File: [Development] / linux-2.4-xfs / drivers / usb / hid-core.c (download)
Revision 1.7, Wed Dec 21 14:32:30 2005 UTC (11 years, 10 months ago) by nathans.longdrop.melbourne.sgi.com
Branch: MAIN
CVS Tags: HEAD Changes since 1.6: +0 -0
lines
Merge up to 2.4.32.
Merge of 2.4.x-xfs-melb:linux:24898a by kenmcd.
|
/*
* $Id: hid-core.c,v 1.8 2001/05/23 12:02:18 vojtech Exp $
*
* Copyright (c) 1999 Andreas Gal
* Copyright (c) 2000-2001 Vojtech Pavlik
*
* USB HID support for Linux
*
* Sponsored by SuSE
*/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Should you need to contact me, the author, you can do so either by
* e-mail - mail your message to <vojtech@suse.cz>, or by paper mail:
* Vojtech Pavlik, Ucitelska 1576, Prague 8, 182 00 Czech Republic
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/smp_lock.h>
#include <linux/spinlock.h>
#include <asm/unaligned.h>
#include <linux/input.h>
#undef DEBUG
#undef DEBUG_DATA
#include <linux/usb.h>
#include "hid.h"
#include <linux/hiddev.h>
/*
* Version Information
*/
#define DRIVER_VERSION "v1.8.1"
#define DRIVER_AUTHOR "Andreas Gal, Vojtech Pavlik <vojtech@suse.cz>"
#define DRIVER_DESC "USB HID support drivers"
#if defined(CONFIG_KDB_USB)
#include <linux/kdb.h>
extern struct kdb_usb_exchange kdb_usb_infos;
struct hid_device *hid_kbd = NULL;
/* kdb_usb_hid_reset_timer
* This function reset the timer in the input_dev structure
* If you don't do that you'll be unable to exit KDB in the case
* you've entered by pressing the Pause key
*/
void hid_reset_timer(void)
{
struct list_head *lh;
struct hid_input *hidinput;
list_for_each (lh, &hid_kbd->inputs) {
hidinput = list_entry(lh, struct hid_input, list);
if(hidinput->input.timer.list.next)
list_del(&hidinput->input.timer.list);
}
}
#endif /* CONFIG_KDB_USB */
static char *hid_types[] = {"Device", "Pointer", "Mouse", "Device", "Joystick",
"Gamepad", "Keyboard", "Keypad", "Multi-Axis Controller"};
/*
* Register a new report for a device.
*/
static struct hid_report *hid_register_report(struct hid_device *device, unsigned type, unsigned id)
{
struct hid_report_enum *report_enum = device->report_enum + type;
struct hid_report *report;
if (report_enum->report_id_hash[id])
return report_enum->report_id_hash[id];
if (!(report = kmalloc(sizeof(struct hid_report), GFP_KERNEL)))
return NULL;
memset(report, 0, sizeof(struct hid_report));
if (id != 0) report_enum->numbered = 1;
report->id = id;
report->type = type;
report->size = 0;
report->device = device;
report_enum->report_id_hash[id] = report;
list_add_tail(&report->list, &report_enum->report_list);
return report;
}
/*
* Register a new field for this report.
*/
static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
{
struct hid_field *field;
if (report->maxfield == HID_MAX_FIELDS) {
dbg("too many fields in report");
return NULL;
}
if (!(field = kmalloc(sizeof(struct hid_field) + usages * sizeof(struct hid_usage)
+ values * sizeof(unsigned), GFP_KERNEL))) return NULL;
memset(field, 0, sizeof(struct hid_field) + usages * sizeof(struct hid_usage)
+ values * sizeof(unsigned));
report->field[report->maxfield] = field;
field->usage = (struct hid_usage *)(field + 1);
field->value = (unsigned *)(field->usage + usages);
field->report = report;
field->index = report->maxfield++;
return field;
}
/*
* Open a collection. The type/usage is pushed on the stack.
*/
static int open_collection(struct hid_parser *parser, unsigned type)
{
struct hid_collection *collection;
unsigned usage;
usage = parser->local.usage[0];
if (parser->collection_stack_ptr == HID_COLLECTION_STACK_SIZE) {
dbg("collection stack overflow");
return -1;
}
if (parser->device->maxcollection == parser->device->collection_size) {
collection = kmalloc(sizeof(struct hid_collection) *
parser->device->collection_size * 2,
GFP_KERNEL);
if (collection == NULL) {
dbg("failed to reallocate collection array");
return -1;
}
memcpy(collection, parser->device->collection,
sizeof(struct hid_collection) *
parser->device->collection_size);
memset(collection + parser->device->collection_size, 0,
sizeof(struct hid_collection) *
parser->device->collection_size);
kfree(parser->device->collection);
parser->device->collection = collection;
parser->device->collection_size *= 2;
}
parser->collection_stack[parser->collection_stack_ptr++] =
parser->device->maxcollection;
collection = parser->device->collection +
parser->device->maxcollection++;
collection->type = type;
collection->usage = usage;
collection->level = parser->collection_stack_ptr - 1;
if (type == HID_COLLECTION_APPLICATION)
parser->device->maxapplication++;
return 0;
}
/*
* Close a collection.
*/
static int close_collection(struct hid_parser *parser)
{
if (!parser->collection_stack_ptr) {
dbg("collection stack underflow");
return -1;
}
parser->collection_stack_ptr--;
return 0;
}
/*
* Climb up the stack, search for the specified collection type
* and return the usage.
