/*
* drivers/sbus/char/jsflash.c
*
* Copyright (C) 1991, 1992 Linus Torvalds (drivers/char/mem.c)
* Copyright (C) 1997 Eddie C. Dost (drivers/sbus/char/flash.c)
* Copyright (C) 1997-2000 Pavel Machek <pavel@ucw.cz> (drivers/block/nbd.c)
* Copyright (C) 1999-2000 Pete Zaitcev
*
* This driver is used to program OS into a Flash SIMM on
* Krups and Espresso platforms.
*
* TODO: do not allow erase/programming if file systems are mounted.
* TODO: Erase/program both banks of a 8MB SIMM.
*
* It is anticipated that programming an OS Flash will be a routine
* procedure. In the same time it is exeedingly dangerous because
* a user can program its OBP flash with OS image and effectively
* kill the machine.
*
* This driver uses an interface different from Eddie's flash.c
* as a silly safeguard.
*
* XXX The flash.c manipulates page caching characteristics in a certain
* dubious way; also it assumes that remap_page_range() can remap
* PCI bus locations, which may be false. ioremap() must be used
* instead. We should discuss this.
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/miscdevice.h>
#include <linux/slab.h>
#include <linux/fcntl.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/smp_lock.h>
/*
* <linux/blk.h> is controlled from the outside with these definitions.
*/
#define MAJOR_NR JSFD_MAJOR
#define DEVICE_NAME "jsfd"
#define DEVICE_REQUEST jsfd_do_request
#define DEVICE_NR(device) (MINOR(device))
#define DEVICE_ON(device)
#define DEVICE_OFF(device)
#define DEVICE_NO_RANDOM
#include <linux/blk.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/pcic.h>
#include <asm/oplib.h>
#include <asm/jsflash.h> /* ioctl arguments. <linux/> ?? */
#define JSFIDSZ (sizeof(struct jsflash_ident_arg))
#define JSFPRGSZ (sizeof(struct jsflash_program_arg))
/*
* Our device numbers have no business in system headers.
* The only thing a user knows is the device name /dev/jsflash.
*
* Block devices are laid out like this:
* minor+0 - Bootstrap, for 8MB SIMM 0x20400000[0x800000]
* minor+1 - Filesystem to mount, normally 0x20400400[0x7ffc00]
* minor+2 - Whole flash area for any case... 0x20000000[0x01000000]
* Total 3 minors per flash device.
*
* It is easier to have static size vectors, so we define
* a total minor range JSF_MAX, which must cover all minors.
*/
/* character device */
#define JSF_MINOR 178 /* 178 is registered with hpa */
/* block device */
#define JSF_MAX 3 /* 3 minors wasted total so far. */
#define JSF_NPART 3 /* 3 minors per flash device */
#define JSF_PART_BITS 2 /* 2 bits of minors to cover JSF_NPART */
#define JSF_PART_MASK 0x3 /* 2 bits mask */
/*
* Access functions.
* We could ioremap(), but it's easier this way.
*/
static unsigned int jsf_inl(unsigned long addr)
{
unsigned long retval;
__asm__ __volatile__("lda [%1] %2, %0\n\t" :
"=r" (retval) :
"r" (addr), "i" (ASI_M_BYPASS));
return retval;
}
static void jsf_outl(unsigned long addr, __u32 data)
{
__asm__ __volatile__("sta %0, [%1] %2\n\t" : :
"r" (data), "r" (addr), "i" (ASI_M_BYPASS) :
"memory");
}
/*
* soft carrier
*/
struct jsfd_part {
unsigned long dbase;
unsigned long dsize;
int refcnt;
};
struct jsflash {
unsigned long base;
unsigned long size;
unsigned long busy; /* In use? */
struct jsflash_ident_arg id;
/* int mbase; */ /* Minor base, typically zero */
struct jsfd_part dv[JSF_NPART];
};
/*
* We do not map normal memory or obio as a safety precaution.
* But offsets are real, for ease of userland programming.
