/*
*
* Linux MegaRAID device driver
*
* Copyright (c) 2002 LSI Logic Corporation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Copyright (c) 2002 Red Hat, Inc. All rights reserved.
* - fixes
* - speed-ups (list handling fixes, issued_list, optimizations.)
* - lots of cleanups.
*
* Version : v2.10.1 (Dec 03, 2003) - Atul Mukker <Atul.Mukker@lsil.com>
*
* Description: Linux device driver for LSI Logic MegaRAID controller
*
* Supported controllers: MegaRAID 418, 428, 438, 466, 762, 467, 471, 490, 493
* 518, 520, 531, 532
*
* This driver is supported by LSI Logic, with assistance from Red Hat, Dell,
* and others. Please send updates to the public mailing list
* linux-megaraid-devel@dell.com, and subscribe to and read archives of this
* list at http://lists.us.dell.com/.
*
* For history of changes, see ChangeLog.megaraid.
*
*/
#include <linux/mm.h>
#include <linux/fs.h>
#include <linux/blk.h>
#include <asm/uaccess.h>
#include <linux/delay.h>
#include <linux/reboot.h>
#include <linux/module.h>
#include <linux/list.h>
#include "sd.h"
#include "scsi.h"
#include "hosts.h"
#include "megaraid2.h"
MODULE_AUTHOR ("LSI Logic Corporation");
MODULE_DESCRIPTION ("LSI Logic MegaRAID driver");
MODULE_LICENSE ("GPL");
static unsigned int max_cmd_per_lun = DEF_CMD_PER_LUN;
MODULE_PARM(max_cmd_per_lun, "i");
MODULE_PARM_DESC(max_cmd_per_lun, "Maximum number of commands which can be issued to a single LUN (default=DEF_CMD_PER_LUN=63)");
static unsigned short int max_sectors_per_io = MAX_SECTORS_PER_IO;
MODULE_PARM(max_sectors_per_io, "h");
MODULE_PARM_DESC(max_sectors_per_io, "Maximum number of sectors per I/O request (default=MAX_SECTORS_PER_IO=128)");
static unsigned short int max_mbox_busy_wait = MBOX_BUSY_WAIT;
MODULE_PARM(max_mbox_busy_wait, "h");
MODULE_PARM_DESC(max_mbox_busy_wait, "Maximum wait for mailbox in microseconds if busy (default=MBOX_BUSY_WAIT=10)");
#define RDINDOOR(adapter) readl((adapter)->base + 0x20)
#define RDOUTDOOR(adapter) readl((adapter)->base + 0x2C)
#define WRINDOOR(adapter,value) writel(value, (adapter)->base + 0x20)
#define WROUTDOOR(adapter,value) writel(value, (adapter)->base + 0x2C)
/*
* Global variables
*/
static int hba_count;
static adapter_t *hba_soft_state[MAX_CONTROLLERS];
#ifdef CONFIG_PROC_FS
static struct proc_dir_entry *mega_proc_dir_entry;
#endif
static struct notifier_block mega_notifier = {
.notifier_call = megaraid_reboot_notify
};
/* For controller re-ordering */
static struct mega_hbas mega_hbas[MAX_CONTROLLERS];
/*
* The File Operations structure for the serial/ioctl interface of the driver
*/
static struct file_operations megadev_fops = {
.ioctl = megadev_ioctl,
.open = megadev_open,
.release = megadev_close,
.owner = THIS_MODULE,
};
/*
* Array to structures for storing the information about the controllers. This
* information is sent to the user level applications, when they do an ioctl
* for this information.
*/
static struct mcontroller mcontroller[MAX_CONTROLLERS];
/* The current driver version */
static u32 driver_ver = 0x02100000;
/* major number used by the device for character interface */
static int major;
#define IS_RAID_CH(hba, ch) (((hba)->mega_ch_class >> (ch)) & 0x01)
/*
* Debug variable to print some diagnostic messages
*/
static int trace_level;
/*
* megaraid_validate_parms()
*
* Validate that any module parms passed in
* have proper values.
*/
static void
megaraid_validate_parms(void)
{
if( (max_cmd_per_lun <= 0) || (max_cmd_per_lun > MAX_CMD_PER_LUN) )
max_cmd_per_lun = MAX_CMD_PER_LUN;
if( max_mbox_busy_wait > MBOX_BUSY_WAIT )
max_mbox_busy_wait = MBOX_BUSY_WAIT;
}
/**
* megaraid_detect()
* @host_template - Our soft state maintained by mid-layer
*
* the detect entry point for the mid-layer.
* We scan the PCI bus for our controllers and start them.
*
* Note: PCI_DEVICE_ID_PERC4_DI below represents the PERC4/Di class of
* products. All of them share the same vendor id, device id, and subsystem
* vendor id but different subsystem ids. As of now, driver does not use the
* subsystem id.
* PERC4E device ids are for the PCI-Express controllers
*/
static int
megaraid_detect(Scsi_Host_Template *host_template)
{
int i;
u16 dev_sw_table[] = { /* Table of all supported
vendor/device ids */
PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SATA_PCIX,
PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_PERC4E_DC_SC,
PCI_VENDOR_ID_DELL, PCI_DEVICE_ID_PERC4E_SI_DI,
PCI_VENDOR_ID_DELL, PCI_DEVICE_ID_DISCOVERY,
PCI_VENDOR_ID_DELL, PCI_DEVICE_ID_PERC4_DI,
PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_PERC4_QC_VERDE,
PCI_VENDOR_ID_AMI, PCI_DEVICE_ID_AMI_MEGARAID,
PCI_VENDOR_ID_AMI, PCI_DEVICE_ID_AMI_MEGARAID2,
PCI_VENDOR_ID_AMI, PCI_DEVICE_ID_AMI_MEGARAID3,
PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_AMI_MEGARAID3,
PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_AMI_MEGARAID3 };
printk(KERN_NOTICE "megaraid: " MEGARAID_VERSION);
megaraid_validate_parms();
/*
* Scan PCI bus for our all devices.
*/
for( i = 0; i < sizeof(dev_sw_table)/sizeof(u16); i += 2 ) {
mega_find_card(host_template, dev_sw_table[i],
dev_sw_table[i+1]);
}
if(hba_count) {
/*
* re-order hosts so that one with bootable logical drive
* comes first
*/
mega_reorder_hosts();
#ifdef CONFIG_PROC_FS
mega_proc_dir_entry = proc_mkdir("megaraid", &proc_root);
if(!mega_proc_dir_entry) {
printk(KERN_WARNING
"megaraid: failed to create megaraid root\n");
}
else {
for(i = 0; i < hba_count; i++) {
mega_create_proc_entry(i, mega_proc_dir_entry);
}
}
#endif
/*
* Register the driver as a character device, for applications
* to access it for ioctls.
* First argument (major) to register_chrdev implies a dynamic
* major number allocation.
*/
major = register_chrdev(0, "megadev", &megadev_fops);
/*
* Register the Shutdown Notification hook in kernel
*/
if(register_reboot_notifier(&mega_notifier)) {
printk(KERN_WARNING
"MegaRAID Shutdown routine not registered!!\n");
}
}
return hba_count;
}
/**
* mega_find_card() - find and start this controller
* @host_template - Our soft state maintained by mid-layer
* @pci_vendor - pci vendor id for this controller
* @pci_device - pci device id for this controller
*
* Scans the PCI bus for this vendor and device id combination, setup the
* resources, and register ourselves as a SCSI HBA driver, and setup all
* parameters for our soft state.
*
* This routine also checks for some buggy firmware and ajust the flags
* accordingly.
*/
static void
mega_find_card(Scsi_Host_Template *host_template, u16 pci_vendor,
u16 pci_device)
{
struct Scsi_Host *host = NULL;
adapter_t *adapter = NULL;
u32 magic64;
unsigned long mega_baseport;
u16 subsysid, subsysvid;
u8 pci_bus;
u8 pci_dev_func;
u8 irq;
struct pci_dev *pdev = NULL;
u8 did_ioremap_f = 0;
u8 did_req_region_f = 0;
u8 did_scsi_reg_f = 0;
u8 alloc_int_buf_f = 0;
u8 alloc_scb_f = 0;
u8 got_irq_f = 0;
u8 did_setup_mbox_f = 0;
unsigned long tbase;
unsigned long flag = 0;
int i, j;
while((pdev = pci_find_device(pci_vendor, pci_device, pdev))) {
// reset flags for all controllers in this class
did_ioremap_f = 0;
did_req_region_f = 0;
did_scsi_reg_f = 0;
alloc_int_buf_f = 0;
alloc_scb_f = 0;
got_irq_f = 0;
did_setup_mbox_f = 0;
if(pci_enable_device (pdev)) continue;
pci_bus = pdev->bus->number;
pci_dev_func = pdev->devfn;
/*
* For these vendor and device ids, signature offsets are not
* valid and 64 bit is implicit
*/
if( (pci_vendor == PCI_VENDOR_ID_DELL &&
pci_device == PCI_DEVICE_ID_PERC4_DI) ||
(pci_vendor == PCI_VENDOR_ID_LSI_LOGIC &&
pci_device == PCI_DEVICE_ID_PERC4_QC_VERDE) ||
(pci_vendor == PCI_VENDOR_ID_LSI_LOGIC &&
pci_device == PCI_DEVICE_ID_PERC4E_DC_SC) ||
(pci_vendor == PCI_VENDOR_ID_DELL &&
pci_device == PCI_DEVICE_ID_PERC4E_SI_DI) ||
(pci_vendor == PCI_VENDOR_ID_LSI_LOGIC &&
pci_device == PCI_DEVICE_ID_LSI_SATA_PCIX)) {
flag |= BOARD_64BIT;
}
else {
pci_read_config_dword(pdev, PCI_CONF_AMISIG64,
&magic64);
if (magic64 == HBA_SIGNATURE_64BIT)
flag |= BOARD_64BIT;
}
subsysvid = pdev->subsystem_vendor;
subsysid = pdev->subsystem_device;
/*
* If we do not find the valid subsys vendor id, refuse to
* load the driver. This is part of PCI200X compliance
* We load the driver if subsysvid is 0.
*/
if( subsysvid && (subsysvid != AMI_SUBSYS_VID) &&
(subsysvid != DELL_SUBSYS_VID) &&
(subsysvid != HP_SUBSYS_VID) &&
(subsysvid != INTEL_SUBSYS_VID) &&
(subsysvid != LSI_SUBSYS_VID) ) continue;
printk(KERN_NOTICE "megaraid: found 0x%4.04x:0x%4.04x:bus %d:",
pci_vendor, pci_device, pci_bus);
printk("slot %d:func %d\n",
PCI_SLOT(pci_dev_func), PCI_FUNC(pci_dev_func));
/* Read the base port and IRQ from PCI */
mega_baseport = pci_resource_start(pdev, 0);
irq = pdev->irq;
tbase = mega_baseport;
if( pci_resource_flags(pdev, 0) & IORESOURCE_MEM ) {
if( check_mem_region(mega_baseport, 128) ) {
printk(KERN_WARNING
"megaraid: mem region busy!\n");
continue;
}
request_mem_region(mega_baseport, 128,
"MegaRAID: LSI Logic Corporation.");
mega_baseport =
(unsigned long)ioremap(mega_baseport, 128);
if( !mega_baseport ) {
printk(KERN_WARNING
"megaraid: could not map hba memory\n");
release_mem_region(tbase, 128);
continue;
}
flag |= BOARD_MEMMAP;
did_ioremap_f = 1;
}
else {
mega_baseport += 0x10;
if( !request_region(mega_baseport, 16, "megaraid") )
goto fail_attach;
flag |= BOARD_IOMAP;
did_req_region_f = 1;
}
/* Initialize SCSI Host structure */
host = scsi_register(host_template, sizeof(adapter_t));
if(!host) goto fail_attach;
did_scsi_reg_f = 1;
scsi_set_pci_device(host, pdev);
adapter = (adapter_t *)host->hostdata;
memset(adapter, 0, sizeof(adapter_t));
printk(KERN_NOTICE
"scsi%d:Found MegaRAID controller at 0x%lx, IRQ:%d\n",
host->host_no, mega_baseport, irq);
adapter->base = mega_baseport;
/* Copy resource info into structure */
INIT_LIST_HEAD(&adapter->free_list);
INIT_LIST_HEAD(&adapter->pending_list);
adapter->flag = flag;
spin_lock_init(&adapter->lock);
#ifdef SCSI_HAS_HOST_LOCK
# if LINUX_VERSION_CODE <= KERNEL_VERSION(2,4,9)
/* This is the Red Hat AS2.1 kernel */
adapter->host_lock = &adapter->lock;
host->lock = adapter->host_lock;
# elif LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
/* This is the later Red Hat 2.4 kernels */
adapter->host_lock = &adapter->lock;
host->host_lock = adapter->host_lock;
# else
/* This is the 2.6 and later kernel series */
adapter->host_lock = &adapter->lock;
scsi_set_host_lock(&adapter->lock);
# endif
#else
/* And this is the remainder of the 2.4 kernel series */
adapter->host_lock = &io_request_lock;
#endif
host->cmd_per_lun = max_cmd_per_lun;
host->max_sectors = max_sectors_per_io;
adapter->dev = pdev;
adapter->host = host;
adapter->host->irq = irq;
if( flag & BOARD_MEMMAP ) {
adapter->host->base = tbase;
}
else {
adapter->host->io_port = tbase;
adapter->host->n_io_port = 16;
}
adapter->host->unique_id = (pci_bus << 8) | pci_dev_func;
/*
* Allocate buffer to issue internal commands.
*/
adapter->mega_buffer = pci_alloc_consistent(adapter->dev,
MEGA_BUFFER_SIZE, &adapter->buf_dma_handle);
if( !adapter->mega_buffer ) {
printk(KERN_WARNING "megaraid: out of RAM.\n");
goto fail_attach;
}
alloc_int_buf_f = 1;
adapter->scb_list = kmalloc(sizeof(scb_t)*MAX_COMMANDS,
GFP_KERNEL);
if(!adapter->scb_list) {
printk(KERN_WARNING "megaraid: out of RAM.\n");
goto fail_attach;
}
alloc_scb_f = 1;
/* Request our IRQ */
if( adapter->flag & BOARD_MEMMAP ) {
if(request_irq(irq, megaraid_isr_memmapped, SA_SHIRQ,
"megaraid", adapter)) {
printk(KERN_WARNING
"megaraid: Couldn't register IRQ %d!\n",
irq);
goto fail_attach;
}
}
else {
if(request_irq(irq, megaraid_isr_iomapped, SA_SHIRQ,
"megaraid", adapter)) {
printk(KERN_WARNING
"megaraid: Couldn't register IRQ %d!\n",
irq);
goto fail_attach;
}
}
got_irq_f = 1;
if( mega_setup_mailbox(adapter) != 0 )
goto fail_attach;
did_setup_mbox_f = 1;
if( mega_query_adapter(adapter) != 0 )
goto fail_attach;
/*
* Have checks for some buggy f/w
*/
if((subsysid == 0x1111) && (subsysvid == 0x1111)) {
/*
* Which firmware
*/
if (!strcmp(adapter->fw_version, "3.00") ||
!strcmp(adapter->fw_version, "3.01")) {
printk( KERN_WARNING
"megaraid: Your card is a Dell PERC "
"2/SC RAID controller with "
"firmware\nmegaraid: 3.00 or 3.01. "
"This driver is known to have "
"corruption issues\nmegaraid: with "
"those firmware versions on this "
"specific card. In order\nmegaraid: "
"to protect your data, please upgrade "
"your firmware to version\nmegaraid: "
"3.10 or later, available from the "
"Dell Technical Support web\n"
"megaraid: site at\nhttp://support."
"dell.com/us/en/filelib/download/"
"index.asp?fileid=2940\n"
);
}
}
/*
* If we have a HP 1M(0x60E7)/2M(0x60E8) controller with
* firmware H.01.07, H.01.08, and H.01.09 disable 64 bit
* support, since this firmware cannot handle 64 bit
* addressing
*/
if((subsysvid == HP_SUBSYS_VID) &&
((subsysid == 0x60E7)||(subsysid == 0x60E8))) {
/*
* which firmware
*/
if( !strcmp(adapter->fw_version, "H01.07") ||
!strcmp(adapter->fw_version, "H01.08") ||
!strcmp(adapter->fw_version, "H01.09") ) {
printk(KERN_WARNING
"megaraid: Firmware H.01.07, "
"H.01.08, and H.01.09 on 1M/2M "
"controllers\n"
"megaraid: do not support 64 bit "
"addressing.\nmegaraid: DISABLING "
"64 bit support.\n");
adapter->flag &= ~BOARD_64BIT;
}
}
if(mega_is_bios_enabled(adapter)) {
mega_hbas[hba_count].is_bios_enabled = 1;
}
mega_hbas[hba_count].hostdata_addr = adapter;
/*
* Find out which channel is raid and which is scsi. This is
* for ROMB support.
*/
mega_enum_raid_scsi(adapter);
/*
* Find out if a logical drive is set as the boot drive. If
* there is one, will make that as the first logical drive.
* ROMB: Do we have to boot from a physical drive. Then all
* the physical drives would appear before the logical disks.
* Else, all the physical drives would be exported to the mid
* layer after logical drives.
*/
mega_get_boot_drv(adapter);
if( ! adapter->boot_pdrv_enabled ) {
for( i = 0; i < NVIRT_CHAN; i++ )
adapter->logdrv_chan[i] = 1;
for( i = NVIRT_CHAN; i<MAX_CHANNELS+NVIRT_CHAN; i++ )
adapter->logdrv_chan[i] = 0;
adapter->mega_ch_class <<= NVIRT_CHAN;
}
else {
j = adapter->product_info.nchannels;
for( i = 0; i < j; i++ )
adapter->logdrv_chan[i] = 0;
for( i = j; i < NVIRT_CHAN + j; i++ )
adapter->logdrv_chan[i] = 1;
}
/*
* Do we support random deletion and addition of logical
* drives
*/
adapter->read_ldidmap = 0; /* set it after first logdrv
delete cmd */
adapter->support_random_del = mega_support_random_del(adapter);
/* Initialize SCBs */
if(mega_init_scb(adapter)) {
goto fail_attach;
}
/*
* Reset the pending commands counter
*/
atomic_set(&adapter->pend_cmds, 0);
/*
* Reset the adapter quiescent flag
*/
atomic_set(&adapter->quiescent, 0);
hba_soft_state[hba_count] = adapter;
/*
* Fill in the structure which needs to be passed back to the
* application when it does an ioctl() for controller related
* information.