*/
static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
{
int n;
for (n = parser->collection_stack_ptr - 1; n >= 0; n--)
if (parser->device->collection[parser->collection_stack[n]].type == type)
return parser->device->collection[parser->collection_stack[n]].usage;
return 0; /* we know nothing about this usage type */
}
/*
* Add a usage to the temporary parser table.
*/
static int hid_add_usage(struct hid_parser *parser, unsigned usage)
{
if (parser->local.usage_index >= HID_MAX_USAGES) {
dbg("usage index exceeded");
return -1;
}
parser->local.usage[parser->local.usage_index] = usage;
parser->local.collection_index[parser->local.usage_index] =
parser->collection_stack_ptr ?
parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
parser->local.usage_index++;
return 0;
}
/*
* Register a new field for this report.
*/
static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
{
struct hid_report *report;
struct hid_field *field;
int usages;
unsigned offset;
int i;
if (!(report = hid_register_report(parser->device, report_type, parser->global.report_id))) {
dbg("hid_register_report failed");
return -1;
}
if (parser->global.logical_maximum < parser->global.logical_minimum) {
dbg("logical range invalid %d %d", parser->global.logical_minimum, parser->global.logical_maximum);
return -1;
}
usages = parser->local.usage_index;
offset = report->size;
report->size += parser->global.report_size * parser->global.report_count;
if (usages < parser->global.report_count)
usages = parser->global.report_count;
if (usages == 0)
return 0; /* ignore padding fields */
if ((field = hid_register_field(report, usages, parser->global.report_count)) == NULL)
return 0;
field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
field->application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
for (i = 0; i < usages; i++) {
int j = i;
/* Duplicate the last usage we parsed if we have excess values */
if (i >= parser->local.usage_index)
j = parser->local.usage_index - 1;
field->usage[i].hid = parser->local.usage[j];
field->usage[i].collection_index =
parser->local.collection_index[j];
}
field->maxusage = usages;
field->flags = flags;
field->report_offset = offset;
field->report_type = report_type;
field->report_size = parser->global.report_size;
field->report_count = parser->global.report_count;
field->logical_minimum = parser->global.logical_minimum;
field->logical_maximum = parser->global.logical_maximum;
field->physical_minimum = parser->global.physical_minimum;
field->physical_maximum = parser->global.physical_maximum;
field->unit_exponent = parser->global.unit_exponent;
field->unit = parser->global.unit;
return 0;
}
/*
* Read data value from item.
*/
static __inline__ __u32 item_udata(struct hid_item *item)
{
switch (item->size) {
case 1: return item->data.u8;
case 2: return item->data.u16;
case 4: return item->data.u32;
}
return 0;
}
static __inline__ __s32 item_sdata(struct hid_item *item)
{
switch (item->size) {
case 1: return item->data.s8;
case 2: return item->data.s16;
case 4: return item->data.s32;
}
return 0;
}
/*
* Process a global item.
*/
static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
{
switch (item->tag) {
case HID_GLOBAL_ITEM_TAG_PUSH:
if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
dbg("global enviroment stack overflow");
return -1;
}
memcpy(parser->global_stack + parser->global_stack_ptr++,
&parser->global, sizeof(struct hid_global));
return 0;
case HID_GLOBAL_ITEM_TAG_POP:
if (!parser->global_stack_ptr) {
dbg("global enviroment stack underflow");
return -1;
}
memcpy(&parser->global, parser->global_stack + --parser->global_stack_ptr,
sizeof(struct hid_global));
return 0;
case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
parser->global.usage_page = item_udata(item);
return 0;
case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
parser->global.logical_minimum = item_sdata(item);
return 0;
case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
if (parser->global.logical_minimum < 0)
parser->global.logical_maximum = item_sdata(item);
else
parser->global.logical_maximum = item_udata(item);
return 0;
case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
parser->global.physical_minimum = item_sdata(item);
return 0;
case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
if (parser->global.physical_minimum < 0)
parser->global.physical_maximum = item_sdata(item);
else
parser->global.physical_maximum = item_udata(item);
return 0;
case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
parser->global.unit_exponent = item_udata(item);
return 0;
case HID_GLOBAL_ITEM_TAG_UNIT:
parser->global.unit = item_udata(item);
return 0;
case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
if ((parser->global.report_size = item_udata(item)) > 32) {
dbg("invalid report_size %d", parser->global.report_size);
return -1;
}
return 0;
case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
if ((parser->global.report_count = item_udata(item)) > HID_MAX_USAGES) {
dbg("invalid report_count %d", parser->global.report_count);
return -1;
}
return 0;
case HID_GLOBAL_ITEM_TAG_REPORT_ID:
if ((parser->global.report_id = item_udata(item)) == 0) {
dbg("report_id 0 is invalid");
return -1;
}
return 0;
default:
dbg("unknown global tag 0x%x", item->tag);
return -1;
}
}
/*
* Process a local item.
*/
static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
{
__u32 data;
unsigned n;
if (item->size == 0) {
dbg("item data expected for local item");
return -1;
}
data = item_udata(item);
switch (item->tag) {
case HID_LOCAL_ITEM_TAG_DELIMITER:
if (data) {
/*
* We treat items before the first delimiter
* as global to all usage sets (branch 0).
* In the moment we process only these global
* items and the first delimiter set.