*/
#define JSF_BASE_TOP 0x30000000
#define JSF_BASE_ALL 0x20000000
#define JSF_BASE_JK 0x20400000
/*
*/
static int jsfd_blksizes[JSF_MAX];
static int jsfd_sizes[JSF_MAX];
static u64 jsfd_bytesizes[JSF_MAX];
/*
* Let's pretend we may have several of these...
*/
static struct jsflash jsf0;
/*
* Wait for AMD to finish its embedded algorithm.
* We use the Toggle bit DQ6 (0x40) because it does not
* depend on the data value as /DATA bit DQ7 does.
*
* XXX Do we need any timeout here? So far it never hanged, beware broken hw.
*/
static void jsf_wait(unsigned long p) {
unsigned int x1, x2;
for (;;) {
x1 = jsf_inl(p);
x2 = jsf_inl(p);
if ((x1 & 0x40404040) == (x2 & 0x40404040)) return;
}
}
/*
* Programming will only work if Flash is clean,
* we leave it to the programmer application.
*
* AMD must be programmed one byte at a time;
* thus, Simple Tech SIMM must be written 4 bytes at a time.
*
* Write waits for the chip to become ready after the write
* was finished. This is done so that application would read
* consistent data after the write is done.
*/
static void jsf_write4(unsigned long fa, u32 data) {
jsf_outl(fa, 0xAAAAAAAA); /* Unlock 1 Write 1 */
jsf_outl(fa, 0x55555555); /* Unlock 1 Write 2 */
jsf_outl(fa, 0xA0A0A0A0); /* Byte Program */
jsf_outl(fa, data);
jsf_wait(fa);
}
/*
*/
static void jsfd_read(char *buf, unsigned long p, size_t togo) {
union byte4 {
char s[4];
unsigned int n;
} b;
while (togo >= 4) {
togo -= 4;
b.n = jsf_inl(p);
memcpy(buf, b.s, 4);
p += 4;
buf += 4;
}
}
static void jsfd_do_request(request_queue_t *q)
{
struct request *req;
int dev;
struct jsfd_part *jdp;
unsigned long offset;
size_t len;
for (;;) {
INIT_REQUEST; /* if (QUEUE_EMPTY) return; */
req = CURRENT;
dev = MINOR(req->rq_dev);
if (dev >= JSF_MAX || (dev & JSF_PART_MASK) >= JSF_NPART) {
end_request(0);
continue;
}
jdp = &jsf0.dv[dev & JSF_PART_MASK];
offset = req->sector << 9;
len = req->current_nr_sectors << 9;
if ((offset + len) > jdp->dsize) {
end_request(0);
continue;
}
if (req->cmd == WRITE) {
printk(KERN_ERR "jsfd: write\n");
end_request(0);
continue;
}
if (req->cmd != READ) {
printk(KERN_ERR "jsfd: bad req->cmd %d\n", req->cmd);
end_request(0);
continue;
}
if ((jdp->dbase & 0xff000000) != 0x20000000) {
printk(KERN_ERR "jsfd: bad base %x\n", (int)jdp->dbase);
end_request(0);
continue;
}
/* printk("jsfd%d: read buf %p off %x len %x\n", dev, req->buffer, (int)offset, (int)len); */ /* P3 */
jsfd_read(req->buffer, jdp->dbase + offset, len);
end_request(1);
}
}
/*
* The memory devices use the full 32/64 bits of the offset, and so we cannot
* check against negative addresses: they are ok. The return value is weird,
* though, in that case (0).
*
* also note that seeking relative to the "end of file" isn't supported:
* it has no meaning, so it returns -EINVAL.
*/
static loff_t jsf_lseek(struct file * file, loff_t offset, int orig)
{
switch (orig) {
case 0:
file->f_pos = offset;
return file->f_pos;
case 1:
file->f_pos += offset;
return file->f_pos;
default:
return -EINVAL;
}
}
/*
* OS SIMM Cannot be read in other size but a 32bits word.