*/
i = hba_count;
mcontroller[i].base = mega_baseport;
mcontroller[i].irq = irq;
mcontroller[i].numldrv = adapter->numldrv;
mcontroller[i].pcibus = pci_bus;
mcontroller[i].pcidev = pci_device;
mcontroller[i].pcifun = PCI_FUNC (pci_dev_func);
mcontroller[i].pciid = -1;
mcontroller[i].pcivendor = pci_vendor;
mcontroller[i].pcislot = PCI_SLOT (pci_dev_func);
mcontroller[i].uid = (pci_bus << 8) | pci_dev_func;
/* Set the Mode of addressing to 64 bit if we can */
if((adapter->flag & BOARD_64BIT)&&(sizeof(dma_addr_t) == 8)) {
pci_set_dma_mask(pdev, 0xffffffffffffffffULL);
adapter->has_64bit_addr = 1;
}
else {
pci_set_dma_mask(pdev, 0xffffffff);
adapter->has_64bit_addr = 0;
}
init_MUTEX(&adapter->int_mtx);
init_waitqueue_head(&adapter->int_waitq);
adapter->this_id = DEFAULT_INITIATOR_ID;
adapter->host->this_id = DEFAULT_INITIATOR_ID;
#if MEGA_HAVE_CLUSTERING
/*
* Is cluster support enabled on this controller
* Note: In a cluster the HBAs ( the initiators ) will have
* different target IDs and we cannot assume it to be 7. Call
* to mega_support_cluster() will get the target ids also if
* the cluster support is available
*/
adapter->has_cluster = mega_support_cluster(adapter);
if( adapter->has_cluster ) {
printk(KERN_NOTICE
"megaraid: Cluster driver, initiator id:%d\n",
adapter->this_id);
}
#endif
hba_count++;
continue;
fail_attach:
if( did_setup_mbox_f ) {
pci_free_consistent(adapter->dev, sizeof(mbox64_t),
(void *)adapter->una_mbox64,
adapter->una_mbox64_dma);
}
if( got_irq_f ) {
irq_disable(adapter);
free_irq(adapter->host->irq, adapter);
}
if( alloc_scb_f ) {
kfree(adapter->scb_list);
}
if( alloc_int_buf_f ) {
pci_free_consistent(adapter->dev, MEGA_BUFFER_SIZE,
(void *)adapter->mega_buffer,
adapter->buf_dma_handle);
}
if( did_scsi_reg_f ) scsi_unregister(host);
if( did_ioremap_f ) {
iounmap((void *)mega_baseport);
release_mem_region(tbase, 128);
}
if( did_req_region_f )
release_region(mega_baseport, 16);
}
return;
}
/**
* mega_setup_mailbox()
* @adapter - pointer to our soft state
*
* Allocates a 8 byte aligned memory for the handshake mailbox.
*/
static int
mega_setup_mailbox(adapter_t *adapter)
{
unsigned long align;
adapter->una_mbox64 = pci_alloc_consistent(adapter->dev,
sizeof(mbox64_t), &adapter->una_mbox64_dma);
if( !adapter->una_mbox64 ) return -1;
adapter->mbox = &adapter->una_mbox64->mbox;
adapter->mbox = (mbox_t *)((((unsigned long) adapter->mbox) + 15) &
(~0UL ^ 0xFUL));
adapter->mbox64 = (mbox64_t *)(((unsigned long)adapter->mbox) - 8);
align = ((void *)adapter->mbox) - ((void *)&adapter->una_mbox64->mbox);
adapter->mbox_dma = adapter->una_mbox64_dma + 8 + align;
/*
* Register the mailbox if the controller is an io-mapped controller
*/
if( adapter->flag & BOARD_IOMAP ) {
outb_p(adapter->mbox_dma & 0xFF,
adapter->host->io_port + MBOX_PORT0);
outb_p((adapter->mbox_dma >> 8) & 0xFF,
adapter->host->io_port + MBOX_PORT1);
outb_p((adapter->mbox_dma >> 16) & 0xFF,
adapter->host->io_port + MBOX_PORT2);
outb_p((adapter->mbox_dma >> 24) & 0xFF,
adapter->host->io_port + MBOX_PORT3);
outb_p(ENABLE_MBOX_BYTE,
adapter->host->io_port + ENABLE_MBOX_REGION);
irq_ack(adapter);
irq_enable(adapter);
}
return 0;
}
/*
* mega_query_adapter()
* @adapter - pointer to our soft state
*
* Issue the adapter inquiry commands to the controller and find out
* information and parameter about the devices attached
*/
static int
mega_query_adapter(adapter_t *adapter)
{
dma_addr_t prod_info_dma_handle;
mega_inquiry3 *inquiry3;
u8 raw_mbox[sizeof(mbox_t)];
mbox_t *mbox;
int retval;
/* Initialize adapter inquiry mailbox */
mbox = (mbox_t *)raw_mbox;
memset((void *)adapter->mega_buffer, 0, MEGA_BUFFER_SIZE);
memset(raw_mbox, 0, sizeof(raw_mbox));
/*
* Try to issue Inquiry3 command
* if not succeeded, then issue MEGA_MBOXCMD_ADAPTERINQ command and
* update enquiry3 structure
*/
mbox->xferaddr = (u32)adapter->buf_dma_handle;
inquiry3 = (mega_inquiry3 *)adapter->mega_buffer;
raw_mbox[0] = FC_NEW_CONFIG; /* i.e. mbox->cmd=0xA1 */
raw_mbox[2] = NC_SUBOP_ENQUIRY3; /* i.e. 0x0F */
raw_mbox[3] = ENQ3_GET_SOLICITED_FULL; /* i.e. 0x02 */
/* Issue a blocking command to the card */
if ((retval = issue_scb_block(adapter, raw_mbox))) {
/* the adapter does not support 40ld */
mraid_ext_inquiry *ext_inq;
mraid_inquiry *inq;
dma_addr_t dma_handle;
ext_inq = pci_alloc_consistent(adapter->dev,
sizeof(mraid_ext_inquiry), &dma_handle);
if( ext_inq == NULL ) return -1;
inq = &ext_inq->raid_inq;
mbox->xferaddr = (u32)dma_handle;
/*issue old 0x04 command to adapter */
mbox->cmd = MEGA_MBOXCMD_ADPEXTINQ;
issue_scb_block(adapter, raw_mbox);
/*
* update Enquiry3 and ProductInfo structures with
* mraid_inquiry structure
*/
mega_8_to_40ld(inq, inquiry3,
(mega_product_info *)&adapter->product_info);
pci_free_consistent(adapter->dev, sizeof(mraid_ext_inquiry),
ext_inq, dma_handle);
} else { /*adapter supports 40ld */
adapter->flag |= BOARD_40LD;
/*
* get product_info, which is static information and will be
* unchanged
*/
prod_info_dma_handle = pci_map_single(adapter->dev, (void *)
&adapter->product_info,
sizeof(mega_product_info), PCI_DMA_FROMDEVICE);
mbox->xferaddr = prod_info_dma_handle;
raw_mbox[0] = FC_NEW_CONFIG; /* i.e. mbox->cmd=0xA1 */
raw_mbox[2] = NC_SUBOP_PRODUCT_INFO; /* i.e. 0x0E */
if ((retval = issue_scb_block(adapter, raw_mbox)))
printk(KERN_WARNING
"megaraid: Product_info cmd failed with error: %d\n",
retval);
pci_dma_sync_single(adapter->dev, prod_info_dma_handle,
sizeof(mega_product_info),
PCI_DMA_FROMDEVICE);
pci_unmap_single(adapter->dev, prod_info_dma_handle,
sizeof(mega_product_info), PCI_DMA_FROMDEVICE);
}
/*
* kernel scans the channels from 0 to <= max_channel
*/
adapter->host->max_channel =
adapter->product_info.nchannels + NVIRT_CHAN -1;
adapter->host->max_id = 16; /* max targets per channel */
adapter->host->max_lun = 7; /* Upto 7 luns for non disk devices */
adapter->host->cmd_per_lun = max_cmd_per_lun;
adapter->numldrv = inquiry3->num_ldrv;
adapter->max_cmds = adapter->product_info.max_commands;
if(adapter->max_cmds > MAX_COMMANDS)
adapter->max_cmds = MAX_COMMANDS;
adapter->host->can_queue = adapter->max_cmds - 1;
/*
* Get the maximum number of scatter-gather elements supported by this
* firmware
*/
mega_get_max_sgl(adapter);
adapter->host->sg_tablesize = adapter->sglen;
/* use HP firmware and bios version encoding */
if (adapter->product_info.subsysvid == HP_SUBSYS_VID) {
sprintf (adapter->fw_version, "%c%d%d.%d%d",
adapter->product_info.fw_version[2],
adapter->product_info.fw_version[1] >> 8,
adapter->product_info.fw_version[1] & 0x0f,
adapter->product_info.fw_version[0] >> 8,
adapter->product_info.fw_version[0] & 0x0f);
sprintf (adapter->bios_version, "%c%d%d.%d%d",
adapter->product_info.bios_version[2],
adapter->product_info.bios_version[1] >> 8,
adapter->product_info.bios_version[1] & 0x0f,
adapter->product_info.bios_version[0] >> 8,
adapter->product_info.bios_version[0] & 0x0f);
} else {
memcpy(adapter->fw_version,
(char *)adapter->product_info.fw_version, 4);
adapter->fw_version[4] = 0;
memcpy(adapter->bios_version,
(char *)adapter->product_info.bios_version, 4);
adapter->bios_version[4] = 0;
}
printk(KERN_NOTICE "megaraid: [%s:%s] detected %d logical drives.\n",
adapter->fw_version, adapter->bios_version, adapter->numldrv);
/*
* Do we support extended (>10 bytes) cdbs
*/
adapter->support_ext_cdb = mega_support_ext_cdb(adapter);
if (adapter->support_ext_cdb)
printk(KERN_NOTICE "megaraid: supports extended CDBs.\n");
return 0;
}
/*
* megaraid_queue()
* @scmd - Issue this scsi command
* @done - the callback hook into the scsi mid-layer
*
* The command queuing entry point for the mid-layer.
*/
static int
megaraid_queue(Scsi_Cmnd *scmd, void (*done)(Scsi_Cmnd *))
{
adapter_t *adapter;
scb_t *scb;
int busy=0;
adapter = (adapter_t *)scmd->host->hostdata;
scmd->scsi_done = done;
/*
* Allocate and build a SCB request
* busy flag will be set if mega_build_cmd() command could not
* allocate scb. We will return non-zero status in that case.
* NOTE: scb can be null even though certain commands completed
* successfully, e.g., MODE_SENSE and TEST_UNIT_READY, we would
* return 0 in that case.
*/
scb = mega_build_cmd(adapter, scmd, &busy);
if(scb) {
scb->state |= SCB_PENDQ;
list_add_tail(&scb->list, &adapter->pending_list);
/*
* Check if the HBA is in quiescent state, e.g., during a
* delete logical drive opertion. If it is, don't run
* the pending_list.
*/
if(atomic_read(&adapter->quiescent) == 0) {
mega_runpendq(adapter);
}
return 0;
}
return busy;
}
/**
* mega_build_cmd()
* @adapter - pointer to our soft state
* @cmd - Prepare using this scsi command
* @busy - busy flag if no resources
*
* Prepares a command and scatter gather list for the controller. This routine
* also finds out if the commands is intended for a logical drive or a
* physical device and prepares the controller command accordingly.
*
* We also re-order the logical drives and physical devices based on their
* boot settings.
*/
static scb_t *
mega_build_cmd(adapter_t *adapter, Scsi_Cmnd *cmd, int *busy)
{
mega_ext_passthru *epthru;
mega_passthru *pthru;
scb_t *scb;
mbox_t *mbox;
long seg;
char islogical;
int max_ldrv_num;
int channel = 0;
int target = 0;
int ldrv_num = 0; /* logical drive number */
/*
* filter the internal and ioctl commands
*/
if((cmd->cmnd[0] == MEGA_INTERNAL_CMD)) {
return cmd->buffer;
}
/*
* We know what channels our logical drives are on - mega_find_card()
*/
islogical = adapter->logdrv_chan[cmd->channel];
/*
* The theory: If physical drive is chosen for boot, all the physical
* devices are exported before the logical drives, otherwise physical
* devices are pushed after logical drives, in which case - Kernel sees
* the physical devices on virtual channel which is obviously converted
* to actual channel on the HBA.
*/
if( adapter->boot_pdrv_enabled ) {
if( islogical ) {
/* logical channel */
channel = cmd->channel -
adapter->product_info.nchannels;
}
else {
channel = cmd->channel; /* this is physical channel */
target = cmd->target;
/*
* boot from a physical disk, that disk needs to be
* exposed first IF both the channels are SCSI, then
* booting from the second channel is not allowed.
*/
if( target == 0 ) {
target = adapter->boot_pdrv_tgt;
}
else if( target == adapter->boot_pdrv_tgt ) {
target = 0;
}
}
}
else {
if( islogical ) {
channel = cmd->channel; /* this is the logical channel
*/
}
else {
channel = cmd->channel - NVIRT_CHAN; /* physical
channel */
target = cmd->target;
}
}
if(islogical) {
/* have just LUN 0 for each target on virtual channels */
if (cmd->lun) {
cmd->result = (DID_BAD_TARGET << 16);
cmd->scsi_done(cmd);
return NULL;
}
ldrv_num = mega_get_ldrv_num(adapter, cmd, channel);
max_ldrv_num = (adapter->flag & BOARD_40LD) ?
MAX_LOGICAL_DRIVES_40LD : MAX_LOGICAL_DRIVES_8LD;
/*
* max_ldrv_num increases by 0x80 if some logical drive was
* deleted.
*/
if(adapter->read_ldidmap)
max_ldrv_num += 0x80;
if(ldrv_num > max_ldrv_num ) {
cmd->result = (DID_BAD_TARGET << 16);
cmd->scsi_done(cmd);
return NULL;
}
}
else {
if( cmd->lun > 7) {
/*
* Do not support lun >7 for physically accessed
* devices
*/
cmd->result = (DID_BAD_TARGET << 16);
cmd->scsi_done(cmd);
return NULL;
}
}
/*
*
* Logical drive commands
*
*/
if(islogical) {
switch (cmd->cmnd[0]) {
case TEST_UNIT_READY:
memset(cmd->request_buffer, 0, cmd->request_bufflen);
#if MEGA_HAVE_CLUSTERING
/*
* Do we support clustering and is the support enabled
* If no, return success always
*/
if( !adapter->has_cluster ) {
cmd->result = (DID_OK << 16);
cmd->scsi_done(cmd);
return NULL;
}
if(!(scb = mega_allocate_scb(adapter, cmd))) {
cmd->result = (DID_ERROR << 16);
cmd->scsi_done(cmd);
*busy = 1;
return NULL;
}
scb->raw_mbox[0] = MEGA_CLUSTER_CMD;
scb->raw_mbox[2] = MEGA_RESERVATION_STATUS;
scb->raw_mbox[3] = ldrv_num;
scb->dma_direction = PCI_DMA_NONE;
return scb;
#else
cmd->result = (DID_OK << 16);
cmd->scsi_done(cmd);
return NULL;
#endif
case MODE_SENSE:
memset(cmd->request_buffer, 0, cmd->cmnd[4]);
cmd->result = (DID_OK << 16);
cmd->scsi_done(cmd);
return NULL;
case READ_CAPACITY:
case INQUIRY:
if(!(adapter->flag & (1L << cmd->channel))) {
printk(KERN_NOTICE
"scsi%d: scanning scsi channel %d ",
adapter->host->host_no,
cmd->channel);
printk("for logical drives.\n");
adapter->flag |= (1L << cmd->channel);
}
/* Allocate a SCB and initialize passthru */
if(!(scb = mega_allocate_scb(adapter, cmd))) {
cmd->result = (DID_ERROR << 16);
cmd->scsi_done(cmd);
*busy = 1;
return NULL;
}
pthru = scb->pthru;
mbox = (mbox_t *)scb->raw_mbox;
memset(mbox, 0, sizeof(scb->raw_mbox));
memset(pthru, 0, sizeof(mega_passthru));
pthru->timeout = 0;
pthru->ars = 1;
pthru->reqsenselen = 14;
pthru->islogical = 1;
pthru->logdrv = ldrv_num;
pthru->cdblen = cmd->cmd_len;
memcpy(pthru->cdb, cmd->cmnd, cmd->cmd_len);
if( adapter->has_64bit_addr ) {
mbox->cmd = MEGA_MBOXCMD_PASSTHRU64;
}
else {
mbox->cmd = MEGA_MBOXCMD_PASSTHRU;
}
scb->dma_direction = PCI_DMA_FROMDEVICE;
pthru->numsgelements = mega_build_sglist(adapter, scb,
&pthru->dataxferaddr, &pthru->dataxferlen);
mbox->xferaddr = scb->pthru_dma_addr;
return scb;
case READ_6:
case WRITE_6:
case READ_10:
case WRITE_10:
case READ_12:
case WRITE_12:
/* Allocate a SCB and initialize mailbox */
if(!(scb = mega_allocate_scb(adapter, cmd))) {
cmd->result = (DID_ERROR << 16);
cmd->scsi_done(cmd);
*busy = 1;
return NULL;
}
mbox = (mbox_t *)scb->raw_mbox;
memset(mbox, 0, sizeof(scb->raw_mbox));
mbox->logdrv = ldrv_num;
/*
* A little hack: 2nd bit is zero for all scsi read
* commands and is set for all scsi write commands
*/
if( adapter->has_64bit_addr ) {
mbox->cmd = (*cmd->cmnd & 0x02) ?
MEGA_MBOXCMD_LWRITE64:
MEGA_MBOXCMD_LREAD64 ;
}
else {
mbox->cmd = (*cmd->cmnd & 0x02) ?
