use_sg)
kfree(buffer);
return result;
}
US_DEBUGP("datafab_read_data results: %d bytes\n", len);
// datafab_dump_data(ptr, len);
sectors -= thistime;
sector += thistime;
if (use_sg) {
transferred = 0;
while (sg_idx < use_sg && transferred < len) {
if (len - transferred >= sg[sg_idx].length - current_sg_offset) {
US_DEBUGP("datafab_read_data: adding %d bytes to %d byte sg buffer\n", sg[sg_idx].length - current_sg_offset, sg[sg_idx].length);
memcpy(sg[sg_idx].address + current_sg_offset,
buffer + transferred,
sg[sg_idx].length - current_sg_offset);
transferred += sg[sg_idx].length - current_sg_offset;
current_sg_offset = 0;
// on to the next sg buffer
++sg_idx;
} else {
US_DEBUGP("datafab_read_data: adding %d bytes to %d byte sg buffer\n", len - transferred, sg[sg_idx].length);
memcpy(sg[sg_idx].address + current_sg_offset,
buffer + transferred,
len - transferred);
current_sg_offset += len - transferred;
// this sg buffer is only partially full and we're out of data to copy in
break;
}
}
kfree(buffer);
} else {
dest += len;
}
totallen -= len;
} while (totallen > 0);
return USB_STOR_TRANSPORT_GOOD;
}
static int datafab_write_data(struct us_data *us,
struct datafab_info *info,
u32 sector,
u32 sectors,
unsigned char *src,
int use_sg)
{
unsigned char command[8] = { 0, 0, 0, 0, 0, 0xE0, 0x30, 0x02 };
unsigned char reply[2] = { 0, 0 };
unsigned char *buffer = NULL;
unsigned char *ptr;
unsigned char thistime;
struct scatterlist *sg = NULL;
int totallen, len, result;
int sg_idx = 0, current_sg_offset = 0;
int transferred, rc;
// we're working in LBA mode. according to the ATA spec,
// we can support up to 28-bit addressing. I don't know if Datafab
// supports beyond 24-bit addressing. It's kind of hard to test
// since it requires > 8GB CF card.
//
if (sectors > 0x0FFFFFFF)
return USB_STOR_TRANSPORT_ERROR;
if (info->lun == -1) {
rc = datafab_determine_lun(us, info);
if (rc != USB_STOR_TRANSPORT_GOOD)
return rc;
}
command[5] += (info->lun << 4);
// If we're using scatter-gather, we have to create a new
// buffer to read all of the data in first, since a
// scatter-gather buffer could in theory start in the middle
// of a page, which would be bad. A developer who wants a
// challenge might want to write a limited-buffer
// version of this code.
totallen = sectors * info->ssize;
do {
// loop, never allocate or transfer more than 64k at once (min(128k, 255*info->ssize) is the real limit)
len = min_t(int, totallen, 65536);
if (use_sg) {
sg = (struct scatterlist *) src;
buffer = kmalloc(len, GFP_NOIO);
if (buffer == NULL)
return USB_STOR_TRANSPORT_ERROR;
ptr = buffer;
memset(buffer, 0, len);
// copy the data from the sg bufs into the big contiguous buf
//
transferred = 0;
while (transferred < len) {
if (len - transferred >= sg[sg_idx].length - current_sg_offset) {
US_DEBUGP("datafab_write_data: getting %d bytes from %d byte sg buffer\n", sg[sg_idx].length - current_sg_offset, sg[sg_idx].length);
memcpy(ptr + transferred,
sg[sg_idx].address + current_sg_offset,
sg[sg_idx].length - current_sg_offset);
transferred += sg[sg_idx].length - current_sg_offset;
current_sg_offset = 0;
// on to the next sg buffer
++sg_idx;
} else {
US_DEBUGP("datafab_write_data: getting %d bytes from %d byte sg buffer\n", len - transferred, sg[sg_idx].length);