*/
if (parser->local.delimiter_depth != 0) {
dbg("nested delimiters");
return -1;
}
parser->local.delimiter_depth++;
parser->local.delimiter_branch++;
} else {
if (parser->local.delimiter_depth < 1) {
dbg("bogus close delimiter");
return -1;
}
parser->local.delimiter_depth--;
}
return 1;
case HID_LOCAL_ITEM_TAG_USAGE:
if (parser->local.delimiter_branch > 1) {
dbg("alternative usage ignored");
return 0;
}
if (item->size <= 2)
data = (parser->global.usage_page << 16) + data;
return hid_add_usage(parser, data);
case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
if (parser->local.delimiter_branch > 1) {
dbg("alternative usage ignored");
return 0;
}
if (item->size <= 2)
data = (parser->global.usage_page << 16) + data;
parser->local.usage_minimum = data;
return 0;
case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
if (parser->local.delimiter_branch > 1) {
dbg("alternative usage ignored");
return 0;
}
if (item->size <= 2)
data = (parser->global.usage_page << 16) + data;
for (n = parser->local.usage_minimum; n <= data; n++)
if (hid_add_usage(parser, n)) {
dbg("hid_add_usage failed\n");
return -1;
}
return 0;
default:
dbg("unknown local item tag 0x%x", item->tag);
return 0;
}
return 0;
}
/*
* Process a main item.
*/
static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
{
__u32 data;
int ret;
data = item_udata(item);
switch (item->tag) {
case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
ret = open_collection(parser, data & 0xff);
break;
case HID_MAIN_ITEM_TAG_END_COLLECTION:
ret = close_collection(parser);
break;
case HID_MAIN_ITEM_TAG_INPUT:
ret = hid_add_field(parser, HID_INPUT_REPORT, data);
break;
case HID_MAIN_ITEM_TAG_OUTPUT:
ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
break;
case HID_MAIN_ITEM_TAG_FEATURE:
ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
break;
default:
dbg("unknown main item tag 0x%x", item->tag);
ret = 0;
}
memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
return ret;
}
/*
* Process a reserved item.
*/
static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
{
dbg("reserved item type, tag 0x%x", item->tag);
return 0;
}
/*
* Free a report and all registered fields. The field->usage and
* field->value table's are allocated behind the field, so we need
* only to free(field) itself.
*/
static void hid_free_report(struct hid_report *report)
{
unsigned n;
for (n = 0; n < report->maxfield; n++)
kfree(report->field[n]);
if (report->data)
kfree(report->data);
kfree(report);
}
/*
* Free a device structure, all reports, and all fields.
*/
static void hid_free_device(struct hid_device *device)
{
unsigned i,j;
for (i = 0; i < HID_REPORT_TYPES; i++) {
struct hid_report_enum *report_enum = device->report_enum + i;
for (j = 0; j < 256; j++) {
struct hid_report *report = report_enum->report_id_hash[j];
if (report) hid_free_report(report);
}
}
if (device->rdesc) kfree(device->rdesc);
if (device->collection) kfree(device->collection);
}
/*
* Fetch a report description item from the data stream. We support long
* items, though they are not used yet.
*/
static __u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
{
if ((end - start) > 0) {
__u8 b = *start++;
item->type = (b >> 2) & 3;
item->tag = (b >> 4) & 15;
if (item->tag == HID_ITEM_TAG_LONG) {
item->format = HID_ITEM_FORMAT_LONG;
if ((end - start) >= 2) {
item->size = *start++;
item->tag = *start++;
if ((end - start) >= item->size) {
item->data.longdata = start;
start += item->size;
return start;
}
}
} else {
item->format = HID_ITEM_FORMAT_SHORT;
item->size = b & 3;
switch (item->size) {
case 0:
return start;
case 1:
if ((end - start) >= 1) {
item->data.u8 = *start++;
return start;
}
break;
case 2:
if ((end - start) >= 2) {
item->data.u16 = le16_to_cpu(get_unaligned((__u16*)start));
start = (__u8 *)((__u16 *)start + 1);
return start;
}
case 3:
item->size++;
if ((end - start) >= 4) {
item->data.u32 = le32_to_cpu(get_unaligned((__u32*)start));
start = (__u8 *)((__u32 *)start + 1);
return start;
}
}
}
}
return NULL;
}
/*
* Parse a report description into a hid_device structure. Reports are
* enumerated, fields are attached to these reports.