MEGA_MBOXCMD_LWRITE:
MEGA_MBOXCMD_LREAD ;
}
/*
* 6-byte READ(0x08) or WRITE(0x0A) cdb
*/
if( cmd->cmd_len == 6 ) {
mbox->numsectors = (u32) cmd->cmnd[4];
mbox->lba =
((u32)cmd->cmnd[1] << 16) |
((u32)cmd->cmnd[2] << 8) |
(u32)cmd->cmnd[3];
mbox->lba &= 0x1FFFFF;
#if MEGA_HAVE_STATS
/*
* Take modulo 0x80, since the logical drive
* number increases by 0x80 when a logical
* drive was deleted
*/
if (*cmd->cmnd == READ_6) {
adapter->nreads[ldrv_num%0x80]++;
adapter->nreadblocks[ldrv_num%0x80] +=
mbox->numsectors;
} else {
adapter->nwrites[ldrv_num%0x80]++;
adapter->nwriteblocks[ldrv_num%0x80] +=
mbox->numsectors;
}
#endif
}
/*
* 10-byte READ(0x28) or WRITE(0x2A) cdb
*/
if( cmd->cmd_len == 10 ) {
mbox->numsectors =
(u32)cmd->cmnd[8] |
((u32)cmd->cmnd[7] << 8);
mbox->lba =
((u32)cmd->cmnd[2] << 24) |
((u32)cmd->cmnd[3] << 16) |
((u32)cmd->cmnd[4] << 8) |
(u32)cmd->cmnd[5];
#if MEGA_HAVE_STATS
if (*cmd->cmnd == READ_10) {
adapter->nreads[ldrv_num%0x80]++;
adapter->nreadblocks[ldrv_num%0x80] +=
mbox->numsectors;
} else {
adapter->nwrites[ldrv_num%0x80]++;
adapter->nwriteblocks[ldrv_num%0x80] +=
mbox->numsectors;
}
#endif
}
/*
* 12-byte READ(0xA8) or WRITE(0xAA) cdb
*/
if( cmd->cmd_len == 12 ) {
mbox->lba =
((u32)cmd->cmnd[2] << 24) |
((u32)cmd->cmnd[3] << 16) |
((u32)cmd->cmnd[4] << 8) |
(u32)cmd->cmnd[5];
mbox->numsectors =
((u32)cmd->cmnd[6] << 24) |
((u32)cmd->cmnd[7] << 16) |
((u32)cmd->cmnd[8] << 8) |
(u32)cmd->cmnd[9];
#if MEGA_HAVE_STATS
if (*cmd->cmnd == READ_12) {
adapter->nreads[ldrv_num%0x80]++;
adapter->nreadblocks[ldrv_num%0x80] +=
mbox->numsectors;
} else {
adapter->nwrites[ldrv_num%0x80]++;
adapter->nwriteblocks[ldrv_num%0x80] +=
mbox->numsectors;
}
#endif
}
/*
* If it is a read command
*/
if( (*cmd->cmnd & 0x0F) == 0x08 ) {
scb->dma_direction = PCI_DMA_FROMDEVICE;
}
else {
scb->dma_direction = PCI_DMA_TODEVICE;
}
/* Calculate Scatter-Gather info */
mbox->numsgelements = mega_build_sglist(adapter, scb,
(u32 *)&mbox->xferaddr, (u32 *)&seg);
return scb;
#if MEGA_HAVE_CLUSTERING
case RESERVE: /* Fall through */
case RELEASE:
/*
* Do we support clustering and is the support enabled
*/
if( ! adapter->has_cluster ) {
cmd->result = (DID_BAD_TARGET << 16);
cmd->scsi_done(cmd);
return NULL;
}
/* Allocate a SCB and initialize mailbox */
if(!(scb = mega_allocate_scb(adapter, cmd))) {
cmd->result = (DID_ERROR << 16);
cmd->scsi_done(cmd);
*busy = 1;
return NULL;
}
scb->raw_mbox[0] = MEGA_CLUSTER_CMD;
scb->raw_mbox[2] = ( *cmd->cmnd == RESERVE ) ?
MEGA_RESERVE_LD : MEGA_RELEASE_LD;
scb->raw_mbox[3] = ldrv_num;
scb->dma_direction = PCI_DMA_NONE;
return scb;
#endif
default:
cmd->result = (DID_BAD_TARGET << 16);
cmd->scsi_done(cmd);
return NULL;
}
}
/*
* Passthru drive commands
*/
else {
/* Allocate a SCB and initialize passthru */
if(!(scb = mega_allocate_scb(adapter, cmd))) {
cmd->result = (DID_ERROR << 16);
cmd->scsi_done(cmd);
*busy = 1;
return NULL;
}
mbox = (mbox_t *)scb->raw_mbox;
memset(mbox, 0, sizeof(scb->raw_mbox));
if( adapter->support_ext_cdb ) {
epthru = mega_prepare_extpassthru(adapter, scb, cmd,
channel, target);
mbox->cmd = MEGA_MBOXCMD_EXTPTHRU;
mbox->xferaddr = scb->epthru_dma_addr;
}
else {
pthru = mega_prepare_passthru(adapter, scb, cmd,
channel, target);
/* Initialize mailbox */
if( adapter->has_64bit_addr ) {
mbox->cmd = MEGA_MBOXCMD_PASSTHRU64;
}
else {
mbox->cmd = MEGA_MBOXCMD_PASSTHRU;
}
mbox->xferaddr = scb->pthru_dma_addr;
}
return scb;
}
return NULL;
}
/**
* mega_prepare_passthru()
* @adapter - pointer to our soft state
* @scb - our scsi control block
* @cmd - scsi command from the mid-layer
* @channel - actual channel on the controller
* @target - actual id on the controller.
*
* prepare a command for the scsi physical devices.
*/
static mega_passthru *
mega_prepare_passthru(adapter_t *adapter, scb_t *scb, Scsi_Cmnd *cmd,
int channel, int target)
{
mega_passthru *pthru;
pthru = scb->pthru;
memset(pthru, 0, sizeof (mega_passthru));
/* 0=6sec/1=60sec/2=10min/3=3hrs */
pthru->timeout = 2;
pthru->ars = 1;
pthru->reqsenselen = 14;
pthru->islogical = 0;
pthru->channel = (adapter->flag & BOARD_40LD) ? 0 : channel;
pthru->target = (adapter->flag & BOARD_40LD) ?
(channel << 4) | target : target;
pthru->cdblen = cmd->cmd_len;
pthru->logdrv = cmd->lun;
memcpy(pthru->cdb, cmd->cmnd, cmd->cmd_len);
/* Not sure about the direction */
scb->dma_direction = PCI_DMA_BIDIRECTIONAL;
/* Special Code for Handling READ_CAPA/ INQ using bounce buffers */
switch (cmd->cmnd[0]) {
case INQUIRY:
case READ_CAPACITY:
if(!(adapter->flag & (1L << cmd->channel))) {
printk(KERN_NOTICE
"scsi%d: scanning scsi channel %d [P%d] ",
adapter->host->host_no,
cmd->channel, channel);
printk("for physical devices.\n");
adapter->flag |= (1L << cmd->channel);
}
/* Fall through */
default:
pthru->numsgelements = mega_build_sglist(adapter, scb,
&pthru->dataxferaddr, &pthru->dataxferlen);
break;
}
return pthru;
}
/**
* mega_prepare_extpassthru()
* @adapter - pointer to our soft state
* @scb - our scsi control block
* @cmd - scsi command from the mid-layer
* @channel - actual channel on the controller
* @target - actual id on the controller.
*
* prepare a command for the scsi physical devices. This rountine prepares
* commands for devices which can take extended CDBs (>10 bytes)
*/
static mega_ext_passthru *
mega_prepare_extpassthru(adapter_t *adapter, scb_t *scb, Scsi_Cmnd *cmd,
int channel, int target)
{
mega_ext_passthru *epthru;
epthru = scb->epthru;
memset(epthru, 0, sizeof(mega_ext_passthru));
/* 0=6sec/1=60sec/2=10min/3=3hrs */
epthru->timeout = 2;
epthru->ars = 1;
epthru->reqsenselen = 14;
epthru->islogical = 0;
epthru->channel = (adapter->flag & BOARD_40LD) ? 0 : channel;
epthru->target = (adapter->flag & BOARD_40LD) ?
(channel << 4) | target : target;
epthru->cdblen = cmd->cmd_len;
epthru->logdrv = cmd->lun;
memcpy(epthru->cdb, cmd->cmnd, cmd->cmd_len);
/* Not sure about the direction */
scb->dma_direction = PCI_DMA_BIDIRECTIONAL;
switch(cmd->cmnd[0]) {
case INQUIRY:
case READ_CAPACITY:
if(!(adapter->flag & (1L << cmd->channel))) {
printk(KERN_NOTICE
"scsi%d: scanning scsi channel %d [P%d] ",
adapter->host->host_no,
cmd->channel, channel);
printk("for physical devices.\n");
adapter->flag |= (1L << cmd->channel);
}
/* Fall through */
default:
epthru->numsgelements = mega_build_sglist(adapter, scb,
&epthru->dataxferaddr, &epthru->dataxferlen);
break;
}
return epthru;
}
/**
* mega_allocate_scb()
* @adapter - pointer to our soft state
* @cmd - scsi command from the mid-layer
*
* Allocate a SCB structure. This is the central structure for controller
* commands.
*/
static inline scb_t *
mega_allocate_scb(adapter_t *adapter, Scsi_Cmnd *cmd)
{
struct list_head *head = &adapter->free_list;
scb_t *scb;
/* Unlink command from Free List */
if( !list_empty(head) ) {
scb = list_entry(head->next, scb_t, list);
list_del_init(head->next);
scb->state = SCB_ACTIVE;
scb->cmd = cmd;
scb->dma_type = MEGA_DMA_TYPE_NONE;
return scb;
}
return NULL;
}
/**
* mega_runpendq()
* @adapter - pointer to our soft state
*
* Runs through the list of pending requests.
*/
static inline void
mega_runpendq(adapter_t *adapter)
{
if(!list_empty(&adapter->pending_list))
__mega_runpendq(adapter);
}
static void
__mega_runpendq(adapter_t *adapter)
{
scb_t *scb;
struct list_head *pos, *next;
/* Issue any pending commands to the card */
list_for_each_safe(pos, next, &adapter->pending_list) {
scb = list_entry(pos, scb_t, list);
if( !(scb->state & SCB_ISSUED) ) {
if( issue_scb(adapter, scb) != 0 )
return;
}
}
return;
}
/**
* issue_scb()
* @adapter - pointer to our soft state
* @scb - scsi control block
*
* Post a command to the card if the mailbox is available, otherwise return
* busy. We also take the scb from the pending list if the mailbox is
* available.
*/
static inline int
issue_scb(adapter_t *adapter, scb_t *scb)
{
volatile mbox64_t *mbox64 = adapter->mbox64;
volatile mbox_t *mbox = adapter->mbox;
unsigned int i = 0;
if(unlikely(mbox->busy)) {
do {
udelay(1);
i++;
} while( mbox->busy && (i < max_mbox_busy_wait) );
if(mbox->busy) return -1;
}
/* Copy mailbox data into host structure */
memcpy((char *)mbox, (char *)scb->raw_mbox, 16);
mbox->cmdid = scb->idx; /* Set cmdid */
mbox->busy = 1; /* Set busy */
/*
* Increment the pending queue counter
*/
atomic_inc(&adapter->pend_cmds);
switch (mbox->cmd) {
case MEGA_MBOXCMD_EXTPTHRU:
if( !adapter->has_64bit_addr ) break;
// else fall through
case MEGA_MBOXCMD_LREAD64:
case MEGA_MBOXCMD_LWRITE64:
case MEGA_MBOXCMD_PASSTHRU64:
mbox64->xfer_segment_lo = mbox->xferaddr;
mbox64->xfer_segment_hi = 0;
mbox->xferaddr = 0xFFFFFFFF;
break;
default:
mbox64->xfer_segment_lo = 0;
mbox64->xfer_segment_hi = 0;
}
/*
* post the command
*/
scb->state |= SCB_ISSUED;
if( likely(adapter->flag & BOARD_MEMMAP) ) {
mbox->poll = 0;
mbox->ack = 0;
WRINDOOR(adapter, adapter->mbox_dma | 0x1);
}
else {
irq_enable(adapter);
issue_command(adapter);
}
return 0;
}
/**
* issue_scb_block()
* @adapter - pointer to our soft state
* @raw_mbox - the mailbox
*
* Issue a scb in synchronous and non-interrupt mode
*/
static int
issue_scb_block(adapter_t *adapter, u_char *raw_mbox)
{
volatile mbox64_t *mbox64 = adapter->mbox64;
volatile mbox_t *mbox = adapter->mbox;
u8 byte;
u8 status;
int i;
/* Wait until mailbox is free */
if(mega_busywait_mbox (adapter))
goto bug_blocked_mailbox;
/* Copy mailbox data into host structure */
memcpy((char *)mbox, raw_mbox, 16);
mbox->cmdid = 0xFE;
mbox->busy = 1;
switch (raw_mbox[0]) {
case MEGA_MBOXCMD_EXTPTHRU:
if( !adapter->has_64bit_addr ) break;
// else fall through
case MEGA_MBOXCMD_LREAD64:
case MEGA_MBOXCMD_LWRITE64:
case MEGA_MBOXCMD_PASSTHRU64:
mbox64->xfer_segment_lo = mbox->xferaddr;
mbox64->xfer_segment_hi = 0;
mbox->xferaddr = 0xFFFFFFFF;
break;
default:
mbox64->xfer_segment_lo = 0;
mbox64->xfer_segment_hi = 0;
}
if( likely(adapter->flag & BOARD_MEMMAP) ) {
mbox->poll = 0;
mbox->ack = 0;
mbox->numstatus = 0xFF;
mbox->status = 0xFF;
WRINDOOR(adapter, adapter->mbox_dma | 0x1);
while((volatile u8)mbox->numstatus == 0xFF)
cpu_relax();
mbox->numstatus = 0xFF;
while((volatile u8)mbox->status == 0xFF)
cpu_relax();
status = mbox->status;
mbox->status = 0xFF;
while( (volatile u8)mbox->poll != 0x77 )
cpu_relax();
mbox->poll = 0;
mbox->ack = 0x77;
WRINDOOR(adapter, adapter->mbox_dma | 0x2);
while(RDINDOOR(adapter) & 0x2)
cpu_relax();
}
else {
irq_disable(adapter);
issue_command(adapter);
while (!((byte = irq_state(adapter)) & INTR_VALID))
cpu_relax();
status = mbox->status;
mbox->numstatus = 0xFF;
mbox->status = 0xFF;
set_irq_state(adapter, byte);
irq_enable(adapter);
irq_ack(adapter);
}
// invalidate the completed command id array. After command
// completion, firmware would write the valid id.
for (i = 0; i < MAX_FIRMWARE_STATUS; i++) {
mbox->completed[i] = 0xFF;
}
return status;
bug_blocked_mailbox:
printk(KERN_WARNING "megaraid: Blocked mailbox......!!\n");
udelay (1000);
return -1;
}
/**
* megaraid_isr_iomapped()
* @irq - irq
* @devp - pointer to our soft state
* @regs - unused
*
* Interrupt service routine for io-mapped controllers.
* Find out if our device is interrupting. If yes, acknowledge the interrupt
* and service the completed commands.
*/
static void
megaraid_isr_iomapped(int irq, void *devp, struct pt_regs *regs)
{
adapter_t *adapter = devp;
unsigned long flags;
spin_lock_irqsave(adapter->host_lock, flags);
megaraid_iombox_ack_sequence(adapter);
/* Loop through any pending requests */
if( atomic_read(&adapter->quiescent ) == 0) {
mega_runpendq(adapter);
}
spin_unlock_irqrestore(adapter->host_lock, flags);
return;
}
/**
* megaraid_iombox_ack_sequence - interrupt ack sequence for IO mapped HBAs
* @adapter - controller's soft state
*
* Interrupt ackrowledgement sequence for IO mapped HBAs
*/
static inline void
megaraid_iombox_ack_sequence(adapter_t *adapter)
{
u8 status;
u8 nstatus;
u8 completed[MAX_FIRMWARE_STATUS];
u8 byte;
int i;
/*
* loop till F/W has more commands for us to complete.
*/
do {
/* Check if a valid interrupt is pending */
byte = irq_state(adapter);
if( (byte & VALID_INTR_BYTE) == 0 ) {
return;
}
set_irq_state(adapter, byte);
while ((nstatus = adapter->mbox->numstatus) == 0xFF) {
cpu_relax();
}
adapter->mbox->numstatus = 0xFF;
for (i = 0; i < nstatus; i++) {
while ((completed[i] = adapter->mbox->completed[i])
== 0xFF) {
cpu_relax();
}
adapter->mbox->completed[i] = 0xFF;
}
// we must read the valid status now
if ((status = adapter->mbox->status) == 0xFF) {
printk(KERN_WARNING
"megaraid critical: status 0xFF from firmware.\n");
}
adapter->mbox->status = 0xFF;
/*
* decrement the pending queue counter
*/
atomic_sub(nstatus, &adapter->pend_cmds);
/* Acknowledge interrupt */
irq_ack(adapter);
mega_cmd_done(adapter, completed, nstatus, status);
} while(1);
}
/**
* megaraid_isr_memmapped()
* @irq - irq
* @devp - pointer to our soft state
* @regs - unused
*
* Interrupt service routine for memory-mapped controllers.
* Find out if our device is interrupting. If yes, acknowledge the interrupt
* and service the completed commands.
*/
static void
megaraid_isr_memmapped(int irq, void *devp, struct pt_regs *regs)
{
adapter_t *adapter = devp;
unsigned long flags;
spin_lock_irqsave(adapter->host_lock, flags);
megaraid_memmbox_ack_sequence(adapter);
/* Loop through any pending requests */
if(atomic_read(&adapter->quiescent) == 0) {
mega_runpendq(adapter);
}
spin_unlock_irqrestore(adapter->host_lock, flags);
return;
}
/**
* megaraid_memmbox_ack_sequence - interrupt ack sequence for memory mapped HBAs
* @adapter - controller's soft state
*
* Interrupt ackrowledgement sequence for memory mapped HBAs
*/
static inline void
megaraid_memmbox_ack_sequence(adapter_t *adapter)
{
u8 status;
u32 dword = 0;
u8 nstatus;
u8 completed[MAX_FIRMWARE_STATUS];
int i;
/*
* loop till F/W has more commands for us to complete.
*/
do {
/* Check if a valid interrupt is pending */
dword = RDOUTDOOR(adapter);
if( dword != 0x10001234 ) {
/*
* No more pending commands
*/
return;
}
WROUTDOOR(adapter, 0x10001234);
while ((nstatus = adapter->mbox->numstatus) == 0xFF) {
cpu_relax();
}
adapter->mbox->numstatus = 0xFF;
for (i = 0; i < nstatus; i++ ) {
while ((completed[i] = adapter->mbox->completed[i])
== 0xFF) {
cpu_relax();
}
adapter->mbox->completed[i] = 0xFF;
}
// we must read the valid status now
if ((status = adapter->mbox->status) == 0xFF) {
printk(KERN_WARNING
"megaraid critical: status 0xFF from firmware.\n");
}
adapter->mbox->status = 0xFF;
/*
* decrement the pending queue counter
*/
atomic_sub(nstatus, &adapter->pend_cmds);
/* Acknowledge interrupt */
WRINDOOR(adapter, 0x2);
while( RDINDOOR(adapter) & 0x02 ) cpu_relax();
mega_cmd_done(adapter, completed, nstatus, status);
} while(1);
}
/**
* mega_cmd_done()
* @adapter - pointer to our soft state
* @completed - array of ids of completed commands
* @nstatus - number of completed commands
* @status - status of the last command completed
*
* Complete the comamnds and call the scsi mid-layer callback hooks.
*/
static inline void
mega_cmd_done(adapter_t *adapter, u8 completed[], int nstatus, int status)
{
mega_ext_passthru *epthru = NULL;
struct scatterlist *sgl;
Scsi_Cmnd *cmd = NULL;
mega_passthru *pthru = NULL;
mbox_t *mbox = NULL;
int islogical;
u8 c;
scb_t *scb;
int cmdid;
int i;
/*
* for all the commands completed, call the mid-layer callback routine
* and free the scb.
