/*
* Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
* of PCI-SCSI IO processors.
*
* Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
*
* This driver is derived from the Linux sym53c8xx driver.
* Copyright (C) 1998-2000 Gerard Roudier
*
* The sym53c8xx driver is derived from the ncr53c8xx driver that had been
* a port of the FreeBSD ncr driver to Linux-1.2.13.
*
* The original ncr driver has been written for 386bsd and FreeBSD by
* Wolfgang Stanglmeier <wolf@cologne.de>
* Stefan Esser <se@mi.Uni-Koeln.de>
* Copyright (C) 1994 Wolfgang Stanglmeier
*
* Other major contributions:
*
* NVRAM detection and reading.
* Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
*
*-----------------------------------------------------------------------------
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* Where this Software is combined with software released under the terms of
* the GNU Public License ("GPL") and the terms of the GPL would require the
* combined work to also be released under the terms of the GPL, the terms
* and conditions of this License will apply in addition to those of the
* GPL with the exception of any terms or conditions of this License that
* conflict with, or are expressly prohibited by, the GPL.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef SYM_MISC_H
#define SYM_MISC_H
/*
* A 'read barrier' flushes any data that have been prefetched
* by the processor due to out of order execution. Such a barrier
* must notably be inserted prior to looking at data that have
* been DMAed, assuming that program does memory READs in proper
* order and that the device ensured proper ordering of WRITEs.
*
* A 'write barrier' prevents any previous WRITEs to pass further
* WRITEs. Such barriers must be inserted each time another agent
* relies on ordering of WRITEs.
*
* Note that, due to posting of PCI memory writes, we also must
* insert dummy PCI read transactions when some ordering involving
* both directions over the PCI does matter. PCI transactions are
* fully ordered in each direction.
*
* IA32 processors insert implicit barriers when the processor
* accesses unchacheable either for reading or writing, and
* donnot reorder WRITEs. As a result, some 'read barriers' can
* be avoided (following access to uncacheable), and 'write
* barriers' should be useless (preventing compiler optimizations
* should be enough).
*/
#if defined __i386__
#define __READ_BARRIER() \
__asm__ volatile("lock; addl $0,0(%%esp)": : :"memory")
#define __WRITE_BARRIER() __asm__ volatile ("": : :"memory")
#elif defined __powerpc__
#define __READ_BARRIER() __asm__ volatile("eieio; sync" : : : "memory")
#define __WRITE_BARRIER() __asm__ volatile("eieio; sync" : : : "memory")
#elif defined __ia64__
#define __READ_BARRIER() __asm__ volatile("mf.a; mf" : : : "memory")
#define __WRITE_BARRIER() __asm__ volatile("mf.a; mf" : : : "memory")
#elif defined __alpha__
#define __READ_BARRIER() __asm__ volatile("mb": : :"memory")
#define __WRITE_BARRIER() __asm__ volatile("mb": : :"memory")
#else
#define __READ_BARRIER() mb()
#define __WRITE_BARRIER() mb()
#endif
#ifndef MEMORY_READ_BARRIER
#define MEMORY_READ_BARRIER() __READ_BARRIER()
#endif
#ifndef MEMORY_WRITE_BARRIER
#define MEMORY_WRITE_BARRIER() __WRITE_BARRIER()
#endif
/*
* A la VMS/CAM-3 queue management.
*/
typedef struct sym_quehead {
struct sym_quehead *flink; /* Forward pointer */
struct sym_quehead *blink; /* Backward pointer */
} SYM_QUEHEAD;
#define sym_que_init(ptr) do { \
(ptr)->flink = (ptr); (ptr)->blink = (ptr); \
} while (0)
static __inline struct sym_quehead *sym_que_first(struct sym_quehead *head)
{
return (head->flink == head) ? 0 : head->flink;
}
static __inline struct sym_quehead *sym_que_last(struct sym_quehead *head)
{
return (head->blink == head) ? 0 : head->blink;
}
static __inline void __sym_que_add(struct sym_quehead * new,
struct sym_quehead * blink,
struct sym_quehead * flink)
{
flink->blink = new;
new->flink = flink;
new->blink = blink;
blink->flink = new;
}
static __inline void __sym_que_del(struct sym_quehead * blink,
struct sym_quehead * flink)
{
flink->blink = blink;
blink->flink = flink;
}
static __inline int sym_que_empty(struct sym_quehead *head)
{
return head->flink == head;
}
static __inline void sym_que_splice(struct sym_quehead *list,
struct sym_quehead *head)
{
struct sym_quehead *first = list->flink;
if (first != list) {
struct sym_quehead *last = list->blink;
struct sym_quehead *at = head->flink;
first->blink = head;
head->flink = first;
last->flink = at;
at->blink = last;
}
}
static __inline void sym_que_move(struct sym_quehead *orig,
struct sym_quehead *dest)
{
struct sym_quehead *first, *last;
first = orig->flink;
if (first != orig) {
first->blink = dest;
dest->flink = first;
last = orig->blink;
last->flink = dest;
dest->blink = last;
orig->flink = orig;
orig->blink = orig;
} else {
dest->flink = dest;
dest->blink = dest;
}
}
#define sym_que_entry(ptr, type, member) \
((type *)((char *)(ptr)-(unsigned int)(&((type *)0)->member)))
#define sym_insque(new, pos) __sym_que_add(new, pos, (pos)->flink)
#define sym_remque(el) __sym_que_del((el)->blink, (el)->flink)
#define sym_insque_head(new, head) __sym_que_add(new, head, (head)->flink)
static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head)
{
struct sym_quehead *elem = head->flink;
if (elem != head)
__sym_que_del(head, elem->flink);
else
elem = 0;
return elem;
}
#define sym_insque_tail(new, head) __sym_que_add(new, (head)->blink, head)
static __inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head)
{
struct sym_quehead *elem = head->blink;
if (elem != head)
__sym_que_del(elem->blink, head);
else
elem = 0;
return elem;
}
/*
* This one may be useful.