memcpy(ptr + transferred,
sg[sg_idx].address + current_sg_offset,
len - transferred);
current_sg_offset += len - transferred;
// we only copied part of this sg buffer
break;
}
}
} else {
ptr = src;
}
thistime = (len / info->ssize) & 0xff;
command[0] = 0;
command[1] = thistime;
command[2] = sector & 0xFF;
command[3] = (sector >> 8) & 0xFF;
command[4] = (sector >> 16) & 0xFF;
command[5] |= (sector >> 24) & 0x0F;
// send the command
US_DEBUGP("datafab_write_data: sending following command\n");
datafab_dump_data(command, sizeof(command));
result = datafab_bulk_write(us, command, sizeof(command));
if (result != USB_STOR_TRANSPORT_GOOD) {
if (use_sg)
kfree(buffer);
return result;
}
// send the data
result = datafab_bulk_write(us, ptr, len);
if (result != USB_STOR_TRANSPORT_GOOD) {
if (use_sg)
kfree(buffer);
return result;
}
// read the result
result = datafab_bulk_read(us, reply, sizeof(reply));
if (result != USB_STOR_TRANSPORT_GOOD) {
if (use_sg)
kfree(buffer);
return result;
}
if (reply[0] != 0x50 && reply[1] != 0) {
US_DEBUGP("datafab_write_data: Gah! write return code: %02x %02x\n", reply[0], reply[1]);
if (use_sg)
kfree(buffer);
return USB_STOR_TRANSPORT_ERROR;
}
sectors -= thistime;
sector += thistime;
if (use_sg) {
kfree(buffer);
} else {
src += len;
}
totallen -= len;
} while (totallen > 0);
return USB_STOR_TRANSPORT_GOOD;
}
static int datafab_determine_lun(struct us_data *us,
struct datafab_info *info)
{
// dual-slot readers can be thought of as dual-LUN devices. we need to
// determine which card slot is being used. we'll send an IDENTIFY DEVICE
// command and see which LUN responds...
//
// there might be a better way of doing this?
//
unsigned char command[8] = { 0, 1, 0, 0, 0, 0xa0, 0xec, 1 };
unsigned char buf[512];
int count = 0, rc;
if (!us || !info)
return USB_STOR_TRANSPORT_ERROR;
US_DEBUGP("datafab_determine_lun: locating...\n");
// we'll try 10 times before giving up...
//
while (count++ < 10) {
command[5] = 0xa0;
rc = datafab_bulk_write(us, command, 8);
if (rc != USB_STOR_TRANSPORT_GOOD)
return rc;
rc = datafab_bulk_read(us, buf, sizeof(buf));
if (rc == USB_STOR_TRANSPORT_GOOD) {
info->lun = 0;
return USB_STOR_TRANSPORT_GOOD;
}
command[5] = 0xb0;
rc = datafab_bulk_write(us, command, 8);
if (rc != USB_STOR_TRANSPORT_GOOD)
return rc;
rc = datafab_bulk_read(us, buf, sizeof(buf));
if (rc == USB_STOR_TRANSPORT_GOOD) {
info->lun = 1;
return USB_STOR_TRANSPORT_GOOD;
}
wait_ms(20);
}
return USB_STOR_TRANSPORT_FAILED;
}
static int datafab_id_device(struct us_data *us,
struct datafab_info *info)
{
// this is a variation of the ATA "IDENTIFY DEVICE" command...according
// to the ATA spec, 'Sector Count' isn't used but the Windows driver
// sets this bit so we do too...
//
unsigned char command[8] = { 0, 1, 0, 0, 0, 0xa0, 0xec, 1 };
unsigned char reply[512];
int rc;
if (!us || !info)
return USB_STOR_TRANSPORT_ERROR;
if (info->lun == -1) {
rc = datafab_determine_lun(us, info);
if (rc != USB_STOR_TRANSPORT_GOOD)
return rc;
}
command[5] += (info->lun << 4);
rc = datafab_bulk_write(us, command, 8);
if (rc != USB_STOR_TRANSPORT_GOOD)
return rc;
// we'll go ahead and extract the media capacity while we're here...