*/
static struct hid_device *hid_parse_report(__u8 *start, unsigned size)
{
struct hid_device *device;
struct hid_parser *parser;
struct hid_item item;
__u8 *end;
unsigned i;
static int (*dispatch_type[])(struct hid_parser *parser,
struct hid_item *item) = {
hid_parser_main,
hid_parser_global,
hid_parser_local,
hid_parser_reserved
};
if (!(device = kmalloc(sizeof(struct hid_device), GFP_KERNEL)))
return NULL;
memset(device, 0, sizeof(struct hid_device));
if (!(device->collection = kmalloc(sizeof(struct hid_collection) *
HID_DEFAULT_NUM_COLLECTIONS,
GFP_KERNEL))) {
kfree(device);
return NULL;
}
memset(device->collection, 0, sizeof(struct hid_collection) *
HID_DEFAULT_NUM_COLLECTIONS);
device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
for (i = 0; i < HID_REPORT_TYPES; i++)
INIT_LIST_HEAD(&device->report_enum[i].report_list);
if (!(device->rdesc = (__u8 *)kmalloc(size, GFP_KERNEL))) {
kfree(device->collection);
kfree(device);
return NULL;
}
memcpy(device->rdesc, start, size);
device->rsize = size;
if (!(parser = kmalloc(sizeof(struct hid_parser), GFP_KERNEL))) {
kfree(device->rdesc);
kfree(device->collection);
kfree(device);
return NULL;
}
memset(parser, 0, sizeof(struct hid_parser));
parser->device = device;
end = start + size;
while ((start = fetch_item(start, end, &item)) != 0) {
if (item.format != HID_ITEM_FORMAT_SHORT) {
dbg("unexpected long global item");
hid_free_device(device);
kfree(parser);
return NULL;
}
if (dispatch_type[item.type](parser, &item)) {
dbg("item %u %u %u %u parsing failed\n",
item.format, (unsigned)item.size, (unsigned)item.type, (unsigned)item.tag);
hid_free_device(device);
kfree(parser);
return NULL;
}
if (start == end) {
if (parser->collection_stack_ptr) {
dbg("unbalanced collection at end of report description");
hid_free_device(device);
kfree(parser);
return NULL;
}
if (parser->local.delimiter_depth) {
dbg("unbalanced delimiter at end of report description");
hid_free_device(device);
kfree(parser);
return NULL;
}
kfree(parser);
return device;
}
}
dbg("item fetching failed at offset %d\n", (int)(end - start));
hid_free_device(device);
kfree(parser);
return NULL;
}
/*
* Convert a signed n-bit integer to signed 32-bit integer. Common
* cases are done through the compiler, the screwed things has to be
* done by hand.
*/
static __inline__ __s32 snto32(__u32 value, unsigned n)
{
switch (n) {
case 8: return ((__s8)value);
case 16: return ((__s16)value);
case 32: return ((__s32)value);
}
return value & (1 << (n - 1)) ? value | (-1 << n) : value;
}
/*
* Convert a signed 32-bit integer to a signed n-bit integer.
*/
static __inline__ __u32 s32ton(__s32 value, unsigned n)
{
__s32 a = value >> (n - 1);
if (a && a != -1) return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
return value & ((1 << n) - 1);
}
/*
* Extract/implement a data field from/to a report.
*/
static __inline__ __u32 extract(__u8 *report, unsigned offset, unsigned n)
{
report += (offset >> 5) << 2; offset &= 31;
return (le64_to_cpu(get_unaligned((__u64*)report)) >> offset) & ((1 << n) - 1);
}
static __inline__ void implement(__u8 *report, unsigned offset, unsigned n, __u32 value)
{
report += (offset >> 5) << 2; offset &= 31;
put_unaligned((get_unaligned((__u64*)report)
& cpu_to_le64(~((((__u64) 1 << n) - 1) << offset)))
| cpu_to_le64((__u64)value << offset), (__u64*)report);
}
/*
* Search an array for a value.
*/
static __inline__ int search(__s32 *array, __s32 value, unsigned n)
{
while (n--) if (*array++ == value) return 0;
return -1;
}
static void hid_process_event(struct hid_device *hid, struct hid_field *field, struct hid_usage *usage, __s32 value)
{
hid_dump_input(usage, value);
if (hid->claimed & HID_CLAIMED_INPUT)
hidinput_hid_event(hid, field, usage, value);
if (hid->claimed & HID_CLAIMED_HIDDEV)
hiddev_hid_event(hid, field, usage, value);
}
/*
* Analyse a received field, and fetch the data from it. The field
* content is stored for next report processing (we do differential
* reporting to the layer).
*/
static void hid_input_field(struct hid_device *hid, struct hid_field *field, __u8 *data)
{
unsigned n;
unsigned count = field->report_count;
unsigned offset = field->report_offset;
unsigned size = field->report_size;
__s32 min = field->logical_minimum;
__s32 max = field->logical_maximum;
__s32 value[count]; /* WARNING: gcc specific */
for (n = 0; n < count; n++) {
value[n] = min < 0 ? snto32(extract(data, offset + n * size, size), size) :
extract(data, offset + n * size, size);
if (!(field->flags & HID_MAIN_ITEM_VARIABLE) /* Ignore report if ErrorRollOver */
&& value[n] >= min && value[n] <= max
&& field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
return;
}
for (n = 0; n < count; n++) {
if (HID_MAIN_ITEM_VARIABLE & field->flags) {
if (field->flags & HID_MAIN_ITEM_RELATIVE) {
if (!value[n]) continue;
} else {
if (value[n] == field->value[n]) continue;
}
hid_process_event(hid, field, &field->usage[n], value[n]);
continue;
}
if (field->value[n] >= min && field->value[n] <= max
&& field->usage[field->value[n] - min].hid
&& search(value, field->value[n], count))
hid_process_event(hid, field, &field->usage[field->value[n] - min], 0);
if (value[n] >= min && value[n] <= max
&& field->usage[value[n] - min].hid
&& search(field->value, value[n], count))
hid_process_event(hid, field, &field->usage[value[n] - min], 1);
}
memcpy(field->value, value, count * sizeof(__s32));
}
static int hid_input_report(int type, u8 *data, int len, struct hid_device *hid)
{
struct hid_report_enum *report_enum = hid->report_enum + type;
struct hid_report *report;
int n, size;
if (!len) {
dbg("empty report");
return -1;
}
#ifdef DEBUG_DATA
printk(KERN_DEBUG __FILE__ ": report (size %u) (%snumbered)\n", len, report_enum->numbered ? "" : "un");
#endif
n = 0; /* Normally report number is 0 */
if (report_enum->numbered) { /* Device uses numbered reports, data[0] is report number */
n = *data++;
len--;
}
if (!(report = report_enum->report_id_hash[n])) {
dbg("undefined report_id %d received", n);
#ifdef DEBUG
printk(KERN_DEBUG __FILE__ ": report (size %u) = ", len);
for (n = 0; n < len; n++)
printk(" %02x", data[n]);
printk("\n");
#endif
return -1;
}
if (hid->claimed & HID_CLAIMED_HIDDEV)
hiddev_report_event(hid, report);
size = ((report->size - 1) >> 3) + 1;
if (len < size) {
if (size <= 8) {
dbg("report %d is too short, (%d < %d)", report->id, len, size);
return -1;
}
/*
* Some low-speed devices have large reports and maxpacketsize 8.