*/
static ssize_t jsf_read(struct file * file, char * buf,
size_t togo, loff_t *ppos)
{
unsigned long p = *ppos;
char *tmp = buf;
union byte4 {
char s[4];
unsigned int n;
} b;
if (verify_area(VERIFY_WRITE, buf, togo))
return -EFAULT;
if (p < JSF_BASE_ALL || p >= JSF_BASE_TOP) {
return 0;
}
if ((p + togo) < p /* wrap */
|| (p + togo) >= JSF_BASE_TOP) {
togo = JSF_BASE_TOP - p;
}
if (p < JSF_BASE_ALL && togo != 0) {
#if 0 /* __bzero XXX */
size_t x = JSF_BASE_ALL - p;
if (x > togo) x = togo;
clear_user(tmp, x);
tmp += x;
p += x;
togo -= x;
#else
/*
* Implementation of clear_user() calls __bzero
* without regard to modversions,
* so we cannot build a module.
*/
return 0;
#endif
}
while (togo >= 4) {
togo -= 4;
b.n = jsf_inl(p);
copy_to_user(tmp, b.s, 4);
tmp += 4;
p += 4;
}
/*
* XXX Small togo may remain if 1 byte is ordered.
* It would be nice if we did a word size read and unpacked it.
*/
*ppos = p;
return tmp-buf;
}
static ssize_t jsf_write(struct file * file, const char * buf,
size_t count, loff_t *ppos)
{
return -ENOSPC;
}
/*
*/
static int jsf_ioctl_erase(unsigned long arg)
{
unsigned long p;
/* p = jsf0.base; hits wrong bank */
p = 0x20400000;
jsf_outl(p, 0xAAAAAAAA); /* Unlock 1 Write 1 */
jsf_outl(p, 0x55555555); /* Unlock 1 Write 2 */
jsf_outl(p, 0x80808080); /* Erase setup */
jsf_outl(p, 0xAAAAAAAA); /* Unlock 2 Write 1 */
jsf_outl(p, 0x55555555); /* Unlock 2 Write 2 */
jsf_outl(p, 0x10101010); /* Chip erase */
#if 0
/*
* This code is ok, except that counter based timeout
* has no place in this world. Let's just drop timeouts...
*/
{
int i;
__u32 x;
for (i = 0; i < 1000000; i++) {
x = jsf_inl(p);
if ((x & 0x80808080) == 0x80808080) break;
}
if ((x & 0x80808080) != 0x80808080) {
printk("jsf0: erase timeout with 0x%08x\n", x);
} else {
printk("jsf0: erase done with 0x%08x\n", x);
}
}
#else
jsf_wait(p);
#endif
return 0;
}
/*
* Program a block of flash.
* Very simple because we can do it byte by byte anyway.
*/
static int jsf_ioctl_program(unsigned long arg)
{
struct jsflash_program_arg abuf;
char *uptr;
unsigned long p;
unsigned int togo;
union {
unsigned int n;
char s[4];
} b;
if (verify_area(VERIFY_READ, (void *)arg, JSFPRGSZ))
return -EFAULT;
copy_from_user(&abuf, (char *)arg, JSFPRGSZ);
p = abuf.off;
togo = abuf.size;
if ((togo & 3) || (p & 3)) return -EINVAL;
uptr = (char *) (unsigned long) abuf.data;
if (verify_area(VERIFY_READ, uptr, togo))
return -EFAULT;
while (togo != 0) {
togo -= 4;
copy_from_user(&b.s[0], uptr, 4);
jsf_write4(p, b.n);
p += 4;
uptr += 4;
}
return 0;
}
static int jsf_ioctl(struct inode *inode, struct file *f, unsigned int cmd,
unsigned long arg)
{
int error = -ENOTTY;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
switch (cmd) {
case JSFLASH_IDENT:
if (verify_area(VERIFY_WRITE, (void *)arg, JSFIDSZ))
return -EFAULT;
copy_to_user(arg, &jsf0.id, JSFIDSZ);
error = 0;
break;
case JSFLASH_ERASE:
error = jsf_ioctl_erase(arg);