*/
for( i = 0; i < nstatus; i++ ) {
cmdid = completed[i];
if( cmdid == CMDID_INT_CMDS ) { /* internal command */
scb = &adapter->int_scb;
cmd = scb->cmd;
mbox = (mbox_t *)scb->raw_mbox;
/*
* Internal command interface do not fire the extended
* passthru or 64-bit passthru
*/
pthru = scb->pthru;
}
else {
scb = &adapter->scb_list[cmdid];
cmd = scb->cmd;
pthru = scb->pthru;
epthru = scb->epthru;
mbox = (mbox_t *)scb->raw_mbox;
/*
* Make sure f/w has completed a valid command
*/
if( !(scb->state & SCB_ISSUED) || scb->cmd == NULL ) {
printk(KERN_CRIT
"megaraid: invalid command ");
printk("Id %d, scb->state:%x, scsi cmd:%p\n",
cmdid, scb->state, scb->cmd);
continue;
}
/*
* Was an abort issued for this command
*/
if( scb->state & SCB_ABORT ) {
printk(KERN_NOTICE
"megaraid: aborted cmd %lx[%x] complete.\n",
scb->cmd->serial_number, scb->idx);
cmd->result = (DID_ABORT << 16);
mega_free_scb(adapter, scb);
cmd->scsi_done(cmd);
continue;
}
/*
* Was a reset issued for this command
*/
if( scb->state & SCB_RESET ) {
printk(KERN_WARNING
"megaraid: reset cmd %lx[%x] complete.\n",
scb->cmd->serial_number, scb->idx);
scb->cmd->result = (DID_RESET << 16);
mega_free_scb (adapter, scb);
cmd->scsi_done(cmd);
continue;
}
#if MEGA_HAVE_STATS
{
int logdrv = mbox->logdrv;
islogical = adapter->logdrv_chan[cmd->channel];
/*
* Maintain an error counter for the logical drive.
* Some application like SNMP agent need such
* statistics
*/
if( status && islogical && (cmd->cmnd[0] == READ_6 ||
cmd->cmnd[0] == READ_10 ||
cmd->cmnd[0] == READ_12)) {
/*
* Logical drive number increases by 0x80 when
* a logical drive is deleted
*/
adapter->rd_errors[logdrv%0x80]++;
}
if( status && islogical && (cmd->cmnd[0] == WRITE_6 ||
cmd->cmnd[0] == WRITE_10 ||
cmd->cmnd[0] == WRITE_12)) {
/*
* Logical drive number increases by 0x80 when
* a logical drive is deleted
*/
adapter->wr_errors[logdrv%0x80]++;
}
}
#endif
}
/*
* Do not return the presence of hard disk on the channel so,
* inquiry sent, and returned data==hard disk or removable
* hard disk and not logical, request should return failure! -
* PJ
*/
islogical = adapter->logdrv_chan[cmd->channel];
if (cmd->cmnd[0] == INQUIRY && !islogical) {
if( cmd->use_sg ) {
sgl = (struct scatterlist *)
cmd->request_buffer;
c = *(u8 *)sgl[0].address;
}
else {
c = *(u8 *)cmd->request_buffer;
}
if(IS_RAID_CH(adapter, cmd->channel) &&
((c & 0x1F ) == TYPE_DISK)) {
status = 0xF0;
}
}
/* clear result; otherwise, success returns corrupt value */
cmd->result = 0;
/* Convert MegaRAID status to Linux error code */
switch (status) {
case 0x00: /* SUCCESS , i.e. SCSI_STATUS_GOOD */
cmd->result |= (DID_OK << 16);
break;
case 0x02: /* ERROR_ABORTED, i.e.
SCSI_STATUS_CHECK_CONDITION */
/* set sense_buffer and result fields */
if( mbox->cmd == MEGA_MBOXCMD_PASSTHRU ||
mbox->cmd == MEGA_MBOXCMD_PASSTHRU64 ) {
memcpy(cmd->sense_buffer, pthru->reqsensearea,
14);
cmd->result = (DRIVER_SENSE << 24) |
(DID_OK << 16) |
(CHECK_CONDITION << 1);
}
else {
if (mbox->cmd == MEGA_MBOXCMD_EXTPTHRU) {
memcpy(cmd->sense_buffer,
epthru->reqsensearea, 14);
cmd->result = (DRIVER_SENSE << 24) |
(DID_OK << 16) |
(CHECK_CONDITION << 1);
} else {
cmd->sense_buffer[0] = 0x70;
cmd->sense_buffer[2] = ABORTED_COMMAND;
cmd->result |= (CHECK_CONDITION << 1);
}
}
break;
case 0x08: /* ERR_DEST_DRIVE_FAILED, i.e.
SCSI_STATUS_BUSY */
cmd->result |= (DID_BUS_BUSY << 16) | status;
break;
default:
#if MEGA_HAVE_CLUSTERING
/*
* If TEST_UNIT_READY fails, we know
* MEGA_RESERVATION_STATUS failed
*/
if( cmd->cmnd[0] == TEST_UNIT_READY ) {
cmd->result |= (DID_ERROR << 16) |
(RESERVATION_CONFLICT << 1);
}
else
/*
* Error code returned is 1 if Reserve or Release
* failed or the input parameter is invalid
*/
if( status == 1 &&
(cmd->cmnd[0] == RESERVE ||
cmd->cmnd[0] == RELEASE) ) {
cmd->result |= (DID_ERROR << 16) |
(RESERVATION_CONFLICT << 1);
}
else
#endif
cmd->result |= (DID_BAD_TARGET << 16)|status;
}
/*
* Only free SCBs for the commands coming down from the
* mid-layer, not for which were issued internally
*
* For internal command, restore the status returned by the
* firmware so that user can interpret it.
*/
if( cmdid == CMDID_INT_CMDS ) { /* internal command */
cmd->result = status;
/*
* Remove the internal command from the pending list
*/
list_del_init(&scb->list);
scb->state = SCB_FREE;
}
else {
mega_free_scb(adapter, scb);
}
/*
* Call the mid-layer callback for this command
*/
cmd->scsi_done(cmd);
}
}
/*
* Free a SCB structure
* Note: We assume the scsi commands associated with this scb is not free yet.
*/
static void
mega_free_scb(adapter_t *adapter, scb_t *scb)
{
switch( scb->dma_type ) {
case MEGA_DMA_TYPE_NONE:
break;
case MEGA_BULK_DATA:
pci_unmap_page(adapter->dev, scb->dma_h_bulkdata,
scb->cmd->request_bufflen, scb->dma_direction);
if( scb->dma_direction == PCI_DMA_FROMDEVICE ) {
pci_dma_sync_single(adapter->dev, scb->dma_h_bulkdata,
scb->cmd->request_bufflen,
PCI_DMA_FROMDEVICE);
}
break;
case MEGA_SGLIST:
pci_unmap_sg(adapter->dev, scb->cmd->request_buffer,
scb->cmd->use_sg, scb->dma_direction);
if( scb->dma_direction == PCI_DMA_FROMDEVICE ) {
pci_dma_sync_sg(adapter->dev, scb->cmd->request_buffer,
scb->cmd->use_sg, PCI_DMA_FROMDEVICE);
}
break;
default:
break;
}
/*
* Remove from the pending list
*/
list_del_init(&scb->list);
/* Link the scb back into free list */
scb->state = SCB_FREE;
scb->cmd = NULL;
list_add(&scb->list, &adapter->free_list);
}
/*
* Wait until the controller's mailbox is available
*/
static inline int
mega_busywait_mbox (adapter_t *adapter)
{
if (adapter->mbox->busy)
return __mega_busywait_mbox(adapter);
return 0;
}
static int
__mega_busywait_mbox (adapter_t *adapter)
{
volatile mbox_t *mbox = adapter->mbox;
long counter;
for (counter = 0; counter < 10000; counter++) {
if (!mbox->busy)
return 0;
udelay(100); yield();
}
return -1; /* give up after 1 second */
}
/*
* Copies data to SGLIST
* Note: For 64 bit cards, we need a minimum of one SG element for read/write
*/
static int
mega_build_sglist(adapter_t *adapter, scb_t *scb, u32 *buf, u32 *len)
{
struct scatterlist *sgl;
struct page *page;
unsigned long offset;
Scsi_Cmnd *cmd;
int sgcnt;
int idx;
cmd = scb->cmd;
/* Scatter-gather not used */
if( !cmd->use_sg ) {
page = virt_to_page(cmd->request_buffer);
offset = ((unsigned long)cmd->request_buffer & ~PAGE_MASK);
scb->dma_h_bulkdata = pci_map_page(adapter->dev, page, offset,
cmd->request_bufflen,
scb->dma_direction);
scb->dma_type = MEGA_BULK_DATA;
/*
* We need to handle special 64-bit commands that need a
* minimum of 1 SG
*/
if( adapter->has_64bit_addr ) {
scb->sgl64[0].address = scb->dma_h_bulkdata;
scb->sgl64[0].length = cmd->request_bufflen;
*buf = (u32)scb->sgl_dma_addr;
*len = (u32)cmd->request_bufflen;
return 1;
}
else {
*buf = (u32)scb->dma_h_bulkdata;
*len = (u32)cmd->request_bufflen;
}
if( scb->dma_direction == PCI_DMA_TODEVICE ) {
pci_dma_sync_single(adapter->dev,
scb->dma_h_bulkdata,
cmd->request_bufflen,
PCI_DMA_TODEVICE);
}
return 0;
}
sgl = (struct scatterlist *)cmd->request_buffer;
/*
* Copy Scatter-Gather list info into controller structure.
*
* The number of sg elements returned must not exceed our limit
*/
sgcnt = pci_map_sg(adapter->dev, sgl, cmd->use_sg, scb->dma_direction);
scb->dma_type = MEGA_SGLIST;
if( sgcnt > adapter->sglen ) BUG();
for( idx = 0; idx < sgcnt; idx++, sgl++ ) {
if( adapter->has_64bit_addr ) {
scb->sgl64[idx].address = sg_dma_address(sgl);
scb->sgl64[idx].length = sg_dma_len(sgl);
}
else {
scb->sgl[idx].address = sg_dma_address(sgl);
scb->sgl[idx].length = sg_dma_len(sgl);
}
}
/* Reset pointer and length fields */
*buf = scb->sgl_dma_addr;
/*
* For passthru command, dataxferlen must be set, even for commands
* with a sg list
*/
*len = (u32)cmd->request_bufflen;
if( scb->dma_direction == PCI_DMA_TODEVICE ) {
pci_dma_sync_sg(adapter->dev, cmd->request_buffer,
cmd->use_sg, PCI_DMA_TODEVICE);
}
/* Return count of SG requests */
return sgcnt;
}
/*
* mega_8_to_40ld()
*
* takes all info in AdapterInquiry structure and puts it into ProductInfo and
* Enquiry3 structures for later use
*/
static void
mega_8_to_40ld(mraid_inquiry *inquiry, mega_inquiry3 *enquiry3,
mega_product_info *product_info)
{
int i;
product_info->max_commands = inquiry->adapter_info.max_commands;
enquiry3->rebuild_rate = inquiry->adapter_info.rebuild_rate;
product_info->nchannels = inquiry->adapter_info.nchannels;
for (i = 0; i < 4; i++) {
product_info->fw_version[i] =
inquiry->adapter_info.fw_version[i];
product_info->bios_version[i] =
inquiry->adapter_info.bios_version[i];
}
enquiry3->cache_flush_interval =
inquiry->adapter_info.cache_flush_interval;
product_info->dram_size = inquiry->adapter_info.dram_size;
enquiry3->num_ldrv = inquiry->logdrv_info.num_ldrv;
for (i = 0; i < MAX_LOGICAL_DRIVES_8LD; i++) {
enquiry3->ldrv_size[i] = inquiry->logdrv_info.ldrv_size[i];
enquiry3->ldrv_prop[i] = inquiry->logdrv_info.ldrv_prop[i];
enquiry3->ldrv_state[i] = inquiry->logdrv_info.ldrv_state[i];
}
for (i = 0; i < (MAX_PHYSICAL_DRIVES); i++)
enquiry3->pdrv_state[i] = inquiry->pdrv_info.pdrv_state[i];
}
/*
* Release the controller's resources
*/
static int
megaraid_release(struct Scsi_Host *host)
{
adapter_t *adapter;
mbox_t *mbox;
u_char raw_mbox[sizeof(mbox_t)];
#ifdef CONFIG_PROC_FS
char buf[12] = { 0 };
#endif
adapter = (adapter_t *)host->hostdata;
mbox = (mbox_t *)raw_mbox;
printk(KERN_NOTICE "megaraid: being unloaded...");
/* Flush adapter cache */
memset(raw_mbox, 0, sizeof(raw_mbox));
raw_mbox[0] = FLUSH_ADAPTER;
irq_disable(adapter);
free_irq(adapter->host->irq, adapter);
/* Issue a blocking (interrupts disabled) command to the card */
issue_scb_block(adapter, raw_mbox);
/* Flush disks cache */
memset(raw_mbox, 0, sizeof(raw_mbox));
raw_mbox[0] = FLUSH_SYSTEM;
/* Issue a blocking (interrupts disabled) command to the card */
issue_scb_block(adapter, raw_mbox);
/* Free our resources */
if( adapter->flag & BOARD_MEMMAP ) {
iounmap((void *)adapter->base);
release_mem_region(adapter->host->base, 128);
}
else {
release_region(adapter->base, 16);
}
mega_free_sgl(adapter);
#ifdef CONFIG_PROC_FS
if( adapter->controller_proc_dir_entry ) {
remove_proc_entry("stat", adapter->controller_proc_dir_entry);
remove_proc_entry("config",
adapter->controller_proc_dir_entry);
remove_proc_entry("mailbox",
adapter->controller_proc_dir_entry);
#if MEGA_HAVE_ENH_PROC
remove_proc_entry("rebuild-rate",
adapter->controller_proc_dir_entry);
remove_proc_entry("battery-status",
adapter->controller_proc_dir_entry);
remove_proc_entry("diskdrives-ch0",
adapter->controller_proc_dir_entry);
remove_proc_entry("diskdrives-ch1",
adapter->controller_proc_dir_entry);
remove_proc_entry("diskdrives-ch2",
adapter->controller_proc_dir_entry);
remove_proc_entry("diskdrives-ch3",
adapter->controller_proc_dir_entry);
remove_proc_entry("raiddrives-0-9",
adapter->controller_proc_dir_entry);
remove_proc_entry("raiddrives-10-19",
adapter->controller_proc_dir_entry);
remove_proc_entry("raiddrives-20-29",
adapter->controller_proc_dir_entry);
remove_proc_entry("raiddrives-30-39",
adapter->controller_proc_dir_entry);
#endif
sprintf(buf, "hba%d", adapter->host->host_no);
remove_proc_entry(buf, mega_proc_dir_entry);
}
#endif
pci_free_consistent(adapter->dev, MEGA_BUFFER_SIZE,
adapter->mega_buffer, adapter->buf_dma_handle);
kfree(adapter->scb_list);
pci_free_consistent(adapter->dev, sizeof(mbox64_t),
(void *)adapter->una_mbox64, adapter->una_mbox64_dma);
hba_count--;
if( hba_count == 0 ) {
/*
* Unregister the character device interface to the driver.
*/
unregister_chrdev(major, "megadev");
unregister_reboot_notifier(&mega_notifier);
#ifdef CONFIG_PROC_FS
if( adapter->controller_proc_dir_entry ) {
remove_proc_entry ("megaraid", &proc_root);
}
#endif
}
/*
* Release the controller memory. A word of warning this frees
* hostdata and that includes adapter-> so be careful what you
* dereference beyond this point
*/
scsi_unregister(host);
printk("ok.\n");
return 0;
}
static inline void
mega_free_sgl(adapter_t *adapter)
{
scb_t *scb;
int i;
for(i = 0; i < adapter->max_cmds; i++) {
scb = &adapter->scb_list[i];
if( scb->sgl64 ) {
pci_free_consistent(adapter->dev,
sizeof(mega_sgl64) * adapter->sglen,
scb->sgl64,
scb->sgl_dma_addr);
scb->sgl64 = NULL;
}
if( scb->pthru ) {
pci_free_consistent(adapter->dev, sizeof(mega_passthru),
scb->pthru, scb->pthru_dma_addr);
scb->pthru = NULL;
}
if( scb->epthru ) {
pci_free_consistent(adapter->dev,
sizeof(mega_ext_passthru),
scb->epthru, scb->epthru_dma_addr);
scb->epthru = NULL;
}
}
}
/*
* Get information about the card/driver
*/
const char *
megaraid_info(struct Scsi_Host *host)
{
static char buffer[512];
adapter_t *adapter;
adapter = (adapter_t *)host->hostdata;
sprintf (buffer,
"LSI Logic MegaRAID %s %d commands %d targs %d chans %d luns",
adapter->fw_version, adapter->product_info.max_commands,
adapter->host->max_id, adapter->host->max_channel,
adapter->host->max_lun);
return buffer;
}
/* shouldn't be used, but included for completeness */
static int
megaraid_command (Scsi_Cmnd *cmd)
{
printk(KERN_WARNING
"megaraid critcal error: synchronous interface is not implemented.\n");
cmd->result = (DID_ERROR << 16);
cmd->scsi_done(cmd);
return 1;
}
/**
* megaraid_abort - abort the scsi command
* @scp - command to be aborted
*
* Abort a previous SCSI request. Only commands on the pending list can be
* aborted. All the commands issued to the F/W must complete.
*/
static int
megaraid_abort(Scsi_Cmnd *scp)
{
adapter_t *adapter;
struct list_head *pos, *next;
scb_t *scb;
long iter;
int rval = SUCCESS;
adapter = (adapter_t *)scp->host->hostdata;
ASSERT( spin_is_locked(adapter->host_lock) );
printk("megaraid: aborting-%ld cmd=%x <c=%d t=%d l=%d>\n",
scp->serial_number, scp->cmnd[0], scp->channel, scp->target,
scp->lun);
list_for_each_safe( pos, next, &adapter->pending_list ) {
scb = list_entry(pos, scb_t, list);
if( scb->cmd == scp ) { /* Found command */
scb->state |= SCB_ABORT;
/*
* Check if this command was never issued. If this is
* the case, take it off from the pending list and
* complete.
*/
if( !(scb->state & SCB_ISSUED) ) {
printk(KERN_WARNING
"megaraid: %ld:%d, driver owner.\n",
scp->serial_number, scb->idx);
scp->result = (DID_ABORT << 16);
mega_free_scb(adapter, scb);
scp->scsi_done(scp);
break;
}
}
}
/*
* By this time, either all commands are completed or aborted by
* mid-layer. Do not return until all the commands are actually
* completed by the firmware
*/
iter = 0;
while( atomic_read(&adapter->pend_cmds) > 0 ) {
/*
* Perform the ack sequence, since interrupts are not
* available right now!