//
rc = datafab_bulk_read(us, reply, sizeof(reply));
if (rc == USB_STOR_TRANSPORT_GOOD) {
// capacity is at word offset 57-58
//
info->sectors = ((u32)(reply[117]) << 24) |
((u32)(reply[116]) << 16) |
((u32)(reply[115]) << 8) |
((u32)(reply[114]) );
}
return rc;
}
static int datafab_handle_mode_sense(struct us_data *us,
Scsi_Cmnd * srb,
unsigned char *ptr,
int sense_6)
{
unsigned char mode_param_header[8] = {
0, 0, 0, 0, 0, 0, 0, 0
};
unsigned char rw_err_page[12] = {
0x1, 0xA, 0x21, 1, 0, 0, 0, 0, 1, 0, 0, 0
};
unsigned char cache_page[12] = {
0x8, 0xA, 0x1, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
unsigned char rbac_page[12] = {
0x1B, 0xA, 0, 0x81, 0, 0, 0, 0, 0, 0, 0, 0
};
unsigned char timer_page[8] = {
0x1C, 0x6, 0, 0, 0, 0
};
unsigned char pc, page_code;
unsigned short total_len = 0;
unsigned short param_len, i = 0;
// most of this stuff is just a hack to get things working. the
// datafab reader doesn't present a SCSI interface so we
// fudge the SCSI commands...
//
if (sense_6)
param_len = srb->cmnd[4];
else
param_len = ((u16) (srb->cmnd[7]) >> 8) | ((u16) (srb->cmnd[8]));
pc = srb->cmnd[2] >> 6;
page_code = srb->cmnd[2] & 0x3F;
switch (pc) {
case 0x0:
US_DEBUGP("datafab_handle_mode_sense: Current values\n");
break;
case 0x1:
US_DEBUGP("datafab_handle_mode_sense: Changeable values\n");
break;
case 0x2:
US_DEBUGP("datafab_handle_mode_sense: Default values\n");
break;
case 0x3:
US_DEBUGP("datafab_handle_mode_sense: Saves values\n");
break;
}
mode_param_header[3] = 0x80; // write enable
switch (page_code) {
case 0x0:
// vendor-specific mode
return USB_STOR_TRANSPORT_ERROR;
case 0x1:
total_len = sizeof(rw_err_page);
mode_param_header[0] = total_len >> 8;
mode_param_header[1] = total_len & 0xFF;
mode_param_header[3] = 0x00; // WP enable: 0x80
memcpy(ptr, mode_param_header, sizeof(mode_param_header));
i += sizeof(mode_param_header);
memcpy(ptr + i, rw_err_page, sizeof(rw_err_page));
break;
case 0x8:
total_len = sizeof(cache_page);
mode_param_header[0] = total_len >> 8;
mode_param_header[1] = total_len & 0xFF;
mode_param_header[3] = 0x00; // WP enable: 0x80
memcpy(ptr, mode_param_header, sizeof(mode_param_header));
i += sizeof(mode_param_header);
memcpy(ptr + i, cache_page, sizeof(cache_page));
break;
case 0x1B:
total_len = sizeof(rbac_page);
mode_param_header[0] = total_len >> 8;
mode_param_header[1] = total_len & 0xFF;
mode_param_header[3] = 0x00; // WP enable: 0x80
memcpy(ptr, mode_param_header, sizeof(mode_param_header));
i += sizeof(mode_param_header);
memcpy(ptr + i, rbac_page, sizeof(rbac_page));
break;
case 0x1C:
total_len = sizeof(timer_page);
mode_param_header[0] = total_len >> 8;
mode_param_header[1] = total_len & 0xFF;
mode_param_header[3] = 0x00; // WP enable: 0x80
memcpy(ptr, mode_param_header, sizeof(mode_param_header));
i += sizeof(mode_param_header);
memcpy(ptr + i, timer_page, sizeof(timer_page));
break;
case 0x3F: // retrieve all pages
total_len = sizeof(timer_page) + sizeof(rbac_page) +
sizeof(cache_page) + sizeof(rw_err_page);
mode_param_header[0] = total_len >> 8;
mode_param_header[1] = total_len & 0xFF;
mode_param_header[3] = 0x00; // WP enable
memcpy(ptr, mode_param_header, sizeof(mode_param_header));
i += sizeof(mode_param_header);
memcpy(ptr + i, timer_page, sizeof(timer_page));
i += sizeof(timer_page);
memcpy(ptr + i, rbac_page, sizeof(rbac_page));
i += sizeof(rbac_page);
memcpy(ptr + i, cache_page, sizeof(cache_page));
i += sizeof(cache_page);
memcpy(ptr + i, rw_err_page, sizeof(rw_err_page));
break;
}
return USB_STOR_TRANSPORT_GOOD;
}
void datafab_info_destructor(void *extra)
{
// this routine is a placeholder...