break;
case JSFLASH_PROGRAM:
error = jsf_ioctl_program(arg);
break;
}
return error;
}
static int jsfd_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)
{
int dev;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (!inode)
return -EINVAL;
if ((dev = MINOR(inode->i_rdev)) >= JSF_MAX) return -ENODEV;
switch (cmd) {
case BLKGETSIZE:
return put_user(jsfd_bytesizes[dev] >> 9, (unsigned long *) arg);
case BLKGETSIZE64:
return put_user(jsfd_bytesizes[dev], (u64 *) arg);
#if 0
case BLKROSET:
case BLKROGET:
case BLKSSZGET:
return blk_ioctl(inode->i_rdev, cmd, arg);
#endif
/* case BLKFLSBUF: */ /* Program, then read, what happens? Stale? */
default: ;
}
return -ENOTTY;
}
static int jsf_mmap(struct file * file, struct vm_area_struct * vma)
{
return -ENXIO;
}
static int jsf_open(struct inode * inode, struct file * filp)
{
if (jsf0.base == 0) return -ENXIO;
if (test_and_set_bit(0, (void *)&jsf0.busy) != 0)
return -EBUSY;
return 0; /* XXX What security? */
}
static int jsfd_open(struct inode *inode, struct file *file)
{
struct jsfd_part *jdp;
int dev;
if (!inode)
return -EINVAL;
dev = MINOR(inode->i_rdev);
if (dev >= JSF_MAX || (dev & JSF_PART_MASK) >= JSF_NPART) {
printk(KERN_ALERT "jsfd_open: illegal minor %d\n", dev);
return -ENODEV;
}
jdp = &jsf0.dv[dev];
jdp->refcnt++;
return 0;
}
static int jsf_release(struct inode *inode, struct file *file)
{
jsf0.busy = 0;
return 0;
}
static int jsfd_release(struct inode *inode, struct file *file)
{
struct jsfd_part *jdp;
int dev;
if (!inode)
return -ENODEV;
dev = MINOR(inode->i_rdev);
if (dev >= JSF_MAX || (dev & JSF_PART_MASK) >= JSF_NPART) {
printk(KERN_ALERT "jsfd_release: illegal minor %d\n", dev);
return -ENODEV;
}
jdp = &jsf0.dv[dev];
if (jdp->refcnt <= 0) {
printk(KERN_ALERT "jsfd_release: bad ref on minor %d\n", dev);
} else {
--jdp->refcnt;
}
/* N.B. Doesn't lo->file need an fput?? */
return 0;
}
static struct file_operations jsf_fops = {
owner: THIS_MODULE,
llseek: jsf_lseek,
read: jsf_read,
write: jsf_write,
ioctl: jsf_ioctl,
mmap: jsf_mmap,
open: jsf_open,
release: jsf_release,
};
static struct miscdevice jsf_dev = { JSF_MINOR, "jsflash", &jsf_fops };
static struct block_device_operations jsfd_fops = {
owner: THIS_MODULE,
open: jsfd_open,
release: jsfd_release,
ioctl: jsfd_ioctl,
};
EXPORT_NO_SYMBOLS;
int jsflash_init(void)
{
int rc;
struct jsflash *jsf;
int node;
char banner[128];
struct linux_prom_registers reg0;
node = prom_getchild(prom_root_node);
node = prom_searchsiblings(node, "flash-memory");
if (node != 0 && node != -1) {
if (prom_getproperty(node, "reg",
(char *)®0, sizeof(reg0)) == -1) {
printk("jsflash: no \"reg\" property\n");
return -ENXIO;
}
if (reg0.which_io != 0) {
printk("jsflash: bus number nonzero: 0x%x:%x\n",
reg0.which_io, reg0.phys_addr);
return -ENXIO;
}
/*
* Flash may be somewhere else, for instance on Ebus.
* So, don't do the following check for IIep flash space.