*/
if( adapter->flag & BOARD_MEMMAP ) {
megaraid_memmbox_ack_sequence(adapter);
}
else {
megaraid_iombox_ack_sequence(adapter);
}
/*
* print a message once every second only
*/
if( !(iter % 1000) ) {
printk(
"megaraid: Waiting for %d commands to flush: iter:%ld\n",
atomic_read(&adapter->pend_cmds), iter);
}
if( iter++ < MBOX_ABORT_SLEEP*1000 ) {
mdelay(1);
}
else {
printk(KERN_WARNING
"megaraid: critical hardware error!\n");
rval = FAILED;
break;
}
}
if( rval == SUCCESS ) {
printk(KERN_INFO
"megaraid: abort sequence successfully completed.\n");
}
return rval;
}
static int
megaraid_reset(Scsi_Cmnd *cmd)
{
adapter_t *adapter;
megacmd_t mc;
long iter;
int rval = SUCCESS;
adapter = (adapter_t *)cmd->host->hostdata;
ASSERT( spin_is_locked(adapter->host_lock) );
printk("megaraid: reset-%ld cmd=%x <c=%d t=%d l=%d>\n",
cmd->serial_number, cmd->cmnd[0], cmd->channel, cmd->target,
cmd->lun);
#if MEGA_HAVE_CLUSTERING
mc.cmd = MEGA_CLUSTER_CMD;
mc.opcode = MEGA_RESET_RESERVATIONS;
spin_unlock_irq(adapter->host_lock);
if( mega_internal_command(adapter, LOCK_INT, &mc, NULL) != 0 ) {
printk(KERN_WARNING
"megaraid: reservation reset failed.\n");
}
else {
printk(KERN_INFO "megaraid: reservation reset.\n");
}
spin_lock_irq(adapter->host_lock);
#endif
/*
* Do not return until all the commands are actually completed by the
* firmware
*/
iter = 0;
while( atomic_read(&adapter->pend_cmds) > 0 ) {
/*
* Perform the ack sequence, since interrupts are not
* available right now!
*/
if( adapter->flag & BOARD_MEMMAP ) {
megaraid_memmbox_ack_sequence(adapter);
}
else {
megaraid_iombox_ack_sequence(adapter);
}
/*
* print a message once every second only
*/
if( !(iter % 1000) ) {
printk(
"megaraid: Waiting for %d commands to flush: iter:%ld\n",
atomic_read(&adapter->pend_cmds), iter);
}
if( iter++ < MBOX_RESET_SLEEP*1000 ) {
mdelay(1);
}
else {
printk(KERN_WARNING
"megaraid: critical hardware error!\n");
rval = FAILED;
break;
}
}
if( rval == SUCCESS ) {
printk(KERN_INFO
"megaraid: reset sequence successfully completed.\n");
}
return rval;
}
#ifdef CONFIG_PROC_FS
/* Following code handles /proc fs */
#define CREATE_READ_PROC(string, func) create_proc_read_entry(string, \
S_IRUSR | S_IFREG, \
controller_proc_dir_entry, \
func, adapter)
/**
* mega_create_proc_entry()
* @index - index in soft state array
* @parent - parent node for this /proc entry
*
* Creates /proc entries for our controllers.
*/
static void
mega_create_proc_entry(int index, struct proc_dir_entry *parent)
{
struct proc_dir_entry *controller_proc_dir_entry = NULL;
u8 string[64] = { 0 };
adapter_t *adapter = hba_soft_state[index];
sprintf(string, "hba%d", adapter->host->host_no);
controller_proc_dir_entry =
adapter->controller_proc_dir_entry = proc_mkdir(string, parent);
if(!controller_proc_dir_entry) {
printk(KERN_WARNING "\nmegaraid: proc_mkdir failed\n");
return;
}
adapter->proc_read = CREATE_READ_PROC("config", proc_read_config);
adapter->proc_stat = CREATE_READ_PROC("stat", proc_read_stat);
adapter->proc_mbox = CREATE_READ_PROC("mailbox", proc_read_mbox);
#if MEGA_HAVE_ENH_PROC
adapter->proc_rr = CREATE_READ_PROC("rebuild-rate", proc_rebuild_rate);
adapter->proc_battery = CREATE_READ_PROC("battery-status",
proc_battery);
/*
* Display each physical drive on its channel
*/
adapter->proc_pdrvstat[0] = CREATE_READ_PROC("diskdrives-ch0",
proc_pdrv_ch0);
adapter->proc_pdrvstat[1] = CREATE_READ_PROC("diskdrives-ch1",
proc_pdrv_ch1);
adapter->proc_pdrvstat[2] = CREATE_READ_PROC("diskdrives-ch2",
proc_pdrv_ch2);
adapter->proc_pdrvstat[3] = CREATE_READ_PROC("diskdrives-ch3",
proc_pdrv_ch3);
/*
* Display a set of up to 10 logical drive through each of following
* /proc entries
*/
adapter->proc_rdrvstat[0] = CREATE_READ_PROC("raiddrives-0-9",
proc_rdrv_10);
adapter->proc_rdrvstat[1] = CREATE_READ_PROC("raiddrives-10-19",
proc_rdrv_20);
adapter->proc_rdrvstat[2] = CREATE_READ_PROC("raiddrives-20-29",
proc_rdrv_30);
adapter->proc_rdrvstat[3] = CREATE_READ_PROC("raiddrives-30-39",
proc_rdrv_40);
#endif
}
/**
* proc_read_config()
* @page - buffer to write the data in
* @start - where the actual data has been written in page
* @offset - same meaning as the read system call
* @count - same meaning as the read system call
* @eof - set if no more data needs to be returned
* @data - pointer to our soft state
*
* Display configuration information about the controller.
*/
static int
proc_read_config(char *page, char **start, off_t offset, int count, int *eof,
void *data)
{
adapter_t *adapter = (adapter_t *)data;
int len = 0;
len += sprintf(page+len, "%s", MEGARAID_VERSION);
if(adapter->product_info.product_name[0])
len += sprintf(page+len, "%s\n",
adapter->product_info.product_name);
len += sprintf(page+len, "Controller Type: ");
if( adapter->flag & BOARD_MEMMAP ) {
len += sprintf(page+len,
"438/466/467/471/493/518/520/531/532\n");
}
else {
len += sprintf(page+len,
"418/428/434\n");
}
if(adapter->flag & BOARD_40LD) {
len += sprintf(page+len,
"Controller Supports 40 Logical Drives\n");
}
if(adapter->flag & BOARD_64BIT) {
len += sprintf(page+len,
"Controller capable of 64-bit memory addressing\n");
}
if( adapter->has_64bit_addr ) {
len += sprintf(page+len,
"Controller using 64-bit memory addressing\n");
}
else {
len += sprintf(page+len,
"Controller is not using 64-bit memory addressing\n");
}
len += sprintf(page+len, "Base = %08lx, Irq = %d, ", adapter->base,
adapter->host->irq);
len += sprintf(page+len, "Initial Logical Drives = %d, Channels = %d\n",
adapter->numldrv, adapter->product_info.nchannels);
len += sprintf(page+len, "Version =%s:%s, DRAM = %dMb\n",
adapter->fw_version, adapter->bios_version,
adapter->product_info.dram_size);
len += sprintf(page+len,
"Controller Queue Depth = %d, Driver Queue Depth = %d\n",
adapter->product_info.max_commands, adapter->max_cmds);
len += sprintf(page+len, "support_ext_cdb = %d\n",
adapter->support_ext_cdb);
len += sprintf(page+len, "support_random_del = %d\n",
adapter->support_random_del);
len += sprintf(page+len, "boot_ldrv_enabled = %d\n",
adapter->boot_ldrv_enabled);
len += sprintf(page+len, "boot_ldrv = %d\n",
adapter->boot_ldrv);
len += sprintf(page+len, "boot_pdrv_enabled = %d\n",
adapter->boot_pdrv_enabled);
len += sprintf(page+len, "boot_pdrv_ch = %d\n",
adapter->boot_pdrv_ch);
len += sprintf(page+len, "boot_pdrv_tgt = %d\n",
adapter->boot_pdrv_tgt);
len += sprintf(page+len, "quiescent = %d\n",
atomic_read(&adapter->quiescent));
len += sprintf(page+len, "has_cluster = %d\n",
adapter->has_cluster);
len += sprintf(page+len, "\nModule Parameters:\n");
len += sprintf(page+len, "max_cmd_per_lun = %d\n",
max_cmd_per_lun);
len += sprintf(page+len, "max_sectors_per_io = %d\n",
max_sectors_per_io);
*eof = 1;
return len;
}
/**
* proc_read_stat()
* @page - buffer to write the data in
* @start - where the actual data has been written in page
* @offset - same meaning as the read system call
* @count - same meaning as the read system call
* @eof - set if no more data needs to be returned
* @data - pointer to our soft state
*
* Diaplay statistical information about the I/O activity.
*/
static int
proc_read_stat(char *page, char **start, off_t offset, int count, int *eof,
void *data)
{
adapter_t *adapter;
int len;
int i;
i = 0; /* avoid compilation warnings */
len = 0;
adapter = (adapter_t *)data;
len = sprintf(page, "Statistical Information for this controller\n");
len += sprintf(page+len, "pend_cmds = %d\n",
atomic_read(&adapter->pend_cmds));
#if MEGA_HAVE_STATS
for(i = 0; i < adapter->numldrv; i++) {
len += sprintf(page+len, "Logical Drive %d:\n", i);
len += sprintf(page+len,
"\tReads Issued = %lu, Writes Issued = %lu\n",
adapter->nreads[i], adapter->nwrites[i]);
len += sprintf(page+len,
"\tSectors Read = %lu, Sectors Written = %lu\n",
adapter->nreadblocks[i], adapter->nwriteblocks[i]);
len += sprintf(page+len,
"\tRead errors = %lu, Write errors = %lu\n\n",
adapter->rd_errors[i], adapter->wr_errors[i]);
}
#else
len += sprintf(page+len,
"IO and error counters not compiled in driver.\n");
#endif
*eof = 1;
return len;
}
/**
* proc_read_mbox()
* @page - buffer to write the data in
* @start - where the actual data has been written in page
* @offset - same meaning as the read system call
* @count - same meaning as the read system call
* @eof - set if no more data needs to be returned
* @data - pointer to our soft state
*
* Display mailbox information for the last command issued. This information
* is good for debugging.
*/
static int
proc_read_mbox(char *page, char **start, off_t offset, int count, int *eof,
void *data)
{
adapter_t *adapter = (adapter_t *)data;
volatile mbox_t *mbox = adapter->mbox;
int len = 0;
len = sprintf(page, "Contents of Mail Box Structure\n");
len += sprintf(page+len, " Fw Command = 0x%02x\n", mbox->cmd);
len += sprintf(page+len, " Cmd Sequence = 0x%02x\n", mbox->cmdid);
len += sprintf(page+len, " No of Sectors= %04d\n", mbox->numsectors);
len += sprintf(page+len, " LBA = 0x%02x\n", mbox->lba);
len += sprintf(page+len, " DTA = 0x%08x\n", mbox->xferaddr);
len += sprintf(page+len, " Logical Drive= 0x%02x\n", mbox->logdrv);
len += sprintf(page+len, " No of SG Elmt= 0x%02x\n",
mbox->numsgelements);
len += sprintf(page+len, " Busy = %01x\n", mbox->busy);
len += sprintf(page+len, " Status = 0x%02x\n", mbox->status);
*eof = 1;
return len;
}
/**
* proc_rebuild_rate()
* @page - buffer to write the data in
* @start - where the actual data has been written in page
* @offset - same meaning as the read system call
* @count - same meaning as the read system call
* @eof - set if no more data needs to be returned
* @data - pointer to our soft state
*
* Display current rebuild rate
*/
static int
proc_rebuild_rate(char *page, char **start, off_t offset, int count, int *eof,
void *data)
{
adapter_t *adapter = (adapter_t *)data;
dma_addr_t dma_handle;
caddr_t inquiry;
struct pci_dev *pdev;
int len = 0;
pdev = adapter->dev;
if( (inquiry = mega_allocate_inquiry(&dma_handle, pdev)) == NULL ) {
*eof = 1;
return len;
}
if( mega_adapinq(adapter, dma_handle) != 0 ) {
len = sprintf(page, "Adapter inquiry failed.\n");
printk(KERN_WARNING "megaraid: inquiry failed.\n");
mega_free_inquiry(inquiry, dma_handle, pdev);
*eof = 1;
return len;
}
if( adapter->flag & BOARD_40LD ) {
len = sprintf(page, "Rebuild Rate: [%d%%]\n",
((mega_inquiry3 *)inquiry)->rebuild_rate);
}
else {
len = sprintf(page, "Rebuild Rate: [%d%%]\n",
((mraid_ext_inquiry *)
inquiry)->raid_inq.adapter_info.rebuild_rate);
}
mega_free_inquiry(inquiry, dma_handle, pdev);
*eof = 1;
return len;
}
/**
* proc_battery()
* @page - buffer to write the data in
* @start - where the actual data has been written in page
* @offset - same meaning as the read system call
* @count - same meaning as the read system call
* @eof - set if no more data needs to be returned
* @data - pointer to our soft state
*
* Display information about the battery module on the controller.
*/
static int
proc_battery(char *page, char **start, off_t offset, int count, int *eof,
void *data)
{
adapter_t *adapter = (adapter_t *)data;
dma_addr_t dma_handle;
caddr_t inquiry;
struct pci_dev *pdev;
u8 battery_status = 0;
char str[256];
int len = 0;
pdev = adapter->dev;
if( (inquiry = mega_allocate_inquiry(&dma_handle, pdev)) == NULL ) {
*eof = 1;
return len;
}
if( mega_adapinq(adapter, dma_handle) != 0 ) {
len = sprintf(page, "Adapter inquiry failed.\n");
printk(KERN_WARNING "megaraid: inquiry failed.\n");
mega_free_inquiry(inquiry, dma_handle, pdev);
*eof = 1;
return len;
}
if( adapter->flag & BOARD_40LD ) {
battery_status = ((mega_inquiry3 *)inquiry)->battery_status;
}
else {
battery_status = ((mraid_ext_inquiry *)inquiry)->
raid_inq.adapter_info.battery_status;
}
/*
* Decode the battery status
*/
sprintf(str, "Battery Status:[%d]", battery_status);
if(battery_status == MEGA_BATT_CHARGE_DONE)
strcat(str, " Charge Done");
if(battery_status & MEGA_BATT_MODULE_MISSING)
strcat(str, " Module Missing");
if(battery_status & MEGA_BATT_LOW_VOLTAGE)
strcat(str, " Low Voltage");
if(battery_status & MEGA_BATT_TEMP_HIGH)
strcat(str, " Temperature High");
if(battery_status & MEGA_BATT_PACK_MISSING)
strcat(str, " Pack Missing");
if(battery_status & MEGA_BATT_CHARGE_INPROG)
strcat(str, " Charge In-progress");
if(battery_status & MEGA_BATT_CHARGE_FAIL)
strcat(str, " Charge Fail");
if(battery_status & MEGA_BATT_CYCLES_EXCEEDED)
strcat(str, " Cycles Exceeded");
len = sprintf(page, "%s\n", str);
mega_free_inquiry(inquiry, dma_handle, pdev);
*eof = 1;
return len;
}
/**
* proc_pdrv_ch0()
* @page - buffer to write the data in
* @start - where the actual data has been written in page
* @offset - same meaning as the read system call
* @count - same meaning as the read system call
* @eof - set if no more data needs to be returned
* @data - pointer to our soft state
*
* Display information about the physical drives on physical channel 0.
*/
static int
proc_pdrv_ch0(char *page, char **start, off_t offset, int count, int *eof,
void *data)
{
adapter_t *adapter = (adapter_t *)data;
*eof = 1;
return (proc_pdrv(adapter, page, 0));
}
/**
* proc_pdrv_ch1()
* @page - buffer to write the data in
* @start - where the actual data has been written in page
* @offset - same meaning as the read system call
* @count - same meaning as the read system call
* @eof - set if no more data needs to be returned
* @data - pointer to our soft state
*
* Display information about the physical drives on physical channel 1.
*/
static int
proc_pdrv_ch1(char *page, char **start, off_t offset, int count, int *eof,
void *data)
{
adapter_t *adapter = (adapter_t *)data;
*eof = 1;
return (proc_pdrv(adapter, page, 1));
}
/**
* proc_pdrv_ch2()
* @page - buffer to write the data in
* @start - where the actual data has been written in page
* @offset - same meaning as the read system call
* @count - same meaning as the read system call
* @eof - set if no more data needs to be returned
* @data - pointer to our soft state
*
* Display information about the physical drives on physical channel 2.
*/
static int
proc_pdrv_ch2(char *page, char **start, off_t offset, int count, int *eof,
void *data)
{
adapter_t *adapter = (adapter_t *)data;
*eof = 1;
return (proc_pdrv(adapter, page, 2));
}
/**
* proc_pdrv_ch3()
* @page - buffer to write the data in
* @start - where the actual data has been written in page
* @offset - same meaning as the read system call
* @count - same meaning as the read system call
* @eof - set if no more data needs to be returned
* @data - pointer to our soft state
*
* Display information about the physical drives on physical channel 3.
*/
static int
proc_pdrv_ch3(char *page, char **start, off_t offset, int count, int *eof,
void *data)
{
adapter_t *adapter = (adapter_t *)data;
*eof = 1;
return (proc_pdrv(adapter, page, 3));
}
/**
* proc_pdrv()
* @page - buffer to write the data in
* @adapter - pointer to our soft state
*
* Display information about the physical drives.