// currently, we don't allocate any extra memory so we're okay
}
// Transport for the Datafab MDCFE-B
//
int datafab_transport(Scsi_Cmnd * srb, struct us_data *us)
{
struct datafab_info *info;
int rc;
unsigned long block, blocks;
unsigned char *ptr = NULL;
unsigned char inquiry_reply[36] = {
0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
};
if (!us->extra) {
us->extra = kmalloc(sizeof(struct datafab_info), GFP_NOIO);
if (!us->extra) {
US_DEBUGP("datafab_transport: Gah! Can't allocate storage for Datafab info struct!\n");
return USB_STOR_TRANSPORT_ERROR;
}
memset(us->extra, 0, sizeof(struct datafab_info));
us->extra_destructor = datafab_info_destructor;
((struct datafab_info *)us->extra)->lun = -1;
}
info = (struct datafab_info *) (us->extra);
ptr = (unsigned char *) srb->request_buffer;
if (srb->cmnd[0] == INQUIRY) {
US_DEBUGP("datafab_transport: INQUIRY. Returning bogus response");
memset( inquiry_reply + 8, 0, 28 );
fill_inquiry_response(us, inquiry_reply, 36);
return USB_STOR_TRANSPORT_GOOD;
}
if (srb->cmnd[0] == READ_CAPACITY) {
unsigned int max_sector;
info->ssize = 0x200; // hard coded 512 byte sectors as per ATA spec
rc = datafab_id_device(us, info);
if (rc != USB_STOR_TRANSPORT_GOOD)
return rc;
US_DEBUGP("datafab_transport: READ_CAPACITY: "
"%ld sectors, %ld bytes per sector\n",
info->sectors, info->ssize);
// build the reply
//
max_sector = info->sectors - 1;
ptr[0] = (max_sector >> 24) & 0xFF;
ptr[1] = (max_sector >> 16) & 0xFF;
ptr[2] = (max_sector >> 8) & 0xFF;
ptr[3] = (max_sector) & 0xFF;
ptr[4] = (info->ssize >> 24) & 0xFF;
ptr[5] = (info->ssize >> 16) & 0xFF;
ptr[6] = (info->ssize >> 8) & 0xFF;
ptr[7] = (info->ssize) & 0xFF;
return USB_STOR_TRANSPORT_GOOD;
}
if (srb->cmnd[0] == MODE_SELECT_10) {
US_DEBUGP("datafab_transport: Gah! MODE_SELECT_10.\n");
return USB_STOR_TRANSPORT_ERROR;
}
// don't bother implementing READ_6 or WRITE_6. Just set MODE_XLATE and
// let the usb storage code convert to READ_10/WRITE_10
//
if (srb->cmnd[0] == READ_10) {
block = ((u32)(srb->cmnd[2]) << 24) | ((u32)(srb->cmnd[3]) << 16) |
((u32)(srb->cmnd[4]) << 8) | ((u32)(srb->cmnd[5]));
blocks = ((u32)(srb->cmnd[7]) << 8) | ((u32)(srb->cmnd[8]));
US_DEBUGP("datafab_transport: READ_10: read block 0x%04lx count %ld\n", block, blocks);
return datafab_read_data(us, info, block, blocks, ptr, srb->use_sg);
}
if (srb->cmnd[0] == READ_12) {
// we'll probably never see a READ_12 but we'll do it anyway...