* We buffer the data in that case and parse it when we got it all.
* Works only for unnumbered reports. Doesn't make sense for numbered
* reports anyway - then they don't need to be large.
*/
if (!report->data)
if (!(report->data = kmalloc(size, GFP_ATOMIC))) {
dbg("couldn't allocate report buffer");
return -1;
}
if (report->idx + len > size) {
dbg("report data buffer overflow");
report->idx = 0;
return -1;
}
memcpy(report->data + report->idx, data, len);
report->idx += len;
if (report->idx < size)
return 0;
data = report->data;
}
for (n = 0; n < report->maxfield; n++)
hid_input_field(hid, report->field[n], data);
report->idx = 0;
return 0;
}
/*
* Interrupt input handler.
*/
static void hid_irq(struct urb *urb)
{
if (urb->status) {
dbg("nonzero status in irq %d", urb->status);
return;
}
hid_input_report(HID_INPUT_REPORT, urb->transfer_buffer, urb->actual_length, urb->context);
}
/*
* hid_read_report() reads in report values without waiting for an irq urb.
*/
void hid_read_report(struct hid_device *hid, struct hid_report *report)
{
int len = ((report->size - 1) >> 3) + 1 + hid->report_enum[report->type].numbered;
u8 data[len];
int read;
if (hid->quirks & HID_QUIRK_NOGET)
return;
if ((read = usb_get_report(hid->dev, hid->ifnum, report->type + 1, report->id, data, len)) != len) {
dbg("reading report type %d id %d failed len %d read %d", report->type + 1, report->id, len, read);
return;
}
hid_input_report(report->type, data, len, hid);
}
/*
* Output the field into the report.
*/
static void hid_output_field(struct hid_field *field, __u8 *data)
{
unsigned count = field->report_count;
unsigned offset = field->report_offset;
unsigned size = field->report_size;
unsigned n;
for (n = 0; n < count; n++) {
if (field->logical_minimum < 0) /* signed values */
implement(data, offset + n * size, size, s32ton(field->value[n], size));
else /* unsigned values */
implement(data, offset + n * size, size, field->value[n]);
}
}
/*
* Create a report.
*/
void hid_output_report(struct hid_report *report, __u8 *data)
{
unsigned n;
for (n = 0; n < report->maxfield; n++)
hid_output_field(report->field[n], data);
}
/*
* Set a field value. The report this field belongs to has to be
* created and transfered to the device, to set this value in the
* device.
*/
int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
{
unsigned size = field->report_size;
hid_dump_input(field->usage + offset, value);
if (offset >= field->report_count) {
dbg("offset exceeds report_count");
return -1;
}
if (field->logical_minimum < 0) {
if (value != snto32(s32ton(value, size), size)) {
dbg("value %d is out of range", value);
return -1;
}
}
if ( (value > field->logical_maximum)
|| (value < field->logical_minimum)) {
dbg("value %d is invalid", value);
return -1;
}
field->value[offset] = value;
return 0;
}
int hid_find_field(struct hid_device *hid, unsigned int type, unsigned int code, struct hid_field **field)
{
struct hid_report_enum *report_enum = hid->report_enum + HID_OUTPUT_REPORT;
struct list_head *list = report_enum->report_list.next;
int i, j;
while (list != &report_enum->report_list) {
struct hid_report *report = (struct hid_report *) list;
list = list->next;
for (i = 0; i < report->maxfield; i++) {
*field = report->field[i];
for (j = 0; j < (*field)->maxusage; j++)
if ((*field)->usage[j].type == type && (*field)->usage[j].code == code)
return j;
}
}
return -1;
}
static int hid_submit_out(struct hid_device *hid)
{
hid->urbout.transfer_buffer_length = le16_to_cpup(&hid->out[hid->outtail].dr.wLength);
hid->urbout.transfer_buffer = hid->out[hid->outtail].buffer;
hid->urbout.setup_packet = (void *) &(hid->out[hid->outtail].dr);
hid->urbout.dev = hid->dev;
if (usb_submit_urb(&hid->urbout)) {
err("usb_submit_urb(out) failed");
return -1;
}
return 0;
}
static void hid_ctrl(struct urb *urb)
{
struct hid_device *hid = urb->context;
unsigned long flags;
if (urb->status)
warn("ctrl urb status %d received", urb->status);
spin_lock_irqsave(&hid->outlock, flags);
hid->outtail = (hid->outtail + 1) & (HID_CONTROL_FIFO_SIZE - 1);
if (hid->outhead != hid->outtail) {
if (hid_submit_out(hid)) {
clear_bit(HID_OUT_RUNNING, &hid->iofl);
}