*/
static int
proc_pdrv(adapter_t *adapter, char *page, int channel)
{
dma_addr_t dma_handle;
char *scsi_inq;
dma_addr_t scsi_inq_dma_handle;
caddr_t inquiry;
struct pci_dev *pdev;
u8 *pdrv_state;
u8 state;
int tgt;
int max_channels;
int len = 0;
char str[80];
int i;
pdev = adapter->dev;
if( (inquiry = mega_allocate_inquiry(&dma_handle, pdev)) == NULL ) {
return len;
}
if( mega_adapinq(adapter, dma_handle) != 0 ) {
len = sprintf(page, "Adapter inquiry failed.\n");
printk(KERN_WARNING "megaraid: inquiry failed.\n");
mega_free_inquiry(inquiry, dma_handle, pdev);
return len;
}
scsi_inq = pci_alloc_consistent(pdev, 256, &scsi_inq_dma_handle);
if( scsi_inq == NULL ) {
len = sprintf(page, "memory not available for scsi inq.\n");
mega_free_inquiry(inquiry, dma_handle, pdev);
return len;
}
if( adapter->flag & BOARD_40LD ) {
pdrv_state = ((mega_inquiry3 *)inquiry)->pdrv_state;
}
else {
pdrv_state = ((mraid_ext_inquiry *)inquiry)->
raid_inq.pdrv_info.pdrv_state;
}
max_channels = adapter->product_info.nchannels;
if( channel >= max_channels ) return 0;
for( tgt = 0; tgt <= MAX_TARGET; tgt++ ) {
i = channel*16 + tgt;
state = *(pdrv_state + i);
switch( state & 0x0F ) {
case PDRV_ONLINE:
sprintf(str, "Channel:%2d Id:%2d State: Online",
channel, tgt);
break;
case PDRV_FAILED:
sprintf(str, "Channel:%2d Id:%2d State: Failed",
channel, tgt);
break;
case PDRV_RBLD:
sprintf(str, "Channel:%2d Id:%2d State: Rebuild",
channel, tgt);
break;
case PDRV_HOTSPARE:
sprintf(str, "Channel:%2d Id:%2d State: Hot spare",
channel, tgt);
break;
default:
sprintf(str, "Channel:%2d Id:%2d State: Un-configured",
channel, tgt);
break;
}
/*
* This interface displays inquiries for disk drives
* only. Inquries for logical drives and non-disk
* devices are available through /proc/scsi/scsi
*/
memset(scsi_inq, 0, 256);
if( mega_internal_dev_inquiry(adapter, channel, tgt,
scsi_inq_dma_handle) ||
(scsi_inq[0] & 0x1F) != TYPE_DISK ) {
continue;
}
/*
* Check for overflow. We print less than 240
* characters for inquiry
*/
if( (len + 240) >= PAGE_SIZE ) break;
len += sprintf(page+len, "%s.\n", str);
len += mega_print_inquiry(page+len, scsi_inq);
}
pci_free_consistent(pdev, 256, scsi_inq, scsi_inq_dma_handle);
mega_free_inquiry(inquiry, dma_handle, pdev);
return len;
}
/*
* Display scsi inquiry
*/
static int
mega_print_inquiry(char *page, char *scsi_inq)
{
int len = 0;
int i;
len = sprintf(page, " Vendor: ");
for( i = 8; i < 16; i++ ) {
len += sprintf(page+len, "%c", scsi_inq[i]);
}
len += sprintf(page+len, " Model: ");
for( i = 16; i < 32; i++ ) {
len += sprintf(page+len, "%c", scsi_inq[i]);
}
len += sprintf(page+len, " Rev: ");
for( i = 32; i < 36; i++ ) {
len += sprintf(page+len, "%c", scsi_inq[i]);
}
len += sprintf(page+len, "\n");
i = scsi_inq[0] & 0x1f;
len += sprintf(page+len, " Type: %s ",
i < MAX_SCSI_DEVICE_CODE ? scsi_device_types[i] :
"Unknown ");
len += sprintf(page+len,
" ANSI SCSI revision: %02x", scsi_inq[2] & 0x07);
if( (scsi_inq[2] & 0x07) == 1 && (scsi_inq[3] & 0x0f) == 1 )
len += sprintf(page+len, " CCS\n");
else
len += sprintf(page+len, "\n");
return len;
}
/**
* proc_rdrv_10()
* @page - buffer to write the data in
* @start - where the actual data has been written in page
* @offset - same meaning as the read system call
* @count - same meaning as the read system call
* @eof - set if no more data needs to be returned
* @data - pointer to our soft state
*
* Display real time information about the logical drives 0 through 9.
*/
static int
proc_rdrv_10(char *page, char **start, off_t offset, int count, int *eof,
void *data)
{
adapter_t *adapter = (adapter_t *)data;
*eof = 1;
return (proc_rdrv(adapter, page, 0, 9));
}
/**
* proc_rdrv_20()
* @page - buffer to write the data in
* @start - where the actual data has been written in page
* @offset - same meaning as the read system call
* @count - same meaning as the read system call
* @eof - set if no more data needs to be returned
* @data - pointer to our soft state
*
* Display real time information about the logical drives 10 through 19.
*/
static int
proc_rdrv_20(char *page, char **start, off_t offset, int count, int *eof,
void *data)
{
adapter_t *adapter = (adapter_t *)data;
*eof = 1;
return (proc_rdrv(adapter, page, 10, 19));
}
/**
* proc_rdrv_30()
* @page - buffer to write the data in
* @start - where the actual data has been written in page
* @offset - same meaning as the read system call
* @count - same meaning as the read system call
* @eof - set if no more data needs to be returned
* @data - pointer to our soft state
*
* Display real time information about the logical drives 20 through 29.
*/
static int
proc_rdrv_30(char *page, char **start, off_t offset, int count, int *eof,
void *data)
{
adapter_t *adapter = (adapter_t *)data;
*eof = 1;
return (proc_rdrv(adapter, page, 20, 29));
}
/**
* proc_rdrv_40()
* @page - buffer to write the data in
* @start - where the actual data has been written in page
* @offset - same meaning as the read system call
* @count - same meaning as the read system call
* @eof - set if no more data needs to be returned
* @data - pointer to our soft state
*
* Display real time information about the logical drives 30 through 39.
*/
static int
proc_rdrv_40(char *page, char **start, off_t offset, int count, int *eof,
void *data)
{
adapter_t *adapter = (adapter_t *)data;
*eof = 1;
return (proc_rdrv(adapter, page, 30, 39));
}
/**
* proc_rdrv()
* @page - buffer to write the data in
* @adapter - pointer to our soft state
* @start - starting logical drive to display
* @end - ending logical drive to display
*
* We do not print the inquiry information since its already available through
* /proc/scsi/scsi interface
*/
static int
proc_rdrv(adapter_t *adapter, char *page, int start, int end)
{
dma_addr_t dma_handle;
logdrv_param *lparam;
megacmd_t mc;
char *disk_array;
dma_addr_t disk_array_dma_handle;
caddr_t inquiry;
struct pci_dev *pdev;
u8 *rdrv_state;
int num_ldrv;
u32 array_sz;
int len = 0;
int i;
u8 span8_flag = 1;
pdev = adapter->dev;
if( (inquiry = mega_allocate_inquiry(&dma_handle, pdev)) == NULL ) {
return len;
}
if( mega_adapinq(adapter, dma_handle) != 0 ) {
len = sprintf(page, "Adapter inquiry failed.\n");
printk(KERN_WARNING "megaraid: inquiry failed.\n");
mega_free_inquiry(inquiry, dma_handle, pdev);
return len;
}
memset(&mc, 0, sizeof(megacmd_t));
if( adapter->flag & BOARD_40LD ) {
array_sz = sizeof(disk_array_40ld);
rdrv_state = ((mega_inquiry3 *)inquiry)->ldrv_state;
num_ldrv = ((mega_inquiry3 *)inquiry)->num_ldrv;
}
else {
/*
* 'array_sz' is either the size of diskarray_span4_t or the
* size of disk_array_span8_t. We use span8_t's size because
* it is bigger of the two.
*/
array_sz = sizeof( diskarray_span8_t );
rdrv_state = ((mraid_ext_inquiry *)inquiry)->
raid_inq.logdrv_info.ldrv_state;
num_ldrv = ((mraid_ext_inquiry *)inquiry)->
raid_inq.logdrv_info.num_ldrv;
}
disk_array = pci_alloc_consistent(pdev, array_sz,
&disk_array_dma_handle);
if( disk_array == NULL ) {
len = sprintf(page, "memory not available.\n");
mega_free_inquiry(inquiry, dma_handle, pdev);
return len;
}
mc.xferaddr = (u32)disk_array_dma_handle;
if( adapter->flag & BOARD_40LD ) {
mc.cmd = FC_NEW_CONFIG;
mc.opcode = OP_DCMD_READ_CONFIG;
if( mega_internal_command(adapter, LOCK_INT, &mc, NULL) ) {
len = sprintf(page, "40LD read config failed.\n");
mega_free_inquiry(inquiry, dma_handle, pdev);
pci_free_consistent(pdev, array_sz, disk_array,
disk_array_dma_handle);
return len;
}
}
else {
/*
* Try 8-Span "read config" command
*/
mc.cmd = NEW_READ_CONFIG_8LD;
if( mega_internal_command(adapter, LOCK_INT, &mc, NULL) ) {
/*
* 8-Span command failed; try 4-Span command
*/
span8_flag = 0;
mc.cmd = READ_CONFIG_8LD;
if( mega_internal_command(adapter, LOCK_INT, &mc,
NULL) ){
len = sprintf(page,
"8LD read config failed.\n");
mega_free_inquiry(inquiry, dma_handle, pdev);
pci_free_consistent(pdev, array_sz,
disk_array,
disk_array_dma_handle);
return len;
}
}
}
for( i = start; i < ( (end+1 < num_ldrv) ? end+1 : num_ldrv ); i++ ) {
if( adapter->flag & BOARD_40LD ) {
lparam =
&((disk_array_40ld *)disk_array)->ldrv[i].lparam;
}
else {
if( span8_flag ) {
lparam = (logdrv_param*) &((diskarray_span8_t*)
(disk_array))->log_drv[i];
}
else {
lparam = (logdrv_param*) &((diskarray_span4_t*)
(disk_array))->log_drv[i];
}
}
/*
* Check for overflow. We print less than 240 characters for
* information about each logical drive.
*/
if( (len + 240) >= PAGE_SIZE ) break;
len += sprintf(page+len, "Logical drive:%2d:, ", i);
switch( rdrv_state[i] & 0x0F ) {
case RDRV_OFFLINE:
len += sprintf(page+len, "state: offline");
break;
case RDRV_DEGRADED:
len += sprintf(page+len, "state: degraded");
break;
case RDRV_OPTIMAL:
len += sprintf(page+len, "state: optimal");
break;
case RDRV_DELETED:
len += sprintf(page+len, "state: deleted");
break;
default:
len += sprintf(page+len, "state: unknown");
break;
}
/*
* Check if check consistency or initialization is going on
* for this logical drive.
*/
if( (rdrv_state[i] & 0xF0) == 0x20 ) {
len += sprintf(page+len,
", check-consistency in progress");
}
else if( (rdrv_state[i] & 0xF0) == 0x10 ) {
len += sprintf(page+len,
", initialization in progress");
}
len += sprintf(page+len, "\n");
len += sprintf(page+len, "Span depth:%3d, ",
lparam->span_depth);
len += sprintf(page+len, "RAID level:%3d, ",
lparam->level);
len += sprintf(page+len, "Stripe size:%3d, ",
lparam->stripe_sz ? lparam->stripe_sz/2: 128);
len += sprintf(page+len, "Row size:%3d\n",
lparam->row_size);
len += sprintf(page+len, "Read Policy: ");
switch(lparam->read_ahead) {
case NO_READ_AHEAD:
len += sprintf(page+len, "No read ahead, ");
break;
case READ_AHEAD:
len += sprintf(page+len, "Read ahead, ");
break;
case ADAP_READ_AHEAD:
len += sprintf(page+len, "Adaptive, ");
break;
}
len += sprintf(page+len, "Write Policy: ");
switch(lparam->write_mode) {
case WRMODE_WRITE_THRU:
len += sprintf(page+len, "Write thru, ");
break;
case WRMODE_WRITE_BACK:
len += sprintf(page+len, "Write back, ");
break;
}
len += sprintf(page+len, "Cache Policy: ");
switch(lparam->direct_io) {
case CACHED_IO:
len += sprintf(page+len, "Cached IO\n\n");
break;
case DIRECT_IO:
len += sprintf(page+len, "Direct IO\n\n");
break;
}
}
mega_free_inquiry(inquiry, dma_handle, pdev);
pci_free_consistent(pdev, array_sz, disk_array,
disk_array_dma_handle);
return len;
}
#endif
/**
* megaraid_biosparam()
* @disk
* @dev
* @geom
*
* Return the disk geometry for a particular disk
* Input:
* Disk *disk - Disk geometry
* kdev_t dev - Device node
* int *geom - Returns geometry fields
* geom[0] = heads
* geom[1] = sectors
* geom[2] = cylinders
*/
static int
megaraid_biosparam(Disk *disk, kdev_t dev, int *geom)
{
int heads, sectors, cylinders;
adapter_t *adapter;
/* Get pointer to host config structure */
adapter = (adapter_t *)disk->device->host->hostdata;
if (IS_RAID_CH(adapter, disk->device->channel)) {
/* Default heads (64) & sectors (32) */
heads = 64;
sectors = 32;
cylinders = disk->capacity / (heads * sectors);
/*
* Handle extended translation size for logical drives
* > 1Gb
*/
if (disk->capacity >= 0x200000) {
heads = 255;
sectors = 63;
cylinders = disk->capacity / (heads * sectors);
}
/* return result */
geom[0] = heads;
geom[1] = sectors;
geom[2] = cylinders;
}
else {
if( !mega_partsize(disk, dev, geom) )
return 0;
printk(KERN_WARNING
"megaraid: invalid partition on this disk on channel %d\n",
disk->device->channel);
/* Default heads (64) & sectors (32) */
heads = 64;
sectors = 32;
cylinders = disk->capacity / (heads * sectors);
/* Handle extended translation size for logical drives > 1Gb */
if (disk->capacity >= 0x200000) {
heads = 255;
sectors = 63;
cylinders = disk->capacity / (heads * sectors);
}
/* return result */
geom[0] = heads;
geom[1] = sectors;
geom[2] = cylinders;
}
return 0;
}
/*
* mega_partsize()
* @disk
* @geom
*
* Purpose : to determine the BIOS mapping used to create the partition
* table, storing the results (cyls, hds, and secs) in geom
*
* Note: Code is picked from scsicam.h
*
* Returns : -1 on failure, 0 on success.
*/
static int
mega_partsize(Disk *disk, kdev_t dev, int *geom)
{
struct buffer_head *bh;
struct partition *p, *largest = NULL;
int i, largest_cyl;
int heads, cyls, sectors;
int capacity = disk->capacity;
int ma = MAJOR(dev);
int mi = (MINOR(dev) & ~0xf);
int block = 1024;
if (blksize_size[ma])
block = blksize_size[ma][mi];
if (!(bh = bread(MKDEV(ma,mi), 0, block)))
return -1;
if (*(unsigned short *)(bh->b_data + 510) == 0xAA55 ) {
for (largest_cyl = -1,
p = (struct partition *)(0x1BE + bh->b_data), i = 0;
i < 4; ++i, ++p) {
if (!p->sys_ind) continue;
cyls = p->end_cyl + ((p->end_sector & 0xc0) << 2);
if (cyls >= largest_cyl) {
largest_cyl = cyls;
largest = p;
}
}
}
if (largest) {
heads = largest->end_head + 1;
sectors = largest->end_sector & 0x3f;
if (!heads || !sectors) {
brelse(bh);
return -1;
}
cyls = capacity/(heads * sectors);
geom[0] = heads;
geom[1] = sectors;
geom[2] = cyls;
brelse(bh);
return 0;
}
brelse(bh);
return -1;
}
/**
* megaraid_reboot_notify()
* @this - unused
* @code - shutdown code
* @unused - unused
*
* This routine will be called when the use has done a forced shutdown on the
* system. Flush the Adapter and disks cache.
*/
static int
megaraid_reboot_notify (struct notifier_block *this, unsigned long code,
void *unused)
{
adapter_t *adapter;
struct Scsi_Host *host;
u8 raw_mbox[sizeof(mbox_t)];
mbox_t *mbox;
int i;
/*
* Flush the controller's cache irrespective of the codes coming down.
* SYS_DOWN, SYS_HALT, SYS_RESTART, SYS_POWER_OFF
*/
for( i = 0; i < hba_count; i++ ) {
printk(KERN_INFO "megaraid: flushing adapter %d..", i);
host = hba_soft_state[i]->host;
adapter = (adapter_t *)host->hostdata;
mbox = (mbox_t *)raw_mbox;
/* Flush adapter cache */
memset(raw_mbox, 0, sizeof(raw_mbox));
raw_mbox[0] = FLUSH_ADAPTER;
irq_disable(adapter);
free_irq(adapter->host->irq, adapter);
/*
* Issue a blocking (interrupts disabled) command to
* the card
*/
issue_scb_block(adapter, raw_mbox);
/* Flush disks cache */
memset(raw_mbox, 0, sizeof(raw_mbox));
raw_mbox[0] = FLUSH_SYSTEM;
issue_scb_block(adapter, raw_mbox);
printk("Done.\n");
if( atomic_read(&adapter->pend_cmds) > 0 ) {
printk(KERN_WARNING "megaraid: pending commands!!\n");
}
}
/*
* Have a delibrate delay to make sure all the caches are
* actually flushed.
*/
printk(KERN_INFO "megaraid: cache flush delay: ");
for( i = 9; i >= 0; i-- ) {
printk("\b\b\b[%d]", i);
mdelay(1000);
}
printk("\b\b\b[done]\n");
mdelay(1000);
return NOTIFY_DONE;
}
/**
* mega_init_scb()
* @adapter - pointer to our soft state
*
* Allocate memory for the various pointers in the scb structures:
* scatter-gather list pointer, passthru and extended passthru structure
* pointers.
*/
static int
mega_init_scb(adapter_t *adapter)
{
scb_t *scb;
int i;
for( i = 0; i < adapter->max_cmds; i++ ) {
scb = &adapter->scb_list[i];
scb->sgl64 = NULL;
scb->sgl = NULL;
scb->pthru = NULL;
scb->epthru = NULL;
}
for( i = 0; i < adapter->max_cmds; i++ ) {
scb = &adapter->scb_list[i];
scb->idx = i;
scb->sgl64 = pci_alloc_consistent(adapter->dev,
sizeof(mega_sgl64) * adapter->sglen,
&scb->sgl_dma_addr);
scb->sgl = (mega_sglist *)scb->sgl64;
if( !scb->sgl ) {
printk(KERN_WARNING "RAID: Can't allocate sglist.\n");
mega_free_sgl(adapter);
return -1;
}
scb->pthru = pci_alloc_consistent(adapter->dev,
sizeof(mega_passthru),
&scb->pthru_dma_addr);
if( !scb->pthru ) {
printk(KERN_WARNING "RAID: Can't allocate passthru.\n");
mega_free_sgl(adapter);
return -1;
}
scb->epthru = pci_alloc_consistent(adapter->dev,
sizeof(mega_ext_passthru),
&scb->epthru_dma_addr);
if( !scb->epthru ) {
printk(KERN_WARNING
"Can't allocate extended passthru.\n");
mega_free_sgl(adapter);
return -1;
}
scb->dma_type = MEGA_DMA_TYPE_NONE;
/*
* Link to free list
* lock not required since we are loading the driver, so no
* commands possible right now.
*/
scb->state = SCB_FREE;
scb->cmd = NULL;
list_add(&scb->list, &adapter->free_list);
}
return 0;
}
/**
* megadev_open()
* @inode - unused
* @filep - unused
*
* Routines for the character/ioctl interface to the driver. Find out if this
* is a valid open. If yes, increment the module use count so that it cannot
* be unloaded.