//
block = ((u32)(srb->cmnd[2]) << 24) | ((u32)(srb->cmnd[3]) << 16) |
((u32)(srb->cmnd[4]) << 8) | ((u32)(srb->cmnd[5]));
blocks = ((u32)(srb->cmnd[6]) << 24) | ((u32)(srb->cmnd[7]) << 16) |
((u32)(srb->cmnd[8]) << 8) | ((u32)(srb->cmnd[9]));
US_DEBUGP("datafab_transport: READ_12: read block 0x%04lx count %ld\n", block, blocks);
return datafab_read_data(us, info, block, blocks, ptr, srb->use_sg);
}
if (srb->cmnd[0] == WRITE_10) {
block = ((u32)(srb->cmnd[2]) << 24) | ((u32)(srb->cmnd[3]) << 16) |
((u32)(srb->cmnd[4]) << 8) | ((u32)(srb->cmnd[5]));
blocks = ((u32)(srb->cmnd[7]) << 8) | ((u32)(srb->cmnd[8]));
US_DEBUGP("datafab_transport: WRITE_10: write block 0x%04lx count %ld\n", block, blocks);
return datafab_write_data(us, info, block, blocks, ptr, srb->use_sg);
}
if (srb->cmnd[0] == WRITE_12) {
// we'll probably never see a WRITE_12 but we'll do it anyway...
//
block = ((u32)(srb->cmnd[2]) << 24) | ((u32)(srb->cmnd[3]) << 16) |
((u32)(srb->cmnd[4]) << 8) | ((u32)(srb->cmnd[5]));
blocks = ((u32)(srb->cmnd[6]) << 24) | ((u32)(srb->cmnd[7]) << 16) |
((u32)(srb->cmnd[8]) << 8) | ((u32)(srb->cmnd[9]));
US_DEBUGP("datafab_transport: WRITE_12: write block 0x%04lx count %ld\n", block, blocks);
return datafab_write_data(us, info, block, blocks, ptr, srb->use_sg);
}
if (srb->cmnd[0] == TEST_UNIT_READY) {
US_DEBUGP("datafab_transport: TEST_UNIT_READY.\n");
return datafab_id_device(us, info);
}
if (srb->cmnd[0] == REQUEST_SENSE) {
US_DEBUGP("datafab_transport: REQUEST_SENSE. Returning faked response\n");
// this response is pretty bogus right now. eventually if necessary
// we can set the correct sense data. so far though it hasn't been
// necessary
//
ptr[0] = 0xF0;
ptr[2] = info->sense_key;
ptr[7] = 11;
ptr[12] = info->sense_asc;
ptr[13] = info->sense_ascq;
return USB_STOR_TRANSPORT_GOOD;
}
if (srb->cmnd[0] == MODE_SENSE) {
US_DEBUGP("datafab_transport: MODE_SENSE_6 detected\n");
return datafab_handle_mode_sense(us, srb, ptr, TRUE);
}
if (srb->cmnd[0] == MODE_SENSE_10) {
US_DEBUGP("datafab_transport: MODE_SENSE_10 detected\n");
return datafab_handle_mode_sense(us, srb, ptr, FALSE);
}
if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
// sure. whatever. not like we can stop the user from
// popping the media out of the device (no locking doors, etc)
//
return USB_STOR_TRANSPORT_GOOD;
}
if (srb->cmnd[0] == START_STOP) {
/* this is used by sd.c'check_scsidisk_media_change to detect
media change */
US_DEBUGP("datafab_transport: START_STOP.\n");
/* the first datafab_id_device after a media change returns
an error (determined experimentally) */
rc = datafab_id_device(us, info);
if (rc == USB_STOR_TRANSPORT_GOOD) {
info->sense_key = NO_SENSE;
srb->result = SUCCESS;
} else {
info->sense_key = UNIT_ATTENTION;
srb->result = CHECK_CONDITION;
}
return rc;
}
US_DEBUGP("datafab_transport: Gah! Unknown command: %d (0x%x)\n", srb->cmnd[0], srb->cmnd[0]);
return USB_STOR_TRANSPORT_ERROR;
}