*/
#define FOR_EACH_QUEUED_ELEMENT(head, qp) \
for (qp = (head)->flink; qp != (head); qp = qp->flink)
/*
* FreeBSD does not offer our kind of queue in the CAM CCB.
* So, we have to cast.
*/
#define sym_qptr(p) ((struct sym_quehead *) (p))
/*
* Simple bitmap operations.
*/
#define sym_set_bit(p, n) (((u32 *)(p))[(n)>>5] |= (1<<((n)&0x1f)))
#define sym_clr_bit(p, n) (((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f)))
#define sym_is_bit(p, n) (((u32 *)(p))[(n)>>5] & (1<<((n)&0x1f)))
/*
* Portable but silly implemented byte order primitives.
*/
#if BYTE_ORDER == BIG_ENDIAN
#define __revb16(x) ( (((u16)(x) & (u16)0x00ffU) << 8) | \
(((u16)(x) & (u16)0xff00U) >> 8) )
#define __revb32(x) ( (((u32)(x) & 0x000000ffU) << 24) | \
(((u32)(x) & 0x0000ff00U) << 8) | \
(((u32)(x) & 0x00ff0000U) >> 8) | \
(((u32)(x) & 0xff000000U) >> 24) )
#define __htole16(v) __revb16(v)
#define __htole32(v) __revb32(v)
#define __le16toh(v) __htole16(v)
#define __le32toh(v) __htole32(v)
static __inline u16 _htole16(u16 v) { return __htole16(v); }
static __inline u32 _htole32(u32 v) { return __htole32(v); }
#define _le16toh _htole16
#define _le32toh _htole32
#else /* LITTLE ENDIAN */
#define __htole16(v) (v)
#define __htole32(v) (v)
#define __le16toh(v) (v)
#define __le32toh(v) (v)
#define _htole16(v) (v)
#define _htole32(v) (v)
#define _le16toh(v) (v)
#define _le32toh(v) (v)
#endif /* BYTE_ORDER */
/*
* The below round up/down macros are to be used with a constant
* as argument (sizeof(...) for example), for the compiler to
* optimize the whole thing.
*/
#define _U_(a,m) (a)<=(1<<m)?m:
#define _D_(a,m) (a)<(1<<(m+1))?m:
/*
* Round up logarithm to base 2 of a 16 bit constant.
*/
#define _LGRU16_(a) \
( \
_U_(a, 0)_U_(a, 1)_U_(a, 2)_U_(a, 3)_U_(a, 4)_U_(a, 5)_U_(a, 6)_U_(a, 7) \
_U_(a, 8)_U_(a, 9)_U_(a,10)_U_(a,11)_U_(a,12)_U_(a,13)_U_(a,14)_U_(a,15) \
16)
/*
* Round down logarithm to base 2 of a 16 bit constant.
*/
#define _LGRD16_(a) \
( \
_D_(a, 0)_D_(a, 1)_D_(a, 2)_D_(a, 3)_D_(a, 4)_D_(a, 5)_D_(a, 6)_D_(a, 7) \
_D_(a, 8)_D_(a, 9)_D_(a,10)_D_(a,11)_D_(a,12)_D_(a,13)_D_(a,14)_D_(a,15) \
16)
/*
* Round up a 16 bit constant to the nearest power of 2.
*/
#define _SZRU16_(a) ((a)==0?0:(1<<_LGRU16_(a)))
/*
* Round down a 16 bit constant to the nearest power of 2.
*/
#define _SZRD16_(a) ((a)==0?0:(1<<_LGRD16_(a)))
#endif /* SYM_MISC_H */