*/
static int
megadev_open (struct inode *inode, struct file *filep)
{
/*
* Only allow superuser to access private ioctl interface
*/
if( !capable(CAP_SYS_ADMIN) ) return -EACCES;
MOD_INC_USE_COUNT;
return 0;
}
/**
* megadev_ioctl()
* @inode - Our device inode
* @filep - unused
* @cmd - ioctl command
* @arg - user buffer
*
* ioctl entry point for our private ioctl interface. We move the data in from
* the user space, prepare the command (if necessary, convert the old MIMD
* ioctl to new ioctl command), and issue a synchronous command to the
* controller.
*/
static int
megadev_ioctl(struct inode *inode, struct file *filep, unsigned int cmd,
unsigned long arg)
{
adapter_t *adapter;
nitioctl_t uioc;
int adapno;
int rval;
mega_passthru *upthru; /* user address for passthru */
mega_passthru *pthru; /* copy user passthru here */
dma_addr_t pthru_dma_hndl;
void *data = NULL; /* data to be transferred */
dma_addr_t data_dma_hndl; /* dma handle for data xfer area */
megacmd_t mc;
megastat_t *ustats;
int num_ldrv;
u32 uxferaddr = 0;
struct pci_dev *pdev;
ustats = NULL; /* avoid compilation warnings */
num_ldrv = 0;
/*
* Make sure only USCSICMD are issued through this interface.
* MIMD application would still fire different command.
*/
if( (_IOC_TYPE(cmd) != MEGAIOC_MAGIC) && (cmd != USCSICMD) ) {
return -EINVAL;
}
/*
* Check and convert a possible MIMD command to NIT command.
* mega_m_to_n() copies the data from the user space, so we do not
* have to do it here.
* NOTE: We will need some user address to copyout the data, therefore
* the inteface layer will also provide us with the required user
* addresses.
*/
memset(&uioc, 0, sizeof(nitioctl_t));
if( (rval = mega_m_to_n( (void *)arg, &uioc)) != 0 )
return rval;
switch( uioc.opcode ) {
case GET_DRIVER_VER:
if( put_user(driver_ver, (u32 *)uioc.uioc_uaddr) )
return (-EFAULT);
break;
case GET_N_ADAP:
if( put_user(hba_count, (u32 *)uioc.uioc_uaddr) )
return (-EFAULT);
/*
* Shucks. MIMD interface returns a positive value for number
* of adapters. TODO: Change it to return 0 when there is no
* applicatio using mimd interface.
*/
return hba_count;
case GET_ADAP_INFO:
/*
* Which adapter
*/
if( (adapno = GETADAP(uioc.adapno)) >= hba_count )
return (-ENODEV);
if( copy_to_user(uioc.uioc_uaddr, mcontroller+adapno,
sizeof(struct mcontroller)) )
return (-EFAULT);
break;
#if MEGA_HAVE_STATS
case GET_STATS:
/*
* Which adapter
*/
if( (adapno = GETADAP(uioc.adapno)) >= hba_count )
return (-ENODEV);
adapter = hba_soft_state[adapno];
ustats = (megastat_t *)uioc.uioc_uaddr;
if( copy_from_user(&num_ldrv, &ustats->num_ldrv, sizeof(int)) )
return (-EFAULT);
/*
* Check for the validity of the logical drive number
*/
if( num_ldrv >= MAX_LOGICAL_DRIVES_40LD ) return -EINVAL;
if( copy_to_user(ustats->nreads, adapter->nreads,
num_ldrv*sizeof(u32)) )
return -EFAULT;
if( copy_to_user(ustats->nreadblocks, adapter->nreadblocks,
num_ldrv*sizeof(u32)) )
return -EFAULT;
if( copy_to_user(ustats->nwrites, adapter->nwrites,
num_ldrv*sizeof(u32)) )
return -EFAULT;
if( copy_to_user(ustats->nwriteblocks, adapter->nwriteblocks,
num_ldrv*sizeof(u32)) )
return -EFAULT;
if( copy_to_user(ustats->rd_errors, adapter->rd_errors,
num_ldrv*sizeof(u32)) )
return -EFAULT;
if( copy_to_user(ustats->wr_errors, adapter->wr_errors,
num_ldrv*sizeof(u32)) )
return -EFAULT;
return 0;
#endif
case MBOX_CMD:
/*
* Which adapter
*/
if( (adapno = GETADAP(uioc.adapno)) >= hba_count )
return (-ENODEV);
adapter = hba_soft_state[adapno];
/*
* Deletion of logical drive is a special case. The adapter
* should be quiescent before this command is issued.
*/
if( uioc.uioc_rmbox[0] == FC_DEL_LOGDRV &&
uioc.uioc_rmbox[2] == OP_DEL_LOGDRV ) {
/*
* Do we support this feature
*/
if( !adapter->support_random_del ) {
printk(KERN_WARNING "megaraid: logdrv ");
printk("delete on non-supporting F/W.\n");
return (-EINVAL);
}
rval = mega_del_logdrv( adapter, uioc.uioc_rmbox[3] );
if( rval == 0 ) {
memset(&mc, 0, sizeof(megacmd_t));
mc.status = rval;
rval = mega_n_to_m((void *)arg, &mc);
}
return rval;
}
/*
* This interface only support the regular passthru commands.
* Reject extended passthru and 64-bit passthru
*/
if( uioc.uioc_rmbox[0] == MEGA_MBOXCMD_PASSTHRU64 ||
uioc.uioc_rmbox[0] == MEGA_MBOXCMD_EXTPTHRU ) {
printk(KERN_WARNING "megaraid: rejected passthru.\n");
return (-EINVAL);
}
/*
* For all internal commands, the buffer must be allocated in
* <4GB address range
*/
pdev = adapter->dev;
/* Is it a passthru command or a DCMD */
if( uioc.uioc_rmbox[0] == MEGA_MBOXCMD_PASSTHRU ) {
/* Passthru commands */
pthru = pci_alloc_consistent(pdev,
sizeof(mega_passthru),
&pthru_dma_hndl);
if( pthru == NULL ) {
return (-ENOMEM);
}
/*
* The user passthru structure
*/
upthru = (mega_passthru *)MBOX(uioc)->xferaddr;
/*
* Copy in the user passthru here.
*/
if( copy_from_user(pthru, (char *)upthru,
sizeof(mega_passthru)) ) {
pci_free_consistent(pdev,
sizeof(mega_passthru), pthru,
pthru_dma_hndl);
return (-EFAULT);
}
/*
* Is there a data transfer
*/
if( pthru->dataxferlen ) {
data = pci_alloc_consistent(pdev,
pthru->dataxferlen,
&data_dma_hndl);
if( data == NULL ) {
pci_free_consistent(pdev,
sizeof(mega_passthru),
pthru,
pthru_dma_hndl);
return (-ENOMEM);
}
/*
* Save the user address and point the kernel
* address at just allocated memory
*/
uxferaddr = pthru->dataxferaddr;
pthru->dataxferaddr = data_dma_hndl;
}
/*
* Is data coming down-stream
*/
if( pthru->dataxferlen && (uioc.flags & UIOC_WR) ) {
/*
* Get the user data
*/
if( copy_from_user(data, (char *)uxferaddr,
pthru->dataxferlen) ) {
rval = (-EFAULT);
goto freemem_and_return;
}
}
memset(&mc, 0, sizeof(megacmd_t));
mc.cmd = MEGA_MBOXCMD_PASSTHRU;
mc.xferaddr = (u32)pthru_dma_hndl;
/*
* Issue the command
*/
mega_internal_command(adapter, LOCK_INT, &mc, pthru);
rval = mega_n_to_m((void *)arg, &mc);
if( rval ) goto freemem_and_return;
/*
* Is data going up-stream
*/
if( pthru->dataxferlen && (uioc.flags & UIOC_RD) ) {
if( copy_to_user((char *)uxferaddr, data,
pthru->dataxferlen) ) {
rval = (-EFAULT);
}
}
/*
* Send the request sense data also, irrespective of
* whether the user has asked for it or not.
*/
copy_to_user(upthru->reqsensearea,
pthru->reqsensearea, 14);
freemem_and_return:
if( pthru->dataxferlen ) {
pci_free_consistent(pdev,
pthru->dataxferlen, data,
data_dma_hndl);
}
pci_free_consistent(pdev, sizeof(mega_passthru),
pthru, pthru_dma_hndl);
return rval;
}
else {
/* DCMD commands */
/*
* Is there a data transfer
*/
if( uioc.xferlen ) {
data = pci_alloc_consistent(pdev,
uioc.xferlen, &data_dma_hndl);
if( data == NULL ) {
return (-ENOMEM);
}
uxferaddr = MBOX(uioc)->xferaddr;
}
/*
* Is data coming down-stream
*/
if( uioc.xferlen && (uioc.flags & UIOC_WR) ) {
/*
* Get the user data
*/
if( copy_from_user(data, (char *)uxferaddr,
uioc.xferlen) ) {
pci_free_consistent(pdev,
uioc.xferlen,
data, data_dma_hndl);
return (-EFAULT);
}
}
memcpy(&mc, MBOX(uioc), sizeof(megacmd_t));
mc.xferaddr = (u32)data_dma_hndl;
/*
* Issue the command
*/
mega_internal_command(adapter, LOCK_INT, &mc, NULL);
rval = mega_n_to_m((void *)arg, &mc);
if( rval ) {
if( uioc.xferlen ) {
pci_free_consistent(pdev,
uioc.xferlen, data,
data_dma_hndl);
}
return rval;
}
/*
* Is data going up-stream
*/
if( uioc.xferlen && (uioc.flags & UIOC_RD) ) {
if( copy_to_user((char *)uxferaddr, data,
uioc.xferlen) ) {
rval = (-EFAULT);
}
}
if( uioc.xferlen ) {
pci_free_consistent(pdev,
uioc.xferlen, data,
data_dma_hndl);
}
return rval;
}
default:
return (-EINVAL);
}
return 0;
}
/**
* mega_m_to_n()
* @arg - user address
* @uioc - new ioctl structure
*
* A thin layer to convert older mimd interface ioctl structure to NIT ioctl
* structure
*
* Converts the older mimd ioctl structure to newer NIT structure
*/
static int
mega_m_to_n(void *arg, nitioctl_t *uioc)
{
struct uioctl_t uioc_mimd;
char signature[8] = {0};
u8 opcode;
u8 subopcode;
/*
* check is the application conforms to NIT. We do not have to do much
* in that case.
* We exploit the fact that the signature is stored in the very
* begining of the structure.
*/
if( copy_from_user(signature, (char *)arg, 7) )
return (-EFAULT);
if( memcmp(signature, "MEGANIT", 7) == 0 ) {
/*
* NOTE NOTE: The nit ioctl is still under flux because of
* change of mailbox definition, in HPE. No applications yet
* use this interface and let's not have applications use this
* interface till the new specifitions are in place.
*/
return -EINVAL;
#if 0
if( copy_from_user(uioc, (char *)arg, sizeof(nitioctl_t)) )
return (-EFAULT);
return 0;
#endif
}
/*
* Else assume we have mimd uioctl_t as arg. Convert to nitioctl_t
*
* Get the user ioctl structure
*/
if( copy_from_user(&uioc_mimd, (char *)arg, sizeof(struct uioctl_t)) )
return (-EFAULT);
/*
* Get the opcode and subopcode for the commands
*/
opcode = uioc_mimd.ui.fcs.opcode;
subopcode = uioc_mimd.ui.fcs.subopcode;
switch (opcode) {
case 0x82:
switch (subopcode) {
case MEGAIOC_QDRVRVER: /* Query driver version */
uioc->opcode = GET_DRIVER_VER;
uioc->uioc_uaddr = uioc_mimd.data;
break;
case MEGAIOC_QNADAP: /* Get # of adapters */
uioc->opcode = GET_N_ADAP;
uioc->uioc_uaddr = uioc_mimd.data;
break;
case MEGAIOC_QADAPINFO: /* Get adapter information */
uioc->opcode = GET_ADAP_INFO;
uioc->adapno = uioc_mimd.ui.fcs.adapno;
uioc->uioc_uaddr = uioc_mimd.data;
break;
default:
return(-EINVAL);
}
break;
case 0x81:
uioc->opcode = MBOX_CMD;
uioc->adapno = uioc_mimd.ui.fcs.adapno;
memcpy(uioc->uioc_rmbox, uioc_mimd.mbox, 18);
uioc->xferlen = uioc_mimd.ui.fcs.length;
if( uioc_mimd.outlen ) uioc->flags = UIOC_RD;
if( uioc_mimd.inlen ) uioc->flags |= UIOC_WR;
break;
case 0x80:
uioc->opcode = MBOX_CMD;
uioc->adapno = uioc_mimd.ui.fcs.adapno;
memcpy(uioc->uioc_rmbox, uioc_mimd.mbox, 18);
/*
* Choose the xferlen bigger of input and output data
*/
uioc->xferlen = uioc_mimd.outlen > uioc_mimd.inlen ?
uioc_mimd.outlen : uioc_mimd.inlen;
if( uioc_mimd.outlen ) uioc->flags = UIOC_RD;
if( uioc_mimd.inlen ) uioc->flags |= UIOC_WR;
break;
default:
return (-EINVAL);
}
return 0;
}
/*
* mega_n_to_m()
* @arg - user address
* @mc - mailbox command
*
* Updates the status information to the application, depending on application
* conforms to older mimd ioctl interface or newer NIT ioctl interface
*/
static int
mega_n_to_m(void *arg, megacmd_t *mc)
{
nitioctl_t *uiocp;
megacmd_t *umc;
megacmd_t kmc;
mega_passthru *upthru;
struct uioctl_t *uioc_mimd;
char signature[8] = {0};
/*
* check is the application conforms to NIT.
*/
if( copy_from_user(signature, (char *)arg, 7) )
return -EFAULT;
if( memcmp(signature, "MEGANIT", 7) == 0 ) {
uiocp = (nitioctl_t *)arg;
if( put_user(mc->status, (u8 *)&MBOX_P(uiocp)->status) )
return (-EFAULT);
if( mc->cmd == MEGA_MBOXCMD_PASSTHRU ) {
umc = MBOX_P(uiocp);
upthru = (mega_passthru *)umc->xferaddr;
if( put_user(mc->status, (u8 *)&upthru->scsistatus) )
return (-EFAULT);
}
}
else {
uioc_mimd = (struct uioctl_t *)arg;
if( put_user(mc->status, (u8 *)&uioc_mimd->mbox[17]) )
return (-EFAULT);
if( mc->cmd == MEGA_MBOXCMD_PASSTHRU ) {
umc = (megacmd_t *)uioc_mimd->mbox;
if (copy_from_user(&kmc, umc, sizeof(megacmd_t)))
return -EFAULT;
upthru = (mega_passthru *)kmc.xferaddr;
if( put_user(mc->status, (u8 *)&upthru->scsistatus) )
return (-EFAULT);
}
}
return 0;
}
static int
megadev_close (struct inode *inode, struct file *filep)
{
MOD_DEC_USE_COUNT;
return 0;
}
/*
* MEGARAID 'FW' commands.
*/
/**
* mega_is_bios_enabled()
* @adapter - pointer to our soft state
*
* issue command to find out if the BIOS is enabled for this controller
*/
static int
mega_is_bios_enabled(adapter_t *adapter)
{
unsigned char raw_mbox[sizeof(mbox_t)];
mbox_t *mbox;
int ret;
mbox = (mbox_t *)raw_mbox;
memset(raw_mbox, 0, sizeof(raw_mbox));
memset((void *)adapter->mega_buffer, 0, MEGA_BUFFER_SIZE);
mbox->xferaddr = (u32)adapter->buf_dma_handle;
raw_mbox[0] = IS_BIOS_ENABLED;
raw_mbox[2] = GET_BIOS;
ret = issue_scb_block(adapter, raw_mbox);
return *(char *)adapter->mega_buffer;
}
/**
* mega_enum_raid_scsi()
* @adapter - pointer to our soft state
*
* Find out what channels are RAID/SCSI. This information is used to
* differentiate the virtual channels and physical channels and to support
* ROMB feature and non-disk devices.
*/
static void
mega_enum_raid_scsi(adapter_t *adapter)
{
unsigned char raw_mbox[sizeof(mbox_t)];
mbox_t *mbox;
int i;
mbox = (mbox_t *)raw_mbox;
memset(raw_mbox, 0, sizeof(raw_mbox));
/*
* issue command to find out what channels are raid/scsi
*/
raw_mbox[0] = CHNL_CLASS;
raw_mbox[2] = GET_CHNL_CLASS;
memset((void *)adapter->mega_buffer, 0, MEGA_BUFFER_SIZE);
mbox->xferaddr = (u32)adapter->buf_dma_handle;
/*
* Non-ROMB firware fail this command, so all channels
* must be shown RAID
*/
adapter->mega_ch_class = 0xFF;
if(!issue_scb_block(adapter, raw_mbox)) {
adapter->mega_ch_class = *((char *)adapter->mega_buffer);
}
for( i = 0; i < adapter->product_info.nchannels; i++ ) {
if( (adapter->mega_ch_class >> i) & 0x01 ) {
printk(KERN_INFO "megaraid: channel[%d] is raid.\n",
i);
}
else {
printk(KERN_INFO "megaraid: channel[%d] is scsi.\n",
i);
}
}
return;
}
/**
* mega_get_boot_drv()
* @adapter - pointer to our soft state
*
* Find out which device is the boot device. Note, any logical drive or any
* phyical device (e.g., a CDROM) can be designated as a boot device.
*/
static void
mega_get_boot_drv(adapter_t *adapter)
{
struct private_bios_data *prv_bios_data;
unsigned char raw_mbox[sizeof(mbox_t)];
mbox_t *mbox;
u16 cksum = 0;
u8 *cksum_p;
u8 boot_pdrv;
int i;
mbox = (mbox_t *)raw_mbox;
memset(raw_mbox, 0, sizeof(raw_mbox));
raw_mbox[0] = BIOS_PVT_DATA;
raw_mbox[2] = GET_BIOS_PVT_DATA;
memset((void *)adapter->mega_buffer, 0, MEGA_BUFFER_SIZE);
mbox->xferaddr = (u32)adapter->buf_dma_handle;
adapter->boot_ldrv_enabled = 0;
adapter->boot_ldrv = 0;
adapter->boot_pdrv_enabled = 0;
adapter->boot_pdrv_ch = 0;
adapter->boot_pdrv_tgt = 0;
if(issue_scb_block(adapter, raw_mbox) == 0) {
prv_bios_data =
(struct private_bios_data *)adapter->mega_buffer;
cksum = 0;
cksum_p = (char *)prv_bios_data;
for (i = 0; i < 14; i++ ) {
cksum += (u16)(*cksum_p++);
}
if (prv_bios_data->cksum == (u16)(0-cksum) ) {
/*
* If MSB is set, a physical drive is set as boot
* device
*/
if( prv_bios_data->boot_drv & 0x80 ) {
adapter->boot_pdrv_enabled = 1;
boot_pdrv = prv_bios_data->boot_drv & 0x7F;
adapter->boot_pdrv_ch = boot_pdrv / 16;
adapter->boot_pdrv_tgt = boot_pdrv % 16;
}
else {
adapter->boot_ldrv_enabled = 1;
adapter->boot_ldrv = prv_bios_data->boot_drv;
}
}
}
}
/**
* mega_support_random_del()
* @adapter - pointer to our soft state
*
* Find out if this controller supports random deletion and addition of
* logical drives
*/
static int
mega_support_random_del(adapter_t *adapter)
{
unsigned char raw_mbox[sizeof(mbox_t)];
mbox_t *mbox;
int rval;
mbox = (mbox_t *)raw_mbox;
memset(raw_mbox, 0, sizeof(raw_mbox));
/*
* issue command
*/
raw_mbox[0] = FC_DEL_LOGDRV;
raw_mbox[2] = OP_SUP_DEL_LOGDRV;
rval = issue_scb_block(adapter, raw_mbox);
return !rval;
}
/**
* mega_support_ext_cdb()
* @adapter - pointer to our soft state
*
* Find out if this firmware support cdblen > 10
*/
static int
mega_support_ext_cdb(adapter_t *adapter)
{
unsigned char raw_mbox[sizeof(mbox_t)];
mbox_t *mbox;
int rval;
mbox = (mbox_t *)raw_mbox;
memset(raw_mbox, 0, sizeof(raw_mbox));
/*
* issue command to find out if controller supports extended CDBs.