spin_unlock_irqrestore(&hid->outlock, flags);
return;
}
clear_bit(HID_OUT_RUNNING, &hid->iofl);
spin_unlock_irqrestore(&hid->outlock, flags);
}
void hid_write_report(struct hid_device *hid, struct hid_report *report)
{
unsigned long flags;
if (hid->report_enum[report->type].numbered) {
hid->out[hid->outhead].buffer[0] = report->id;
hid_output_report(report, hid->out[hid->outhead].buffer + 1);
hid->out[hid->outhead].dr.wLength = cpu_to_le16(((report->size + 7) >> 3) + 1);
} else {
hid_output_report(report, hid->out[hid->outhead].buffer);
hid->out[hid->outhead].dr.wLength = cpu_to_le16((report->size + 7) >> 3);
}
hid->out[hid->outhead].dr.wValue = cpu_to_le16(((report->type + 1) << 8) | report->id);
spin_lock_irqsave(&hid->outlock, flags);
hid->outhead = (hid->outhead + 1) & (HID_CONTROL_FIFO_SIZE - 1);
if (hid->outhead == hid->outtail)
hid->outtail = (hid->outtail + 1) & (HID_CONTROL_FIFO_SIZE - 1);
if (!test_and_set_bit(HID_OUT_RUNNING, &hid->iofl))
if (hid_submit_out(hid))
clear_bit(HID_OUT_RUNNING, &hid->iofl);
spin_unlock_irqrestore(&hid->outlock, flags);
}
int hid_open(struct hid_device *hid)
{
if (hid->open++)
return 0;
hid->urb.dev = hid->dev;
if (usb_submit_urb(&hid->urb))
return -EIO;
return 0;
}
void hid_close(struct hid_device *hid)
{
if (!--hid->open)
usb_unlink_urb(&hid->urb);
}
/*
* Initialize all readable reports
*/
void hid_init_reports(struct hid_device *hid)
{
int i;
struct hid_report *report;
struct hid_report_enum *report_enum;
struct list_head *list;
for (i = 0; i < HID_REPORT_TYPES; i++) {
if (i == HID_FEATURE_REPORT || i == HID_INPUT_REPORT) {
report_enum = hid->report_enum + i;
list = report_enum->report_list.next;
while (list != &report_enum->report_list) {
report = (struct hid_report *) list;
hid_read_report(hid, report);
usb_set_idle(hid->dev, hid->ifnum, 0, report->id);
list = list->next;
}
}
}
}
#define USB_VENDOR_ID_WACOM 0x056a
#define USB_DEVICE_ID_WACOM_PENPARTNER 0x0000
#define USB_DEVICE_ID_WACOM_GRAPHIRE 0x0010
#define USB_DEVICE_ID_WACOM_INTUOS 0x0020
#define USB_DEVICE_ID_WACOM_PL 0x0030
#define USB_DEVICE_ID_WACOM_INTUOS2 0x0041
#define USB_VENDOR_ID_KBGEAR 0x084e
#define USB_DEVICE_ID_KBGEAR_JAMSTUDIO 0x1001
#define USB_VENDOR_ID_AIPTEK 0x08ca
#define USB_DEVICE_ID_AIPTEK_01 0x0001
#define USB_DEVICE_ID_AIPTEK_10 0x0010
#define USB_DEVICE_ID_AIPTEK_20 0x0020
#define USB_DEVICE_ID_AIPTEK_21 0x0021
#define USB_DEVICE_ID_AIPTEK_22 0x0022
#define USB_DEVICE_ID_AIPTEK_23 0x0023
#define USB_DEVICE_ID_AIPTEK_24 0x0024
#define USB_VENDOR_ID_ATEN 0x0557
#define USB_DEVICE_ID_ATEN_UC100KM 0x2004
#define USB_DEVICE_ID_ATEN_CS124U 0x2202
#define USB_DEVICE_ID_ATEN_2PORTKVM 0x2204
#define USB_DEVICE_ID_ATEN_4PORTKVM 0x2205
#define USB_VENDOR_ID_TOPMAX 0x0663
#define USB_DEVICE_ID_TOPMAX_COBRAPAD 0x0103
#define USB_VENDOR_ID_HAPP 0x078b
#define USB_DEVICE_ID_UGCI_DRIVING 0x0010
#define USB_DEVICE_ID_UGCI_FLYING 0x0020
#define USB_DEVICE_ID_UGCI_FIGHTING 0x0030
#define USB_VENDOR_ID_GRIFFIN 0x077d
#define USB_DEVICE_ID_POWERMATE 0x0410 /* Griffin PowerMate */
#define USB_DEVICE_ID_SOUNDKNOB 0x04AA /* Griffin SoundKnob */
#define USB_VENDOR_ID_ONTRAK 0x0a07
#define USB_DEVICE_ID_ONTRAK_ADU100 0x0064
#define USB_VENDOR_ID_TANGTOP 0x0d3d
#define USB_DEVICE_ID_TANGTOP_USBPS2 0x0001
#define USB_VENDOR_ID_OKI 0x070a
#define USB_VENDOR_ID_OKI_MULITI 0x0007
#define USB_VENDOR_ID_ESSENTIAL_REALITY 0x0d7f
#define USB_DEVICE_ID_ESSENTIAL_REALITY_P5 0x0100
#define USB_VENDOR_ID_MGE 0x0463
#define USB_DEVICE_ID_MGE_UPS 0xffff
#define USB_DEVICE_ID_MGE_UPS1 0x0001
#define USB_VENDOR_ID_NEC 0x073e
#define USB_DEVICE_ID_NEC_USB_GAME_PAD 0x0301
struct hid_blacklist {
__u16 idVendor;
__u16 idProduct;
unsigned quirks;
} hid_blacklist[] = {