*/
#if 0
if ((reg0.phys_addr >> 24) != 0x20) {
printk("jsflash: suspicious address: 0x%x:%x\n",
reg0.which_io, reg0.phys_addr);
return -ENXIO;
}
#endif
if ((int)reg0.reg_size <= 0) {
printk("jsflash: bad size 0x%x\n", (int)reg0.reg_size);
return -ENXIO;
}
} else {
/* XXX Remove this code once PROLL ID12 got widespread */
printk("jsflash: no /flash-memory node, use PROLL >= 12\n");
prom_getproperty(prom_root_node, "banner-name", banner, 128);
if (strcmp (banner, "JavaStation-NC") != 0 &&
strcmp (banner, "JavaStation-E") != 0) {
return -ENXIO;
}
reg0.which_io = 0;
reg0.phys_addr = 0x20400000;
reg0.reg_size = 0x00800000;
}
/* Let us be really paranoid for modifications to probing code. */
/* extern enum sparc_cpu sparc_cpu_model; */ /* in <asm/system.h> */
if (sparc_cpu_model != sun4m) {
/* We must be on sun4m because we use MMU Bypass ASI. */
return -ENXIO;
}
if (jsf0.base == 0) {
jsf = &jsf0;
jsf->base = reg0.phys_addr;
jsf->size = reg0.reg_size;
/* XXX Redo the userland interface. */
jsf->id.off = JSF_BASE_ALL;
jsf->id.size = 0x01000000; /* 16M - all segments */
strcpy(jsf->id.name, "Krups_all");
jsf->dv[0].dbase = jsf->base;
jsf->dv[0].dsize = jsf->size;
jsf->dv[1].dbase = jsf->base + 1024;
jsf->dv[1].dsize = jsf->size - 1024;
jsf->dv[2].dbase = JSF_BASE_ALL;
jsf->dv[2].dsize = 0x01000000;
printk("Espresso Flash @0x%lx [%d MB]\n", jsf->base,
(int) (jsf->size / (1024*1024)));
}
if ((rc = misc_register(&jsf_dev)) != 0) {
printk(KERN_ERR "jsf: unable to get misc minor %d\n",
JSF_MINOR);
jsf0.base = 0;
return rc;
}
return 0;
}
int jsfd_init(void) {
struct jsflash *jsf;
struct jsfd_part *jdp;
int i;
if (jsf0.base == 0) {
return -ENXIO;
}
if (register_blkdev(JSFD_MAJOR, "jsfd", &jsfd_fops)) {
printk("jsfd_init: unable to get major number %d\n",
JSFD_MAJOR);
return -EIO;
}
blksize_size[JSFD_MAJOR] = jsfd_blksizes;
blk_size[JSFD_MAJOR] = jsfd_sizes;
blk_init_queue(BLK_DEFAULT_QUEUE(MAJOR_NR), DEVICE_REQUEST);
/* blk_queue_headactive(BLK_DEFAULT_QUEUE(MAJOR_NR), 0); */
for (i = 0; i < JSF_MAX; i++) {
if ((i & JSF_PART_MASK) >= JSF_NPART) continue;
jsf = &jsf0; /* actually, &jsfv[i >> JSF_PART_BITS] */
jdp = &jsf->dv[i&JSF_PART_MASK];
jdp->refcnt = 0;
jsfd_blksizes[i] = 1024;
jsfd_bytesizes[i] = jdp->dsize;
jsfd_sizes[i] = jsfd_bytesizes[i] >> 10;
register_disk(NULL, MKDEV(JSFD_MAJOR, i), 1, &jsfd_fops,
jsfd_bytesizes[i] >> 9);
set_device_ro(MKDEV(JSFD_MAJOR, i), 1);
}
return 0;
}
#ifdef MODULE
MODULE_LICENSE("GPL");
int init_module(void) {
int rc;
if ((rc = jsflash_init()) == 0) {
jsfd_init();
return 0;
}
return rc;
}
void cleanup_module(void) {
/* for (all probed units) { } */
if (jsf0.busy)
printk("jsf0: cleaning busy unit\n");
jsf0.base = 0;
jsf0.busy = 0;
misc_deregister(&jsf_dev);
if (unregister_blkdev(JSFD_MAJOR, "jsfd") != 0)
printk("jsfd: cleanup_module failed\n");
blk_cleanup_queue(BLK_DEFAULT_QUEUE(MAJOR_NR));
}
#endif