*/
raw_mbox[0] = 0xA4;
raw_mbox[2] = 0x16;
rval = issue_scb_block(adapter, raw_mbox);
return !rval;
}
/**
* mega_del_logdrv()
* @adapter - pointer to our soft state
* @logdrv - logical drive to be deleted
*
* Delete the specified logical drive. It is the responsibility of the user
* app to let the OS know about this operation.
*/
static int
mega_del_logdrv(adapter_t *adapter, int logdrv)
{
DECLARE_WAIT_QUEUE_HEAD(wq);
unsigned long flags;
scb_t *scb;
int rval;
ASSERT( !spin_is_locked(adapter->host_lock) );
/*
* Stop sending commands to the controller, queue them internally.
* When deletion is complete, ISR will flush the queue.
*/
atomic_set(&adapter->quiescent, 1);
/*
* Wait till all the issued commands are complete and there are no
* commands in the pending queue
*/
while( atomic_read(&adapter->pend_cmds) > 0 ) {
sleep_on_timeout( &wq, 1*HZ ); /* sleep for 1s */
}
rval = mega_do_del_logdrv(adapter, logdrv);
spin_lock_irqsave(adapter->host_lock, flags);
/*
* If delete operation was successful, add 0x80 to the logical drive
* ids for commands in the pending queue.
*/
if (adapter->read_ldidmap) {
struct list_head *pos;
list_for_each(pos, &adapter->pending_list) {
scb = list_entry(pos, scb_t, list);
if (((mbox_t *)scb->raw_mbox)->logdrv < 0x80 )
((mbox_t *)scb->raw_mbox)->logdrv += 0x80 ;
}
}
atomic_set(&adapter->quiescent, 0);
mega_runpendq(adapter);
spin_unlock_irqrestore(adapter->host_lock, flags);
return rval;
}
static int
mega_do_del_logdrv(adapter_t *adapter, int logdrv)
{
int rval;
u8 raw_mbox[sizeof(mbox_t)];
memset(raw_mbox, 0, sizeof(raw_mbox));
raw_mbox[0] = FC_DEL_LOGDRV;
raw_mbox[2] = OP_DEL_LOGDRV;
raw_mbox[3] = logdrv;
/* Issue a blocking command to the card */
rval = issue_scb_block(adapter, raw_mbox);
/* log this event */
if(rval) {
printk(KERN_WARNING "megaraid: Delete LD-%d failed.", logdrv);
return rval;
}
/*
* After deleting first logical drive, the logical drives must be
* addressed by adding 0x80 to the logical drive id.
*/
adapter->read_ldidmap = 1;
return rval;
}
/**
* mega_get_max_sgl()
* @adapter - pointer to our soft state
*
* Find out the maximum number of scatter-gather elements supported by this
* version of the firmware
*/
static void
mega_get_max_sgl(adapter_t *adapter)
{
unsigned char raw_mbox[sizeof(mbox_t)];
mbox_t *mbox;
mbox = (mbox_t *)raw_mbox;
memset(raw_mbox, 0, sizeof(raw_mbox));
memset((void *)adapter->mega_buffer, 0, MEGA_BUFFER_SIZE);
mbox->xferaddr = (u32)adapter->buf_dma_handle;
raw_mbox[0] = MAIN_MISC_OPCODE;
raw_mbox[2] = GET_MAX_SG_SUPPORT;
if( issue_scb_block(adapter, raw_mbox) ) {
/*
* f/w does not support this command. Choose the default value
*/
adapter->sglen = MIN_SGLIST;
}
else {
adapter->sglen = *((char *)adapter->mega_buffer);
/*
* Make sure this is not more than the resources we are
* planning to allocate
*/
if ( adapter->sglen > MAX_SGLIST )
adapter->sglen = MAX_SGLIST;
}
return;
}
/**
* mega_support_cluster()
* @adapter - pointer to our soft state
*
* Find out if this firmware support cluster calls.
*/
static int
mega_support_cluster(adapter_t *adapter)
{
unsigned char raw_mbox[sizeof(mbox_t)];
mbox_t *mbox;
mbox = (mbox_t *)raw_mbox;
memset(raw_mbox, 0, sizeof(raw_mbox));
memset((void *)adapter->mega_buffer, 0, MEGA_BUFFER_SIZE);
mbox->xferaddr = (u32)adapter->buf_dma_handle;
/*
* Try to get the initiator id. This command will succeed iff the
* clustering is available on this HBA.
*/
raw_mbox[0] = MEGA_GET_TARGET_ID;
if( issue_scb_block(adapter, raw_mbox) == 0 ) {
/*
* Cluster support available. Get the initiator target id.
* Tell our id to mid-layer too.
*/
adapter->this_id = *(u32 *)adapter->mega_buffer;
adapter->host->this_id = adapter->this_id;
return 1;
}
return 0;
}
/**
* mega_get_ldrv_num()
* @adapter - pointer to our soft state
* @cmd - scsi mid layer command
* @channel - channel on the controller
*
* Calculate the logical drive number based on the information in scsi command
* and the channel number.
*/
static inline int
mega_get_ldrv_num(adapter_t *adapter, Scsi_Cmnd *cmd, int channel)
{
int tgt;
int ldrv_num;
tgt = cmd->target;
if ( tgt > adapter->this_id )
tgt--; /* we do not get inquires for initiator id */
ldrv_num = (channel * 15) + tgt;
/*
* If we have a logical drive with boot enabled, project it first
*/
if( adapter->boot_ldrv_enabled ) {
if( ldrv_num == 0 ) {
ldrv_num = adapter->boot_ldrv;
}
else {
if( ldrv_num <= adapter->boot_ldrv ) {
ldrv_num--;
}
}
}
/*
* If "delete logical drive" feature is enabled on this controller.
* Do only if at least one delete logical drive operation was done.
*
* Also, after logical drive deletion, instead of logical drive number,
* the value returned should be 0x80+logical drive id.
*
* These is valid only for IO commands.
*/
if (adapter->support_random_del && adapter->read_ldidmap )
switch (cmd->cmnd[0]) {
case READ_6: /* fall through */
case WRITE_6: /* fall through */
case READ_10: /* fall through */
case WRITE_10:
ldrv_num += 0x80;
}
return ldrv_num;
}
/**
* mega_reorder_hosts()
*
* Hack: reorder the scsi hosts in mid-layer so that the controller with the
* boot device on it appears first in the list.
*/
static void
mega_reorder_hosts(void)
{
struct Scsi_Host *shpnt;
struct Scsi_Host *shone;
struct Scsi_Host *shtwo;
adapter_t *boot_host;
int i;
/*
* Find the (first) host which has it's BIOS enabled
*/
boot_host = NULL;
for (i = 0; i < MAX_CONTROLLERS; i++) {
if (mega_hbas[i].is_bios_enabled) {
boot_host = mega_hbas[i].hostdata_addr;
break;
}
}
if (!boot_host) {
printk(KERN_NOTICE "megaraid: no BIOS enabled.\n");
return;
}
/*
* Traverse through the list of SCSI hosts for our HBA locations
*/
shone = shtwo = NULL;
for (shpnt = scsi_hostlist; shpnt; shpnt = shpnt->next) {
/* Is it one of ours? */
for (i = 0; i < MAX_CONTROLLERS; i++) {
if ((adapter_t *) shpnt->hostdata ==
mega_hbas[i].hostdata_addr) {
/* Does this one has BIOS enabled */
if (mega_hbas[i].hostdata_addr == boot_host) {
/* Are we first */
if (!shtwo) /* Yes! */
return;
else /* :-( */
shone = shpnt;
} else {
if (!shtwo) {
/* were we here before? xchng
* first */
shtwo = shpnt;
}
}
break;
}
}
/*
* Have we got the boot host and one which does not have the
* bios enabled.
*/
if (shone && shtwo)
break;
}
if (shone && shtwo) {
mega_swap_hosts (shone, shtwo);
}
return;
}
static void
mega_swap_hosts (struct Scsi_Host *shone, struct Scsi_Host *shtwo)
{
struct Scsi_Host *prevtoshtwo;
struct Scsi_Host *prevtoshone;
struct Scsi_Host *save = NULL;
/* Are these two nodes adjacent */
if (shtwo->next == shone) {
if (shtwo == scsi_hostlist && !shone->next) {
/* just two nodes */
scsi_hostlist = shone;
shone->next = shtwo;
shtwo->next = NULL;
} else if (shtwo == scsi_hostlist) {
/* first two nodes of the list */
scsi_hostlist = shone;
shtwo->next = shone->next;
scsi_hostlist->next = shtwo;
} else if (!shone->next) {
/* last two nodes of the list */
prevtoshtwo = scsi_hostlist;
while (prevtoshtwo->next != shtwo)
prevtoshtwo = prevtoshtwo->next;
prevtoshtwo->next = shone;
shone->next = shtwo;
shtwo->next = NULL;
} else {
prevtoshtwo = scsi_hostlist;
while (prevtoshtwo->next != shtwo)
prevtoshtwo = prevtoshtwo->next;
prevtoshtwo->next = shone;
shtwo->next = shone->next;
shone->next = shtwo;
}
} else if (shtwo == scsi_hostlist && !shone->next) {
/* shtwo at head, shone at tail, not adjacent */
prevtoshone = scsi_hostlist;
while (prevtoshone->next != shone)
prevtoshone = prevtoshone->next;
scsi_hostlist = shone;
shone->next = shtwo->next;
prevtoshone->next = shtwo;
shtwo->next = NULL;
} else if (shtwo == scsi_hostlist && shone->next) {
/* shtwo at head, shone is not at tail */
prevtoshone = scsi_hostlist;
while (prevtoshone->next != shone)
prevtoshone = prevtoshone->next;
scsi_hostlist = shone;
prevtoshone->next = shtwo;
save = shtwo->next;
shtwo->next = shone->next;
shone->next = save;
} else if (!shone->next) {
/* shtwo not at head, shone at tail */
prevtoshtwo = scsi_hostlist;
prevtoshone = scsi_hostlist;
while (prevtoshtwo->next != shtwo)
prevtoshtwo = prevtoshtwo->next;
while (prevtoshone->next != shone)
prevtoshone = prevtoshone->next;
prevtoshtwo->next = shone;
shone->next = shtwo->next;
prevtoshone->next = shtwo;
shtwo->next = NULL;
} else {
prevtoshtwo = scsi_hostlist;
prevtoshone = scsi_hostlist;
save = NULL;
while (prevtoshtwo->next != shtwo)
prevtoshtwo = prevtoshtwo->next;
while (prevtoshone->next != shone)
prevtoshone = prevtoshone->next;
prevtoshtwo->next = shone;
save = shone->next;
shone->next = shtwo->next;
prevtoshone->next = shtwo;
shtwo->next = save;
}
return;
}
#ifdef CONFIG_PROC_FS
/**
* mega_adapinq()
* @adapter - pointer to our soft state
* @dma_handle - DMA address of the buffer
*
* Issue internal comamnds while interrupts are available.
* We only issue direct mailbox commands from within the driver. ioctl()
* interface using these routines can issue passthru commands.
*/
static int
mega_adapinq(adapter_t *adapter, dma_addr_t dma_handle)
{
megacmd_t mc;
memset(&mc, 0, sizeof(megacmd_t));
if( adapter->flag & BOARD_40LD ) {
mc.cmd = FC_NEW_CONFIG;
mc.opcode = NC_SUBOP_ENQUIRY3;
mc.subopcode = ENQ3_GET_SOLICITED_FULL;
}
else {
mc.cmd = MEGA_MBOXCMD_ADPEXTINQ;
}
mc.xferaddr = (u32)dma_handle;
if ( mega_internal_command(adapter, LOCK_INT, &mc, NULL) != 0 ) {
return -1;
}
return 0;
}
/**
* mega_allocate_inquiry()
* @dma_handle - handle returned for dma address
* @pdev - handle to pci device
*
* allocates memory for inquiry structure
*/
static inline caddr_t
mega_allocate_inquiry(dma_addr_t *dma_handle, struct pci_dev *pdev)
{
return pci_alloc_consistent(pdev, sizeof(mega_inquiry3), dma_handle);
}
static inline void
mega_free_inquiry(caddr_t inquiry, dma_addr_t dma_handle, struct pci_dev *pdev)
{
pci_free_consistent(pdev, sizeof(mega_inquiry3), inquiry, dma_handle);
}
/** mega_internal_dev_inquiry()
* @adapter - pointer to our soft state
* @ch - channel for this device
* @tgt - ID of this device
* @buf_dma_handle - DMA address of the buffer
*
* Issue the scsi inquiry for the specified device.
*/
static int
mega_internal_dev_inquiry(adapter_t *adapter, u8 ch, u8 tgt,
dma_addr_t buf_dma_handle)
{
mega_passthru *pthru;
dma_addr_t pthru_dma_handle;
megacmd_t mc;
int rval;
struct pci_dev *pdev;
/*
* For all internal commands, the buffer must be allocated in <4GB
* address range
*/
pdev = adapter->dev;
pthru = pci_alloc_consistent(pdev, sizeof(mega_passthru),
&pthru_dma_handle);
if( pthru == NULL ) {
return -1;
}
pthru->timeout = 2;
pthru->ars = 1;
pthru->reqsenselen = 14;
pthru->islogical = 0;
pthru->channel = (adapter->flag & BOARD_40LD) ? 0 : ch;
pthru->target = (adapter->flag & BOARD_40LD) ? (ch << 4)|tgt : tgt;
pthru->cdblen = 6;
pthru->cdb[0] = INQUIRY;
pthru->cdb[1] = 0;
pthru->cdb[2] = 0;
pthru->cdb[3] = 0;
pthru->cdb[4] = 255;
pthru->cdb[5] = 0;
pthru->dataxferaddr = (u32)buf_dma_handle;
pthru->dataxferlen = 256;
memset(&mc, 0, sizeof(megacmd_t));
mc.cmd = MEGA_MBOXCMD_PASSTHRU;
mc.xferaddr = (u32)pthru_dma_handle;
rval = mega_internal_command(adapter, LOCK_INT, &mc, pthru);
pci_free_consistent(pdev, sizeof(mega_passthru), pthru,
pthru_dma_handle);
return rval;
}
#endif // #ifdef CONFIG_PROC_FS
/**
* mega_internal_command()
* @adapter - pointer to our soft state
* @ls - the scope of the exclusion lock.
* @mc - the mailbox command
* @pthru - Passthru structure for DCDB commands
*
* Issue the internal commands in interrupt mode.
* The last argument is the address of the passthru structure if the command
* to be fired is a passthru command
*
* lockscope specifies whether the caller has already acquired the lock. Of
* course, the caller must know which lock we are talking about.
*
* Note: parameter 'pthru' is null for non-passthru commands.
*/
static int
mega_internal_command(adapter_t *adapter, lockscope_t ls, megacmd_t *mc,
mega_passthru *pthru )
{
Scsi_Cmnd *scmd;
unsigned long flags = 0;
scb_t *scb;
int rval;
/*
* The internal commands share one command id and hence are
* serialized. This is so because we want to reserve maximum number of
* available command ids for the I/O commands.
*/
down(&adapter->int_mtx);
scb = &adapter->int_scb;
memset(scb, 0, sizeof(scb_t));
scmd = &adapter->int_scmd;
memset(scmd, 0, sizeof(Scsi_Cmnd));
scmd->host = adapter->host;
scmd->buffer = (void *)scb;
scmd->cmnd[0] = MEGA_INTERNAL_CMD;
scb->state |= SCB_ACTIVE;
scb->cmd = scmd;
memcpy(scb->raw_mbox, mc, sizeof(megacmd_t));
/*
* Is it a passthru command
*/
if( mc->cmd == MEGA_MBOXCMD_PASSTHRU ) {
scb->pthru = pthru;
}
scb->idx = CMDID_INT_CMDS;
scmd->state = 0;
/*
* Get the lock only if the caller has not acquired it already
*/
if( ls == LOCK_INT ) spin_lock_irqsave(adapter->host_lock, flags);
megaraid_queue(scmd, mega_internal_done);
if( ls == LOCK_INT ) spin_unlock_irqrestore(adapter->host_lock, flags);
/*
* Wait till this command finishes. Do not use
* wait_event_interruptible(). It causes panic if CTRL-C is hit when
* dumping e.g., physical disk information through /proc interface.
* Catching the return value should solve the issue but for now keep
* the call non-interruptible.
*/
#if 0
wait_event_interruptible(adapter->int_waitq, scmd->state);
#endif
wait_event(adapter->int_waitq, scmd->state);
rval = scmd->result;
mc->status = scmd->result;
/*
* Print a debug message for all failed commands. Applications can use
* this information.
*/
if( scmd->result && trace_level ) {
printk("megaraid: cmd [%x, %x, %x] status:[%x]\n",
mc->cmd, mc->opcode, mc->subopcode, scmd->result);
}
up(&adapter->int_mtx);
return rval;
}
/**
* mega_internal_done()
* @scmd - internal scsi command
*
* Callback routine for internal commands.
*/
static void
mega_internal_done(Scsi_Cmnd *scmd)
{
adapter_t *adapter;
adapter = (adapter_t *)scmd->host->hostdata;
scmd->state = 1; /* thread waiting for its command to complete */
/*
* See comment in mega_internal_command() routine for
* wait_event_interruptible()
*/
#if 0
wake_up_interruptible(&adapter->int_waitq);
#endif
wake_up(&adapter->int_waitq);
}
static Scsi_Host_Template driver_template = MEGARAID;
#include "scsi_module.c"
/* vi: set ts=8 sw=8 tw=78: */