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PENPARTNER, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_GRAPHIRE, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_GRAPHIRE + 1, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_GRAPHIRE + 2, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS + 1, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS + 2, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS + 3, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS + 4, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PL, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PL + 1, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PL + 2, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PL + 3, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PL + 4, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PL + 5, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS2, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS2 + 1, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS2 + 2, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS2 + 3, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS2 + 4, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_KBGEAR, USB_DEVICE_ID_KBGEAR_JAMSTUDIO, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_ATEN, USB_DEVICE_ID_ATEN_UC100KM, HID_QUIRK_NOGET },
{ USB_VENDOR_ID_ATEN, USB_DEVICE_ID_ATEN_CS124U, HID_QUIRK_NOGET },
{ USB_VENDOR_ID_ATEN, USB_DEVICE_ID_ATEN_2PORTKVM, HID_QUIRK_NOGET },
{ USB_VENDOR_ID_ATEN, USB_DEVICE_ID_ATEN_4PORTKVM, HID_QUIRK_NOGET },
{ USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_01, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_10, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_20, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_21, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_22, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_23, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_24, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_POWERMATE, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_SOUNDKNOB, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_TOPMAX, USB_DEVICE_ID_TOPMAX_COBRAPAD, HID_QUIRK_BADPAD },
{ USB_VENDOR_ID_HAPP, USB_DEVICE_ID_UGCI_DRIVING, HID_QUIRK_BADPAD|HID_QUIRK_MULTI_INPUT },
{ USB_VENDOR_ID_HAPP, USB_DEVICE_ID_UGCI_FLYING, HID_QUIRK_BADPAD|HID_QUIRK_MULTI_INPUT },
{ USB_VENDOR_ID_HAPP, USB_DEVICE_ID_UGCI_FIGHTING, HID_QUIRK_BADPAD|HID_QUIRK_MULTI_INPUT },
{ USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 100, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 200, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 300, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 400, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 500, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_TANGTOP, USB_DEVICE_ID_TANGTOP_USBPS2, HID_QUIRK_NOGET },
{ USB_VENDOR_ID_OKI, USB_VENDOR_ID_OKI_MULITI, HID_QUIRK_NOGET },
{ USB_VENDOR_ID_ESSENTIAL_REALITY, USB_DEVICE_ID_ESSENTIAL_REALITY_P5, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1, HID_QUIRK_IGNORE },
{ USB_VENDOR_ID_NEC, USB_DEVICE_ID_NEC_USB_GAME_PAD, HID_QUIRK_BADPAD },
{ 0, 0 }
};
static struct hid_device *usb_hid_configure(struct usb_device *dev, int ifnum)
{
struct usb_interface_descriptor *interface = dev->actconfig->interface[ifnum].altsetting + 0;
struct hid_descriptor *hdesc;
struct hid_device *hid;
unsigned quirks = 0, rsize = 0;
char *buf;
int n;
for (n = 0; hid_blacklist[n].idVendor; n++)
if ((hid_blacklist[n].idVendor == dev->descriptor.idVendor) &&
(hid_blacklist[n].idProduct == dev->descriptor.idProduct))
quirks = hid_blacklist[n].quirks;
if (quirks & HID_QUIRK_IGNORE)
return NULL;
if (usb_get_extra_descriptor(interface, USB_DT_HID, &hdesc) && ((!interface->bNumEndpoints) ||
usb_get_extra_descriptor(&interface->endpoint[0], USB_DT_HID, &hdesc))) {
dbg("class descriptor not present\n");
return NULL;
}
for (n = 0; n < hdesc->bNumDescriptors; n++)
if (hdesc->desc[n].bDescriptorType == USB_DT_REPORT)
rsize = le16_to_cpu(hdesc->desc[n].wDescriptorLength);
if (!rsize || rsize > HID_MAX_DESCRIPTOR_SIZE) {
dbg("weird size of report descriptor (%u)", rsize);
return NULL;
}
{
__u8 rdesc[rsize];
if ((n = usb_get_class_descriptor(dev, interface->bInterfaceNumber, USB_DT_REPORT, 0, rdesc, rsize)) < 0) {
dbg("reading report descriptor failed");
return NULL;
}
#ifdef DEBUG_DATA
printk(KERN_DEBUG __FILE__ ": report descriptor (size %u, read %d) = ", rsize, n);
for (n = 0; n < rsize; n++)
printk(" %02x", (unsigned) rdesc[n]);
printk("\n");
#endif
if (!(hid = hid_parse_report(rdesc, rsize))) {
dbg("parsing report descriptor failed");
return NULL;
}
}
hid->quirks = quirks;
for (n = 0; n < interface->bNumEndpoints; n++) {
struct usb_endpoint_descriptor *endpoint = &interface->endpoint[n];
int pipe, maxp;
if ((endpoint->bmAttributes & 3) != 3) /* Not an interrupt endpoint */
continue;
if (!(endpoint->bEndpointAddress & 0x80)) /* Not an input endpoint */
continue;
pipe = usb_rcvintpipe(dev, endpoint->bEndpointAddress);
maxp = usb_maxpacket(dev, pipe, usb_pipeout(pipe));
FILL_INT_URB(&hid->urb, dev, pipe, hid->buffer, maxp > 32 ? 32 : maxp, hid_irq, hid, endpoint->bInterval);
break;
}
if (n == interface->bNumEndpoints) {
dbg("couldn't find an input interrupt endpoint");
hid_free_device(hid);
return NULL;
}
spin_lock_init(&hid->outlock);
hid->version = hdesc->bcdHID;
hid->country = hdesc->bCountryCode;
hid->dev = dev;
hid->ifnum = interface->bInterfaceNumber;
for (n = 0; n < HID_CONTROL_FIFO_SIZE; n++) {
hid->out[n].dr.bRequestType = USB_TYPE_CLASS | USB_RECIP_INTERFACE;
hid->out[n].dr.bRequest = USB_REQ_SET_REPORT;
hid->out[n].dr.wIndex = cpu_to_le16(hid->ifnum);
}
hid->name[0] = 0;
if (!(buf = kmalloc(63, GFP_KERNEL)))
return NULL;
if (usb_string(dev, dev->descriptor.iManufacturer, buf, 63) > 0) {
strcat(hid->name, buf);
if (usb_string(dev, dev->descriptor.iProduct, buf, 63) > 0)
sprintf(hid->name, "%s %s", hid->name, buf);
} else
sprintf(hid->name, "%04x:%04x", dev->descriptor.idVendor, dev->descriptor.idProduct);
kfree(buf);
FILL_CONTROL_URB(&hid->urbout, dev, usb_sndctrlpipe(dev, 0),
(void*) &hid->out[0].dr, hid->out[0].buffer, 1, hid_ctrl, hid);
/*
* Some devices don't like this and crash. I don't know of any devices
* needing this, so it is disabled for now.
*/
#if 0
if (interface->bInterfaceSubClass == 1)
usb_set_protocol(dev, hid->ifnum, 1);
#endif
return hid;
}
static void* hid_probe(struct usb_device *dev, unsigned int ifnum,
const struct usb_device_id *id)
{
struct hid_device *hid;
int i;
char *c;
dbg("HID probe called for ifnum %d", ifnum);
if (!(hid = usb_hid_configure(dev, ifnum)))
return NULL;
hid_init_reports(hid);
hid_dump_device(hid);
if (!hidinput_connect(hid))
hid->claimed |= HID_CLAIMED_INPUT;
if (!hiddev_connect(hid))
hid->claimed |= HID_CLAIMED_HIDDEV;
printk(KERN_INFO);
if (hid->claimed & HID_CLAIMED_INPUT)
printk("input");
if (hid->claimed == (HID_CLAIMED_INPUT | HID_CLAIMED_HIDDEV))
printk(",");
if (hid->claimed & HID_CLAIMED_HIDDEV)
printk("hiddev%d", hid->minor);
c = "Device";
for (i = 0; i < hid->maxcollection; i++) {
if (hid->collection[i].type == HID_COLLECTION_APPLICATION &&
(hid->collection[i].usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
(hid->collection[i].usage & 0xffff) < ARRAY_SIZE(hid_types)) {
c = hid_types[hid->collection[i].usage & 0xffff];
break;
}
}
printk(": USB HID v%x.%02x %s [%s] on usb%d:%d.%d\n",
hid->version >> 8, hid->version & 0xff, c, hid->name,
dev->bus->busnum, dev->devnum, ifnum);
#if defined(CONFIG_KDB_USB)
/* Initialisation of the KDB structure */
if (!strcmp(c, "Keyboard")) {
hid_kbd = hid;
kdb_usb_infos.urb = &hid->urb;
kdb_usb_infos.buffer = &hid->buffer[0];
kdb_usb_infos.reset_timer = hid_reset_timer;
kdb_usb_infos.driver = HID_ACTIVE;
}
#endif
return hid;
}
static void hid_disconnect(struct usb_device *dev, void *ptr)
{
struct hid_device *hid = ptr;
dbg("cleanup called");
usb_unlink_urb(&hid->urb);
if (hid->claimed & HID_CLAIMED_INPUT)
hidinput_disconnect(hid);
if (hid->claimed & HID_CLAIMED_HIDDEV)
hiddev_disconnect(hid);
hid_free_device(hid);
}
static struct usb_device_id hid_usb_ids [] = {
{ match_flags: USB_DEVICE_ID_MATCH_INT_CLASS,
bInterfaceClass: USB_INTERFACE_CLASS_HID },
{ } /* Terminating entry */
};
MODULE_DEVICE_TABLE (usb, hid_usb_ids);
static struct usb_driver hid_driver = {
name: "hid",
probe: hid_probe,
disconnect: hid_disconnect,
id_table: hid_usb_ids,
};
static int __init hid_init(void)
{
hiddev_init();
usb_register(&hid_driver);
info(DRIVER_VERSION " " DRIVER_AUTHOR);
info(DRIVER_DESC);
return 0;
}
static void __exit hid_exit(void)
{
usb_deregister(&hid_driver);
hiddev_exit();
}
module_init(hid_init);
module_exit(hid_exit);
MODULE_AUTHOR( DRIVER_AUTHOR );
MODULE_DESCRIPTION( DRIVER_DESC );
MODULE_LICENSE("GPL");